1
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
2
|
Feathers JR, Vignogna RC, Fromme JC. Structural basis for Rab6 activation by the Ric1-Rgp1 complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592747. [PMID: 38766083 PMCID: PMC11100747 DOI: 10.1101/2024.05.06.592747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Rab GTPases act as molecular switches to regulate organelle homeostasis and membrane trafficking. Rab6 plays a central role in regulating cargo flux through the Golgi and is activated via nucleotide exchange by the Ric1-Rgp1 protein complex. Ric1-Rgp1 is conserved throughout eukaryotes but the structural and mechanistic basis for its function has not been established. Here we report the cryoEM structure of a Ric1-Rgp1-Rab6 complex representing a key intermediate of the nucleotide exchange reaction. This structure reveals the overall architecture of the complex and enabled us to identify interactions critical for proper recognition and activation of Rab6 on the Golgi membrane surface. Ric1-Rgp1 interacts with the nucleotide-binding domain of Rab6 using an uncharacterized helical domain, which we establish as a novel RabGEF domain by identifying residues required for Rab6 nucleotide exchange. Unexpectedly, the complex uses an arrestin fold to interact with the Rab6 hypervariable domain, indicating that interactions with the unstructured C-terminal regions of Rab GTPases may be a common specificity mechanism used by their activators. Collectively, our findings provide a detailed mechanistic understanding of regulated Rab6 activation at the Golgi.
Collapse
Affiliation(s)
- J. Ryan Feathers
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: 201 Schultz Laboratory, Princeton University, Princeton, NJ 08544 USA
| | - Ryan C. Vignogna
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
3
|
Tojima T, Suda Y, Jin N, Kurokawa K, Nakano A. Spatiotemporal dissection of the Golgi apparatus and the ER-Golgi intermediate compartment in budding yeast. eLife 2024; 13:e92900. [PMID: 38501165 PMCID: PMC10950332 DOI: 10.7554/elife.92900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Cargo traffic through the Golgi apparatus is mediated by cisternal maturation, but it remains largely unclear how the cis-cisternae, the earliest Golgi sub-compartment, is generated and how the Golgi matures into the trans-Golgi network (TGN). Here, we use high-speed and high-resolution confocal microscopy to analyze the spatiotemporal dynamics of a diverse set of proteins that reside in and around the Golgi in budding yeast. We find many mobile punctate structures that harbor yeast counterparts of mammalian endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) proteins, which we term 'yeast ERGIC'. It occasionally exhibits approach and contact behavior toward the ER exit sites and gradually matures into the cis-Golgi. Upon treatment with the Golgi-disrupting agent brefeldin A, the ERGIC proteins form larger aggregates corresponding to the Golgi entry core compartment in plants, while cis- and medial-Golgi proteins are absorbed into the ER. We further analyze the dynamics of several late Golgi proteins to better understand the Golgi-TGN transition. Together with our previous studies, we demonstrate a detailed spatiotemporal profile of the entire cisternal maturation process from the ERGIC to the Golgi and further to the TGN.
Collapse
Grants
- KAKENHI 19K06669 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 19H04764 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 22K06213 Ministry of Education, Culture, Sports, Science and Technology
- CREST JPMJCR21E3 Japan Science and Technology Agency
- KAKENHI 17H06420 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 18H05275 Ministry of Education, Culture, Sports, Science and Technology
- KAKENHI 23H00382 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
- Laboratory of Molecular Cell Biology, Faculty of Medicine, University of TsukubaTsukubaJapan
| | - Natsuko Jin
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced PhotonicsWakoJapan
| |
Collapse
|
4
|
Brownfield BA, Richardson BC, Halaby SL, Fromme JC. Sec7 regulatory domains scaffold autoinhibited and active conformations. Proc Natl Acad Sci U S A 2024; 121:e2318615121. [PMID: 38416685 PMCID: PMC10927569 DOI: 10.1073/pnas.2318615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 03/01/2024] Open
Abstract
The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here, we report the cryogenic electron microscopy structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.
Collapse
Affiliation(s)
- Bryce A. Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Brian C. Richardson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Steve L. Halaby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
5
|
Duan HD, Jain BK, Li H, Graham TR, Li H. Structural insight into an Arl1-ArfGEF complex involved in Golgi recruitment of a GRIP-domain golgin. Nat Commun 2024; 15:1942. [PMID: 38431634 PMCID: PMC10908827 DOI: 10.1038/s41467-024-46304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Arl1 is an Arf-like (Arl) GTP-binding protein that interacts with the guanine nucleotide exchange factor Gea2 to recruit the golgin Imh1 to the Golgi. The Arl1-Gea2 complex also binds and activates the phosphatidylserine flippase Drs2 and these functions may be related, although the underlying molecular mechanism is unclear. Here we report high-resolution cryo-EM structures of the full-length Gea2 and the Arl1-Gea2 complex. Gea2 is a large protein with 1459 residues and is composed of six domains (DCB, HUS, SEC7, HDS1-3). We show that Gea2 assembles a stable dimer via an extensive interface involving hydrophobic and electrostatic interactions in the DCB and HUS region. Contrary to the previous report on a Gea2 homolog in which Arl1 binds to the dimerization surface of the DCB domain, implying a disrupted dimer upon Arl1 binding, we find that Arl1 binds to the outside surface of the Gea2 DCB domain, leaving the Gea2 dimer intact. The interaction between Arl1 and Gea2 involves the classic FWY aromatic residue triad as well as two Arl1-specific residues. We show that key mutations that disrupt the Arl1-Gea2 interaction abrogate Imh1 Golgi association. This work clarifies the Arl1-Gea2 interaction and improves our understanding of molecular events in the membrane trafficking.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Adamowski M, Matijević I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife 2024; 13:e68993. [PMID: 38381485 PMCID: PMC10881123 DOI: 10.7554/elife.68993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Plant Breeding and Acclimatization Institute – National Research InstituteBłoniePoland
| | - Ivana Matijević
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
7
|
Brownfield BA, Richardson BC, Halaby SL, Fromme JC. Sec7 regulatory domains scaffold autoinhibited and active conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568272. [PMID: 38045260 PMCID: PMC10690275 DOI: 10.1101/2023.11.22.568272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The late stages of Golgi maturation involve a series of sequential trafficking events in which cargo-laden vesicles are produced and targeted to multiple distinct subcellular destinations. Each of these vesicle biogenesis events requires activation of an Arf GTPase by the Sec7/BIG guanine nucleotide exchange factor (GEF). Sec7 localization and activity is regulated by autoinhibition, positive feedback, and interaction with other GTPases. Although these mechanisms have been characterized biochemically, we lack a clear picture of how GEF localization and activity is modulated by these signals. Here we report the cryoEM structure of full-length Sec7 in its autoinhibited form, revealing the architecture of its multiple regulatory domains. We use functional experiments to determine the basis for autoinhibition and use structural predictions to produce a model for an active conformation of the GEF that is supported empirically. This study therefore elucidates the conformational transition that Sec7 undergoes to become active on the organelle membrane surface.
Collapse
Affiliation(s)
- Bryce A. Brownfield
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - Brian C. Richardson
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: The Hormel Institute, University of Minnesota, Austin MN 55912
| | - Steve L. Halaby
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
- Current address: Abbvie Inc., Irvine, CA 92612
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
8
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. Mol Biol Cell 2023; 34:ar119. [PMID: 37672345 PMCID: PMC10846627 DOI: 10.1091/mbc.e23-07-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane-trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs which activate via nucleotide exchange, and Arf-GAPs which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro. We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M. Manzer
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| |
Collapse
|
9
|
Lai CC, Chiu WY, Chen YT, Wu CL, Lee FJS. The SNARE-associated protein Sft2 functions in Imh1-mediated SNARE recycling transport upon ER stress. Mol Biol Cell 2023; 34:ar112. [PMID: 37610835 PMCID: PMC10559307 DOI: 10.1091/mbc.e23-01-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Vesicular trafficking involving SNARE proteins play a crucial role in the delivery of cargo to the target membrane. Arf-like protein 1 (Arl1) is an important regulator of the endosomal trans-Golgi network (TGN) and secretory trafficking. In yeast, ER stress-enhances Arl1 activation and Golgin Imh1 recruitment to the late-Golgi. Although Arl1 and Imh1 are critical for GARP-mediated endosomal SNARE-recycling transport in response to ER stress, their downstream effectors are unknown. Here, we report that the SNARE-associated protein Sft2 acts downstream of the Arl1-Imh1 axis to regulate SNARE recycling upon ER stress. We first demonstrated that Sft2 is required for Tlg1/Snc1 SNARE-recycling transport under tunicamycin-induced ER stress. Interestingly, we found that Imh1 regulates Tlg2 retrograde transport to the late-Golgi under ER stress, which in turn is required for Sft2 targeting to the late-Golgi. We further showed that Sft2 with 40 amino acids deleted from the N-terminus exhibits defective mediation of SNARE recycling and decreased association with Tlg1 under ER stress. Finally, we demonstrated that Sft2 is required for GARP-dependent endosome-to-Golgi transport in the absence of Rab protein Ypt6. This study highlights Sft2 as a critical downstream effector of the Arl1-Imh1 axis, mediating the endosome-to-Golgi transport of SNAREs.
Collapse
Affiliation(s)
- Chun-Chi Lai
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Wan-Yun Chiu
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yan-Ting Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chia-Lu Wu
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
10
|
Nagano M, Aoshima K, Shimamura H, Siekhaus DE, Toshima JY, Toshima J. Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway. J Cell Sci 2023; 136:jcs261448. [PMID: 37539494 DOI: 10.1242/jcs.261448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kaito Aoshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroki Shimamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Junko Y Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamada, Ota-ku, Tokyo 144-8535, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
11
|
Johansson SA, Dulermo T, Jann C, Smith JD, Pryszlak A, Pignede G, Schraivogel D, Colavizza D, Desfougères T, Rave C, Farwick A, Merten CA, Roy KR, Wei W, Steinmetz LM. Large scale microfluidic CRISPR screening for increased amylase secretion in yeast. LAB ON A CHIP 2023; 23:3704-3715. [PMID: 37483015 PMCID: PMC7614956 DOI: 10.1039/d3lc00111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Key to our ability to increase recombinant protein production through secretion is a better understanding of the pathways that interact to translate, process and export mature proteins to the surrounding environment, including the supporting cellular machinery that supplies necessary energy and building blocks. By combining droplet microfluidic screening with large-scale CRISPR libraries that perturb the expression of the majority of coding and non-coding genes in S. cerevisiae, we identified 345 genes for which an increase or decrease in gene expression resulted in increased secretion of α-amylase. Our results show that modulating the expression of genes involved in the trafficking of vesicles, endosome to Golgi transport, the phagophore assembly site, the cell cycle and energy supply improve α-amylase secretion. Besides protein-coding genes, we also find multiple long non-coding RNAs enriched in the vicinity of genes associated with endosomal, Golgi and vacuolar processes. We validated our results by overexpressing or deleting selected genes, which resulted in significant improvements in α-amylase secretion. The advantages, in terms of precision and speed, inherent to CRISPR based perturbations, enables iterative testing of new strains for increased protein secretion.
Collapse
Affiliation(s)
- S Andreas Johansson
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| | - Thierry Dulermo
- Lesaffre Institute of Science & Technology, Lesaffre, 59700 Marcq-en-Baroeul, France
| | - Cosimo Jann
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| | - Justin D Smith
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
| | - Anna Pryszlak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| | - Georges Pignede
- Lesaffre Institute of Science & Technology, Lesaffre, 59700 Marcq-en-Baroeul, France
| | - Daniel Schraivogel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| | - Didier Colavizza
- Lesaffre Institute of Science & Technology, Lesaffre, 59700 Marcq-en-Baroeul, France
| | - Thomas Desfougères
- Lesaffre Institute of Science & Technology, Lesaffre, 59700 Marcq-en-Baroeul, France
| | - Christophe Rave
- Lesaffre Institute of Science & Technology, Lesaffre, 59700 Marcq-en-Baroeul, France
| | - Alexander Farwick
- Lesaffre Institute of Science & Technology, Lesaffre, 59700 Marcq-en-Baroeul, France
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| | - Kevin R Roy
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
| | - Wu Wei
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
| |
Collapse
|
12
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550229. [PMID: 37546741 PMCID: PMC10402032 DOI: 10.1101/2023.07.23.550229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs, which activate via nucleotide exchange, and Arf-GAPs, which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro . We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M Manzer
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - J Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
13
|
Li FL, Guan KL. The Arf family GTPases: Regulation of vesicle biogenesis and beyond. Bioessays 2023; 45:e2200214. [PMID: 36998106 PMCID: PMC10282109 DOI: 10.1002/bies.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
The Arf family proteins are best known for their roles in the vesicle biogenesis. However, they also play fundamental roles in a wide range of cellular regulation besides vesicular trafficking, such as modulation of lipid metabolic enzymes, cytoskeleton remodeling, ciliogenesis, lysosomal, and mitochondrial morphology and functions. Growing studies continue to expand the downstream effector landscape of Arf proteins, especially for the less-studied members, revealing new biological functions, such as amino acid sensing. Experiments with cutting-edge technologies and in vivo functional studies in the last decade help to provide a more comprehensive view of Arf family functions. In this review, we summarize the cellular functions that are regulated by at least two different Arf members with an emphasis on those beyond vesicle biogenesis.
Collapse
Affiliation(s)
- Fu-Long Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Bravo-Plaza I, Tagua VG, Arst HN, Alonso A, Pinar M, Monterroso B, Galindo A, Peñalva MA. The Uso1 globular head interacts with SNAREs to maintain viability even in the absence of the coiled-coil domain. eLife 2023; 12:e85079. [PMID: 37249218 PMCID: PMC10275640 DOI: 10.7554/elife.85079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Uso1/p115 and RAB1 tether ER-derived vesicles to the Golgi. Uso1/p115 contains a globular-head-domain (GHD), a coiled-coil (CC) mediating dimerization/tethering, and a C-terminal region (CTR) interacting with golgins. Uso1/p115 is recruited to vesicles by RAB1. Genetic studies placed Uso1 paradoxically acting upstream of, or in conjunction with RAB1 (Sapperstein et al., 1996). We selected two missense mutations in uso1 resulting in E6K and G540S in the GHD that rescued lethality of rab1-deficient Aspergillus nidulans. The mutations are phenotypically additive, their combination suppressing the complete absence of RAB1, which emphasizes the key physiological role of the GHD. In living hyphae Uso1 recurs on puncta (60 s half-life) colocalizing partially with the Golgi markers RAB1, Sed5, and GeaA/Gea1/Gea2, and totally with the retrograde cargo receptor Rer1, consistent with Uso1 dwelling in a very early Golgi compartment from which ER residents reaching the Golgi recycle back to the ER. Localization of Uso1, but not of Uso1E6K/G540S, to puncta is abolished by compromising RAB1 function, indicating that E6K/G540S creates interactions bypassing RAB1. That Uso1 delocalization correlates with a decrease in the number of Gea1 cisternae supports that Uso1-and-Rer1-containing puncta are where the protein exerts its physiological role. In S-tag-coprecipitation experiments, Uso1 is an associate of the Sed5/Bos1/Bet1/Sec22 SNARE complex zippering vesicles with the Golgi, with Uso1E6K/G540S showing a stronger association. Using purified proteins, we show that Bos1 and Bet1 bind the Uso1 GHD directly. However, Bet1 is a strong E6K/G540S-independent binder, whereas Bos1 is weaker but becomes as strong as Bet1 when the GHD carries E6K/G540S. G540S alone markedly increases GHD binding to Bos1, whereas E6K causes a weaker effect, correlating with their phenotypic contributions. AlphaFold2 predicts that G540S increases the binding of the GHD to the Bos1 Habc domain. In contrast, E6K lies in an N-terminal, potentially alpha-helical, region that sensitive genetic tests indicate as required for full Uso1 function. Remarkably, this region is at the end of the GHD basket opposite to the end predicted to interact with Bos1. We show that, unlike dimeric full-length and CTR∆ Uso1 proteins, the GHD lacking the CC/CTR dimerization domain, whether originating from bacteria or Aspergillus extracts and irrespective of whether it carries or not E6K/G540S, would appear to be monomeric. With the finding that overexpression of E6K/G540S and wild-type GHD complement uso1∆, our data indicate that the GHD monomer is capable of providing, at least partially, the essential Uso1 functions, and that long-range tethering activity is dispensable. Rather, these findings strongly suggest that the essential role of Uso1 involves the regulation of SNAREs.
Collapse
Affiliation(s)
- Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Victor G Tagua
- Instituto de Tecnologías Biomédicas, Hospital Universitario Nuestra Señora de CandelariaSanta Cruz de TenerifeSpain
| | - Herbert N Arst
- Department of Infectious Diseases, Faculty of Medicine, Flowers Building, Imperial CollegeLondonUnited Kingdom
| | - Ana Alonso
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Begoña Monterroso
- Department of Structural and Chemical Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, CSIC Centro de Investigaciones BiológicasMadridSpain
| |
Collapse
|
15
|
Muccini AJ, Gustafson MA, Fromme JC. Structural basis for activation of Arf1 at the Golgi complex. Cell Rep 2022; 40:111282. [PMID: 36044848 PMCID: PMC9469209 DOI: 10.1016/j.celrep.2022.111282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
The Golgi complex is the central sorting station of the eukaryotic secretory pathway. Traffic through the Golgi requires activation of Arf guanosine triphosphatases that orchestrate cargo sorting and vesicle formation by recruiting an array of effector proteins. Arf activation and Golgi membrane association is controlled by large guanine nucleotide exchange factors (GEFs) possessing multiple conserved regulatory domains. Here we present cryoelectron microscopy (cryoEM) structures of full-length Gea2, the yeast paralog of the human Arf-GEF GBF1, that reveal the organization of these regulatory domains and explain how Gea2 binds to the Golgi membrane surface. We find that the GEF domain adopts two different conformations compatible with different stages of the Arf activation reaction. The structure of a Gea2-Arf1 activation intermediate suggests that the movement of the GEF domain primes Arf1 for membrane insertion upon guanosine triphosphate binding. We propose that conformational switching of Gea2 during the nucleotide exchange reaction promotes membrane insertion of Arf1. Arf1 is a GTPase that regulates Golgi trafficking by recruiting many effector proteins. Muccini et al. report cryoEM structures of the Arf1 activator Gea2, capturing Gea2 in multiple conformational states including a Gea2-Arf1 activation intermediate. The structures help explain how Gea2 activates Arf1 on the Golgi membrane surface.
Collapse
Affiliation(s)
- Arnold J Muccini
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Margaret A Gustafson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Bagde SR, Fromme JC. Structure of a TRAPPII-Rab11 activation intermediate reveals GTPase substrate selection mechanisms. SCIENCE ADVANCES 2022; 8:eabn7446. [PMID: 35559680 PMCID: PMC9106297 DOI: 10.1126/sciadv.abn7446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rab1 and Rab11 are essential regulators of the eukaryotic secretory and endocytic recycling pathways. The transport protein particle (TRAPP) complexes activate these guanosine triphosphatases via nucleotide exchange using a shared set of core subunits. The basal specificity of the TRAPP core is toward Rab1, yet the TRAPPII complex is specific for Rab11. A steric gating mechanism has been proposed to explain TRAPPII counterselection against Rab1. Here, we present cryo-electron microscopy structures of the 22-subunit TRAPPII complex from budding yeast, including a TRAPPII-Rab11 nucleotide exchange intermediate. The Trs130 subunit provides a "leg" that positions the active site distal to the membrane surface, and this leg is required for steric gating. The related TRAPPIII complex is unable to activate Rab11 because of a repulsive interaction, which TRAPPII surmounts using the Trs120 subunit as a "lid" to enclose the active site. TRAPPII also adopts an open conformation enabling Rab11 to access and exit from the active site chamber.
Collapse
|
17
|
Li T, Guo Y. ADP-Ribosylation Factor Family of Small GTP-Binding Proteins: Their Membrane Recruitment, Activation, Crosstalk and Functions. Front Cell Dev Biol 2022; 10:813353. [PMID: 35186926 PMCID: PMC8850633 DOI: 10.3389/fcell.2022.813353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide binding proteins play critical roles in various cellular processes, especially in regulating the secretory, and endocytic pathways. The fidelity of intracellular vesicular trafficking depends on proper activations and precise subcellular distributions of ARF family proteins regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Here we review recent progress in understanding the membrane recruitment, activation, crosstalk, and functions of ARF family proteins.
Collapse
Affiliation(s)
- Tiantian Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Yusong Guo,
| |
Collapse
|
18
|
Borchers AC, Langemeyer L, Ungermann C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol 2021; 220:212549. [PMID: 34383013 PMCID: PMC8366711 DOI: 10.1083/jcb.202105120] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.
Collapse
Affiliation(s)
- Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
19
|
Highland CM, Fromme JC. Arf1 directly recruits the Pik1-Frq1 PI4K complex to regulate the final stages of Golgi maturation. Mol Biol Cell 2021; 32:1064-1080. [PMID: 33788598 PMCID: PMC8101487 DOI: 10.1091/mbc.e21-02-0069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Proper Golgi complex function depends on the activity of Arf1, a GTPase whose effectors assemble and transport outgoing vesicles. Phosphatidylinositol 4-phosphate (PI4P) generated at the Golgi by the conserved PI 4-kinase Pik1 (PI4KIIIβ) is also essential for Golgi function, although its precise roles in vesicle formation are less clear. Arf1 has been reported to regulate PI4P production, but whether Pik1 is a direct Arf1 effector is not established. Using a combination of live-cell time-lapse imaging analyses, acute PI4P depletion experiments, and in vitro protein-protein interaction assays on Golgi-mimetic membranes, we present evidence for a model in which Arf1 initiates the final stages of Golgi maturation by tightly controlling PI4P production through direct recruitment of the Pik1-Frq1 PI4-kinase complex. This PI4P serves as a critical signal for AP-1 and secretory vesicle formation, the final events at maturing Golgi compartments. This work therefore establishes the regulatory and temporal context surrounding Golgi PI4P production and its precise roles in Golgi maturation.
Collapse
Affiliation(s)
- Carolyn M. Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
20
|
Thomas LL, Highland CM, Fromme JC. Arf1 orchestrates Rab GTPase conversion at the trans-Golgi network. Mol Biol Cell 2021; 32:1104-1120. [PMID: 33788577 PMCID: PMC8351538 DOI: 10.1091/mbc.e20-10-0664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rab family GTPases are key organizers of membrane trafficking and function as markers of organelle identity. Accordingly, Rab GTPases often occupy specific membrane domains, and mechanisms exist to prevent the inappropriate mixing of distinct Rab domains. The yeast Golgi complex can be divided into two broad Rab domains: Ypt1 (Rab1) and Ypt6 (Rab6) are present at the early/medial Golgi and sharply transition to Ypt31/32 (Rab11) at the late Golgi/trans-Golgi network (TGN). This Rab conversion has been attributed to GTPase-activating protein (GAP) cascades in which Ypt31/32 recruits the Rab-GAPs Gyp1 and Gyp6 to inactivate Ypt1 and Ypt6, respectively. Here we report that Rab transition at the TGN involves additional layers of regulation. We provide new evidence confirming the TRAPPII complex as an important regulator of Ypt6 inactivation and uncover an unexpected role of the Arf1 GTPase in recruiting Gyp1 to drive Ypt1 inactivation at the TGN. Given its established role in directly recruiting TRAPPII to the TGN, Arf1 is therefore a master regulator of Rab conversion on maturing Golgi compartments.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Carolyn M Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
21
|
Taku I, Hirai T, Makiuchi T, Shinzawa N, Iwanaga S, Annoura T, Nagamune K, Nozaki T, Saito-Nakano Y. Rab5b-Associated Arf1 GTPase Regulates Export of N-Myristoylated Adenylate Kinase 2 From the Endoplasmic Reticulum in Plasmodium falciparum. Front Cell Infect Microbiol 2021; 10:610200. [PMID: 33604307 PMCID: PMC7884776 DOI: 10.3389/fcimb.2020.610200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Plasmodium falciparum extensively remodels human erythrocytes by exporting hundreds of parasite proteins. This remodeling is closely linked to the Plasmodium virulence-related functions and immune evasion. The N-terminal export signal named PEXEL (Plasmodium export element) was identified to be important for the export of proteins beyond the PVM, however, the issue of how these PEXEL-positive proteins are transported and regulated by Rab GTPases from the endoplasmic reticulum (ER) to the cell surface has remained poorly understood. Previously, we identified new aspects of the trafficking of N-myristoylated adenylate kinase 2 (PfAK2), which lacks the PEXEL motif and is regulated by the PfRab5b GTPase. Overexpression of PfRab5b suppressed the transport of PfAK2 to the parasitophorous vacuole membrane and PfAK2 was accumulated in the punctate compartment within the parasite. Here, we report the identification of PfRab5b associated proteins and dissect the pathway regulated by PfRab5b. We isolated two membrane trafficking GTPases PfArf1 and PfRab1b by coimmunoprecipitation with PfRab5b and via mass analysis. PfArf1 and PfRab1b are both colocalized with PfRab5b adjacent to the ER in the early erythrocytic stage. A super-resolution microgram of the indirect immunofluorescence assay using PfArf1 or PfRab1b- expressing parasites revealed that PfArf1 and PfRab1b are localized to different ER subdomains. We used a genetic approach to expresses an active or inactive mutant of PfArf1 that specifically inhibited the trafficking of PfAK2 to the parasitophorous vacuole membrane. While expression of PfRab1b mutants did not affect in the PfAK2 transport. In contrast, the export of the PEXEL-positive protein Rifin was decreased by the expression of the inactive mutant of PfRab1b or PfArf1. These data indicate that the transport of PfAK2 and Rifin were recognized at the different ER subdomain by the two independent GTPases: PfAK2 is sorted by PfArf1 into the pathway for the PV, and the export of Rifin might be sequentially regulated by PfArf1 and PfRab1b.
Collapse
Affiliation(s)
- Izumi Taku
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomohiro Hirai
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takashi Makiuchi
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan
| | - Naoaki Shinzawa
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
The p24 Complex Contributes to Specify Arf1 for COPI Coat Selection. Int J Mol Sci 2021; 22:ijms22010423. [PMID: 33401608 PMCID: PMC7794930 DOI: 10.3390/ijms22010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Golgi trafficking depends on the small GTPase Arf1 which, upon activation, drives the assembly of different coats onto budding vesicles. Two related types of guanine nucleotide exchange factors (GEFs) activate Arf1 at different Golgi sites. In yeast, Gea1 in the cis-Golgi and Gea2 in the medial-Golgi activate Arf1 to form COPIcoated vesicles for retrograde cargo sorting, whereas Sec7 generates clathrin/adaptorcoated vesicles at the trans-Golgi network (TGN) for forward cargo transport. A central question is how the same activated Arf1 protein manages to assemble different coats depending on the donor Golgi compartment. A previous study has postulated that the interaction between Gea1 and COPI would channel Arf1 activation for COPI vesicle budding. Here, we found that the p24 complex, a major COPI vesicle cargo, promotes the binding of Gea1 with COPI by increasing the COPI association to the membrane independently of Arf1 activation. Furthermore, the p24 complex also facilitates the interaction of Arf1 with its COPI effector. Therefore, our study supports a mechanism by which the p24 complex contributes to program Arf1 activation by Gea1 for selective COPI coat assembly at the cis-Golgi compartment.
Collapse
|
23
|
Deretic D, Lorentzen E, Fresquez T. The ins and outs of the Arf4-based ciliary membrane-targeting complex. Small GTPases 2021; 12:1-12. [PMID: 31068062 PMCID: PMC7781591 DOI: 10.1080/21541248.2019.1616355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022] Open
Abstract
The small GTPase Arf4-based ciliary membrane-targeting complex recognizes specific targeting signals within sensory receptors and regulates their directed movement to primary cilia. Activated Arf4 directly binds the VxPx ciliary-targeting signal (CTS) of the light-sensing receptor rhodopsin. Recent findings revealed that at the trans-Golgi, marked by the small GTPase Rab6, activated Arf4 forms a functional complex with rhodopsin and the Arf guanine nucleotide exchange factor (GEF) GBF1, providing positive feedback that drives further Arf4 activation in ciliary trafficking. Arf4 function is conserved across diverse cell types; however, it appears that not all its aspects are conserved across species, as mouse Arf4 is a natural mutant in the conserved α3 helix, which is essential for its interaction with rhodopsin. Generally, activated Arf4 regulates the assembly of the targeting nexus containing the Arf GAP ASAP1 and the Rab11a-FIP3-Rabin8 dual effector complex, which controls the assembly of the highly conserved Rab11a-Rabin8-Rab8 ciliary-targeting module. It was recently found that this module interacts with the R-SNARE VAMP7, likely in its activated, c-Src-phosphorylated form. Rab11 and Rab8 bind VAMP7 regulatory longin domain (LD), whereas Rabin8 interacts with the SNARE domain, capturing VAMP7 for delivery to the ciliary base and subsequent pairing with the cognate SNAREs syntaxin 3 and SNAP-25. This review will focus on the implications of these novel findings that further illuminate the role of well-ordered Arf and Rab interaction networks in targeting of sensory receptors to primary cilia. Abbreviations: CTS: Ciliary-Targeting Signal; GAP: GTPase Activating Protein; GEF: Guanine Nucleotide Exchange Factor; RTC(s), Rhodopsin Transport Carrier(s); SNARE: Soluble N-ethylmaleimide-sensitive Factor Attachment Protein Receptor; TGN: Trans-Golgi Network.
Collapse
Affiliation(s)
- Dusanka Deretic
- Departments of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM, USA
- Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Theresa Fresquez
- Departments of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
24
|
Fujii S, Kurokawa K, Tago T, Inaba R, Takiguchi A, Nakano A, Satoh T, Satoh AK. Sec71 separates Golgi stacks in Drosophila S2 cells. J Cell Sci 2020; 133:jcs245571. [PMID: 33262309 PMCID: PMC10668125 DOI: 10.1242/jcs.245571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Golgi stacks are the basic structural units of the Golgi. Golgi stacks are separated from each other and scattered in the cytoplasm of Drosophila cells. Here, we report that the ARF-GEF inhibitor Brefeldin A (BFA) induces the formation of BFA bodies, which are aggregates of Golgi stacks, trans-Golgi networks and recycling endosomes. Recycling endosomes are located in the centers of BFA bodies, while Golgi stacks surround them on their trans sides. Live imaging of S2 cells revealed that Golgi stacks repeatedly merged and separated on their trans sides, and BFA caused successive merger by inhibiting separation, forming BFA bodies. S2 cells carrying genome-edited BFA-resistant mutant Sec71M717L did not form BFA bodies at high concentrations of BFA; S2 cells carrying genome-edited BFA-hypersensitive mutant Sec71F713Y produced BFA bodies at low concentrations of BFA. These results indicate that Sec71 is the sole BFA target for BFA body formation and controls Golgi stack separation. Finally, we showed that impairment of Sec71 in fly photoreceptors induces BFA body formation, with accumulation of both apical and basolateral cargoes, resulting in inhibition of polarized transport.
Collapse
Affiliation(s)
- Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Ryota Inaba
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Arata Takiguchi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
25
|
Zhang F, Zhao M, Braun DR, Ericksen SS, Piotrowski JS, Nelson J, Peng J, Ananiev GE, Chanana S, Barns K, Fossen J, Sanchez H, Chevrette MG, Guzei IA, Zhao C, Guo L, Tang W, Currie CR, Rajski SR, Audhya A, Andes DR, Bugni TS. A marine microbiome antifungal targets urgent-threat drug-resistant fungi. Science 2020; 370:974-978. [PMID: 33214279 PMCID: PMC7756952 DOI: 10.1126/science.abd6919] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
New antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Candida auris. Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as C. auris.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer S Ericksen
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | | | | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Ananiev
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth Barns
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Jen Fossen
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Changgui Zhao
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Guo
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Weiping Tang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Casler JC, Glick BS. A microscopy-based kinetic analysis of yeast vacuolar protein sorting. eLife 2020; 9:56844. [PMID: 32584255 PMCID: PMC7338053 DOI: 10.7554/elife.56844] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Saccharomyces cerevisiae is amenable to studying membrane traffic by live-cell fluorescence microscopy. We used this system to explore two aspects of cargo protein traffic through prevacuolar endosome (PVE) compartments to the vacuole. First, at what point during Golgi maturation does a biosynthetic vacuolar cargo depart from the maturing cisternae? To address this question, we modified a regulatable fluorescent secretory cargo by adding a vacuolar targeting signal. Traffic of the vacuolar cargo requires the GGA clathrin adaptors, which arrive during the early-to-late Golgi transition. Accordingly, the vacuolar cargo begins to exit the Golgi near the midpoint of maturation, significantly before exit of a secretory cargo. Second, how are cargoes delivered from PVE compartments to the vacuole? To address this question, we tracked biosynthetic and endocytic cargoes after they had accumulated in PVE compartments. The results suggest that stable PVE compartments repeatedly deliver material to the vacuole by a kiss-and-run mechanism.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| |
Collapse
|
27
|
Pinar M, Peñalva MA. En bloc TGN recruitment of Aspergillus TRAPPII reveals TRAPP maturation as unlikely to drive RAB1-to-RAB11 transition. J Cell Sci 2020; 133:jcs241141. [PMID: 32327558 DOI: 10.1242/jcs.241141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/06/2020] [Indexed: 08/31/2023] Open
Abstract
Transport protein particle (TRAPP) complexes regulate membrane traffic. TRAPPII and TRAPPIII share a core hetero-heptamer, also denoted TRAPPI. In fungi TRAPPIII and TRAPPII mediate GDP exchange on RAB1 and RAB11, respectively, regulating traffic across the Golgi, with TRAPPIII also activating RAB1 in autophagosomes. Our finding that Aspergillus nidulans TRAPPII can be assembled by addition of a TRAPPII-specific subcomplex onto core TRAPP prompted us to investigate the possibility that TRAPPI and/or TRAPPIII already residing in the Golgi matures into TRAPPII to determine a RAB1-to-RAB11 conversion as Golgi cisternae progress from early Golgi to TGN identity. By time-resolved microscopy, we determine that the TRAPPII reporter Trs120 (the homolog of metazoan TRAPPC9) is recruited to existing trans-Golgi network (TGN) cisternae slightly before RAB11 arrives, and resides for ∼45 s on them before cisternae tear off into RAB11 secretory carriers. Notably, the core TRAPP reporter Bet3 (the homolog of metazoan TRAPPC3) was not detectable in early Golgi cisternae, being instead recruited to TGN cisternae simultaneously with Trs120, indicating en bloc recruitment of TRAPPII to the Golgi and arguing strongly against the TRAPP maturation model.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
28
|
Walton K, Leier A, Sztul E. Regulating the regulators: role of phosphorylation in modulating the function of the GBF1/BIG family of Sec7 ARF-GEFs. FEBS Lett 2020; 594:2213-2226. [PMID: 32333796 DOI: 10.1002/1873-3468.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Membrane traffic between secretory and endosomal compartments is vesicle-mediated and must be tightly balanced to maintain a physiological compartment size. Vesicle formation is initiated by guanine nucleotide exchange factors (GEFs) that activate the ARF family of small GTPases. Regulatory mechanisms, including reversible phosphorylation, allow ARF-GEFs to support vesicle formation only at the right time and place in response to cellular needs. Here, we review current knowledge of how the Golgi-specific brefeldin A-resistance factor 1 (GBF1)/brefeldin A-inhibited guanine nucleotide exchange protein (BIG) family of ARF-GEFs is influenced by phosphorylation and use predictive paradigms to propose new regulatory paradigms. We describe a conserved cluster of phosphorylation sites within the N-terminal domains of the GBF1/BIG ARF-GEFs and suggest that these sites may respond to homeostatic signals related to cell growth and division. In the C-terminal region, GBF1 shows phosphorylation sites clustered differently as compared with the similar configuration found in both BIG1 and BIG2. Despite this similarity, BIG1 and BIG2 phosphorylation patterns are divergent in other domains. The different clustering of phosphorylation sites suggests that the nonconserved sites may represent distinct regulatory nodes and specify the function of GBF1, BIG1, and BIG2.
Collapse
Affiliation(s)
- Kendall Walton
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Andre Leier
- Department of Genetics, University of Alabama at Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
29
|
Extensive GTPase crosstalk regulates Golgi trafficking and maturation. Curr Opin Cell Biol 2020; 65:1-7. [PMID: 32143122 DOI: 10.1016/j.ceb.2020.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Virtually all transport events at the Golgi complex are regulated by Arf and Rab family GTPases. Recent work has advanced our knowledge regarding the mechanisms controlling GTPase activity, and it has become clear that GTPases do not act in isolation but rather function in complex networks of crosstalk and feedback. Together with earlier findings, these recent studies indicate that communication between GTPases, their regulatory proteins, effectors, and lipids plays a pivotal role in Golgi transport and cisternal maturation.
Collapse
|
30
|
Abstract
Small GTPases are organizers of a plethora of cellular processes. The time and place of their activation are tightly controlled by the localization and activation of their regulators, guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Remarkably, in some systems, the upstream regulators of GTPases are also found downstream of their activity. Resulting feedback loops can generate complex spatiotemporal dynamics of GTPases with important functional consequences. Here we discuss the concept of positive autoregulation of small GTPases by the GEF-effector feedback modules and survey recent developments in this exciting area of cell biology.
Collapse
Affiliation(s)
- Andrew B. Goryachev
- Centre for Synthetic and Systems Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
31
|
Huang Y, Ma T, Lau PK, Wang J, Zhao T, Du S, Loy MMT, Guo Y. Visualization of Protein Sorting at the Trans-Golgi Network and Endosomes Through Super-Resolution Imaging. Front Cell Dev Biol 2019; 7:181. [PMID: 31552246 PMCID: PMC6733968 DOI: 10.3389/fcell.2019.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
The trans-Golgi network (TGN) and endosomes are essential protein sorting stations in the secretory transport pathway. Protein sorting is fundamentally a process of spatial segregation, but the spatial relationships among the proteins that constitute the sorting machinery have not been systematically analyzed at high resolution in mammalian cells. Here, using two-color STORM imaging, we show that the TGN/endosome-localized cargo adaptors, AP-1, GGA2 and epsinR, form elongated structures of over 250 nm in length at the juxta-nuclear Golgi area. Many of these structures are associated with clathrin. We found that AP-1 is spatially segregated from AP-3 and GGA2, whereas a fraction of AP-1 and GGA2 punctae are associated with epsinR. Moreover, we observed that the planar cell polarity cargo proteins, Vangl2 and Frizzled6 associate with different cargo adaptors—AP-1 and GGA2 or epsinR, respectively—when exiting the TGN. Knockdown analysis confirms the functional significance of this segregation. Our data indicates that TGN/endosome-localized cargo adaptors have distinct spatial relationships. The spatially segregated cargo adaptors GGA2 and AP-1 regulate sorting of Frizzled6 and Vangl2, respectively and spatially associated cargo adaptors can cooperatively regulate a specific sorting process.
Collapse
Affiliation(s)
- Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianji Ma
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Teng Zhao
- Light Innovation Technology Limited, Hong Kong, China
| | - Shengwang Du
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.,Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Michael M T Loy
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
32
|
Lipatova Z, Segev N. Ypt/Rab GTPases and their TRAPP GEFs at the Golgi. FEBS Lett 2019; 593:2488-2500. [PMID: 31400292 PMCID: PMC6989042 DOI: 10.1002/1873-3468.13574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022]
Abstract
The conserved Ypt/Rab GTPases regulate the different steps of all intracellular trafficking pathways. Ypt/Rabs are activated by their specific nucleotide exchangers termed GEFs, and when GTP bound, they recruit their downstream effectors, which mediate vesicular transport substeps. In the yeast exocytic pathway, Ypt1 and Ypt31/32 regulate traffic through the Golgi and the conserved modular TRAPP complex acts a GEF for both Ypt1 and Ypt31/32. However, the precise localization and function of these Ypts have been under debate, as is the identity of their corresponding GEFs. We have established that Ypt1 and Ypt31 reside on the two sides of the Golgi, early and late, respectively, and regulate Golgi cisternal progression. We and others have shown that whereas a single TRAPP complex, TRAPP II, activates Ypt31, three TRAPP complexes can activate Ypt1: TRAPPs I, III, and IV. We propose that TRAPP I and II activate Ypt1 and Ypt31, respectively, at the Golgi, whereas TRAPP III and IV activate Ypt1 in autophagy. Resolving these issues is important because both Rabs and TRAPPs are implicated in multiple human diseases, ranging from cancer to neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| |
Collapse
|
33
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
34
|
Tojima T, Suda Y, Ishii M, Kurokawa K, Nakano A. Spatiotemporal dissection of the trans-Golgi network in budding yeast. J Cell Sci 2019; 132:jcs.231159. [PMID: 31289195 PMCID: PMC6703704 DOI: 10.1242/jcs.231159] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
The trans-Golgi network (TGN) acts as a sorting hub for membrane traffic. It receives newly synthesized and recycled proteins, and sorts and delivers them to specific targets such as the plasma membrane, endosomes and lysosomes/vacuoles. Accumulating evidence suggests that the TGN is generated from the trans-most cisterna of the Golgi by maturation, but the detailed transition processes remain obscure. Here, we examine spatiotemporal assembly dynamics of various Golgi/TGN-resident proteins in budding yeast by high-speed and high-resolution spinning-disk confocal microscopy. The Golgi–TGN transition gradually proceeds via at least three successive stages: the ‘Golgi stage’ where glycosylation occurs; the ‘early TGN stage’, which receives retrograde traffic; and the ‘late TGN stage’, where transport carriers are produced. During the stage transition periods, earlier and later markers are often compartmentalized within a cisterna. Furthermore, for the late TGN stage, various types of coat/adaptor proteins exhibit distinct assembly patterns. Taken together, our findings characterize the identity of the TGN as a membrane compartment that is structurally and functionally distinguishable from the Golgi. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The TGN displays two sub-stages of maturation: ‘early TGN’, when retrograde traffic is received, and ‘late TGN’, when transport carriers are produced. At the late TGN, various coat/adaptor proteins exhibit distinct assembly dynamics.
Collapse
Affiliation(s)
- Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan.,Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Midori Ishii
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| |
Collapse
|
35
|
Rosquete MR, Worden N, Ren G, Sinclair RM, Pfleger S, Salemi M, Phinney BS, Domozych D, Wilkop T, Drakakaki G. AtTRAPPC11/ROG2: A Role for TRAPPs in Maintenance of the Plant Trans-Golgi Network/Early Endosome Organization and Function. THE PLANT CELL 2019; 31:1879-1898. [PMID: 31175171 PMCID: PMC6713296 DOI: 10.1105/tpc.19.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 06/02/2019] [Indexed: 05/14/2023]
Abstract
The dynamic trans-Golgi network/early endosome (TGN/EE) facilitates cargo sorting and trafficking and plays a vital role in plant development and environmental response. Transport protein particles (TRAPPs) are multi-protein complexes acting as guanine nucleotide exchange factors and possibly as tethers, regulating intracellular trafficking. TRAPPs are essential in all eukaryotic cells and are implicated in a number of human diseases. It has been proposed that they also play crucial roles in plants; however, our current knowledge about the structure and function of plant TRAPPs is very limited. Here, we identified and characterized AtTRAPPC11/RESPONSE TO OLIGOGALACTURONIDE2 (AtTRAPPC11/ROG2), a TGN/EE-associated, evolutionarily conserved TRAPP protein in Arabidopsis (Arabidopsis thaliana). AtTRAPPC11/ROG2 regulates TGN integrity, as evidenced by altered TGN/EE association of several residents, including SYNTAXIN OF PLANTS61, and altered vesicle morphology in attrappc11/rog2 mutants. Furthermore, endocytic traffic and brefeldin A body formation are perturbed in attrappc11/rog2, suggesting a role for AtTRAPPC11/ROG2 in regulation of endosomal function. Proteomic analysis showed that AtTRAPPC11/ROG2 defines a hitherto uncharacterized TRAPPIII complex in plants. In addition, attrappc11/rog2 mutants are hypersensitive to salinity, indicating an undescribed role of TRAPPs in stress responses. Overall, our study illustrates the plasticity of the endomembrane system through TRAPP protein functions and opens new avenues to explore this dynamic network.
Collapse
Affiliation(s)
| | - Natasha Worden
- Department of Plant Sciences University of California, Davis, California 95616
| | - Guangxi Ren
- Department of Plant Sciences University of California, Davis, California 95616
| | - Rosalie M Sinclair
- Department of Plant Sciences University of California, Davis, California 95616
| | - Sina Pfleger
- Department of Plant Sciences University of California, Davis, California 95616
| | - Michelle Salemi
- Genome Center, University of California, Davis, California 95616
| | - Brett S Phinney
- Genome Center, University of California, Davis, California 95616
| | - David Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866
| | - Thomas Wilkop
- Department of Plant Sciences University of California, Davis, California 95616
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536
| | - Georgia Drakakaki
- Department of Plant Sciences University of California, Davis, California 95616
| |
Collapse
|
36
|
Pipaliya SV, Schlacht A, Klinger CM, Kahn RA, Dacks J. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol Biol Cell 2019; 30:1846-1863. [PMID: 31141460 PMCID: PMC6727740 DOI: 10.1091/mbc.e19-01-0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase--activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Alexander Schlacht
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Christen M Klinger
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joel Dacks
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
37
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
38
|
Clathrin Adaptor Complex-interacting Protein Irc6 Functions through the Conserved C-Terminal Domain. Sci Rep 2019; 9:4436. [PMID: 30872642 PMCID: PMC6418106 DOI: 10.1038/s41598-019-40852-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/25/2019] [Indexed: 01/19/2023] Open
Abstract
Clathrin coats drive transport vesicle formation from the plasma membrane and in pathways between the trans-Golgi network (TGN) and endosomes. Clathrin adaptors play central roles orchestrating assembly of clathrin coats. The yeast clathrin adaptor-interacting protein Irc6 is an orthologue of human p34, which is mutated in the inherited skin disorder punctate palmoplantar keratoderma type I. Irc6 and p34 bind to clathrin adaptor complexes AP-1 and AP-2 and are members of a conserved family characterized by a two-domain architecture. Irc6 is required for AP-1-dependent transport between the TGN and endosomes in yeast. Here we present evidence that the C-terminal two amino acids of Irc6 are required for AP-1 binding and transport function. Additionally, like the C-terminal domain, the N-terminal domain when overexpressed partially restores AP-1-mediated transport in cells lacking full-length Irc6. These findings support a functional role for Irc6 binding to AP-1. Negative genetic interactions with irc6∆ are enriched for genes related to membrane traffic and nuclear processes, consistent with diverse cellular roles for Irc6.
Collapse
|
39
|
Chen YT, Wang IH, Wang YH, Chiu WY, Hu JH, Chen WH, Lee FJS. Action of Arl1 GTPase and golgin Imh1 in Ypt6-independent retrograde transport from endosomes to the trans-Golgi network. Mol Biol Cell 2019; 30:1008-1019. [PMID: 30726160 PMCID: PMC6589904 DOI: 10.1091/mbc.e18-09-0579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Arf and Rab/Ypt GTPases coordinately regulate membrane traffic and organelle structure by regulating vesicle formation and fusion. Ample evidence has indicated that proteins in these two families may function in parallel or complementarily; however, the manner in which Arf and Rab/Ypt proteins perform interchangeable functions remains unclear. In this study, we report that a Golgi-localized Arf, Arl1, could suppress Ypt6 dysfunction via its effector golgin, Imh1, but not via the lipid flippase Drs2. Ypt6 is critical for the retrograde transport of vesicles from endosomes to the trans-Golgi network (TGN), and its mutation leads to severe protein mislocalization and growth defects. We first overexpress the components of the Arl3-Syt1-Arl1-Imh1 cascade and show that only Arl1 and Imh1 can restore endosome-to-TGN trafficking in ypt6-deleted cells. Interestingly, increased abundance of Arl1 or Imh1 restores localization of the tethering factor Golgi associated retrograde–protein (GARP) complex to the TGN in the absence of Ypt6. We further show that the N-terminal domain of Imh1 is critical for restoring GARP localization and endosome-to-TGN transport in ypt6-deleted cells. Together, our results reveal the mechanism by which Arl1-Imh1 facilitates the recruitment of GARP to the TGN and compensates for the endosome-to-TGN trafficking defects in dysfunctional Ypt6 conditions.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Hao Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Hsun Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wan-Yun Chiu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jen-Hao Hu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wen-Hui Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
40
|
Thomas LL, van der Vegt SA, Fromme JC. A Steric Gating Mechanism Dictates the Substrate Specificity of a Rab-GEF. Dev Cell 2018; 48:100-114.e9. [PMID: 30528786 DOI: 10.1016/j.devcel.2018.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Correct localization of Rab GTPases in cells is critical for proper function in membrane trafficking, yet the mechanisms that target Rabs to specific subcellular compartments remain controversial. Guanine nucleotide exchange factors (GEFs) activate and consequently stabilize Rab substrates on membranes, thus implicating GEFs as the primary determinants of Rab localization. A competing hypothesis is that the Rab C-terminal hypervariable domain (HVD) serves as a subcellular targeting signal. In this study, we present a unifying mechanism in which the HVD controls targeting of certain Rabs by mediating interaction with their GEFs. We demonstrate that the TRAPP complexes, two related GEFs that use the same catalytic site to activate distinct Rabs, distinguish between Ypt1 (Rab1) and Ypt31/32 (Rab11) via their divergent HVDs. Remarkably, we find that HVD length gates Rab access to the TRAPPII complex by constraining the distance between the nucleotide-binding domain and the membrane surface.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Solveig A van der Vegt
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
41
|
Investigation of Ldb19/Art1 localization and function at the late Golgi. PLoS One 2018; 13:e0206944. [PMID: 30403748 PMCID: PMC6221343 DOI: 10.1371/journal.pone.0206944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
The arrestin-related family of proteins (ARTs) are potent regulators of membrane traffic at multiple cellular locations in the yeast Saccharomyces cerevisiae. Several ARTs act at multiple locations, suggesting that ARTs with well-established functions at one location may have additional, as of yet, uncharacterized roles at other locations in the cell. To more fully understand the spectrum of cellular functions regulated by ART proteins, we explored the localization and function of Ldb19/Art1, which has previously been shown to function at the plasma membrane, yet is reported to localize to the trans-Golgi network (TGN). We report that the C-terminal fusion of Ldb19 with GFP is functional and, as previously reported, localizes to the TGN. We further establish that Ldb19 associates with late stages of TGN maturation that are enriched in the clathrin adaptor protein complex-1 (AP-1). Additionally, we present genetic interaction assays that suggest Ldb19 acts at the late TGN in a mechanism related to that of AP-1. However, Ldb19 and AP-1 have dissimilar phenotypes in a subset of assays of membrane traffic, suggesting Ldb19 functions at the TGN are distinct from those of AP-1. Together these results indicate Ldb19 functions at the TGN, in addition to its well-established role in endocytosis.
Collapse
|
42
|
Hernández‐González M, Pantazopoulou A, Spanoudakis D, Seegers CL, Peñalva MA. Genetic dissection of the secretory route followed by a fungal extracellular glycosyl hydrolase. Mol Microbiol 2018; 109:781-800. [DOI: 10.1111/mmi.14073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Miguel Hernández‐González
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago IL USA
| | - Dimitris Spanoudakis
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Christel L.C. Seegers
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Avebe UA Foxhol The Netherlands
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| |
Collapse
|
43
|
Quilty D, Chan CJ, Yurkiw K, Bain A, Babolmorad G, Melançon P. The Arf-GDP-regulated recruitment of GBF1 to Golgi membranes requires domains HDS1 and HDS2 and a Golgi-localized protein receptor. J Cell Sci 2018; 132:jcs.208199. [PMID: 29507113 PMCID: PMC6398479 DOI: 10.1242/jcs.208199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/14/2018] [Indexed: 01/02/2023] Open
Abstract
We previously proposed a novel mechanism by which the enzyme Golgi-specific Brefeldin A resistance factor 1 (GBF1) is recruited to the membranes of the cis-Golgi, based on in vivo experiments. Here, we extended our in vivo analysis on the production of regulatory Arf-GDP and observed that ArfGAP2 and ArfGAP3 do not play a role in GBF1 recruitment. We confirm that Arf-GDP localization is critical, as a TGN-localized Arf-GDP mutant protein fails to promote GBF1 recruitment. We also reported the establishment of an in vitro GBF1 recruitment assay that supports the regulation of GBF1 recruitment by Arf-GDP. This in vitro assay yielded further evidence for the requirement of a Golgi-localized protein because heat denaturation or protease treatment of Golgi membranes abrogated GBF1 recruitment. Finally, combined in vivo and in vitro measurements indicated that the recruitment to Golgi membranes via a putative receptor requires only the HDS1 and HDS2 domains in the C-terminal half of GBF1. Summary:In vivo and in vitro experiments demonstrate Arf-GDP regulation of GBF1 recruitment to a heat-labile and protease-sensitive site on Golgi membranes. This recruitment requires the HDS1 and HDS2 domains.
Collapse
Affiliation(s)
- Douglas Quilty
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Calvin J Chan
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Katherine Yurkiw
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Alexandra Bain
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Ghazal Babolmorad
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Paul Melançon
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
44
|
Hernández-González M, Bravo-Plaza I, Pinar M, de los Ríos V, Arst HN, Peñalva MA. Endocytic recycling via the TGN underlies the polarized hyphal mode of life. PLoS Genet 2018; 14:e1007291. [PMID: 29608571 PMCID: PMC5880334 DOI: 10.1371/journal.pgen.1007291] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth. Filamentous fungi form long tubular cells, called hyphae, which grow rapidly by apical extension, enabling these sessile organisms to explore substrates and facilitating tissue invasion in the case of pathogenic species. Because the shape of the hyphae is determined by an external cell wall, hyphal growth requires that cell-wall sculpting enzymes polarize to the tips. Endocytosis is essential for hyphal growth, and it was suspected that this results from its participation in a recycling pathway that takes up cell-wall enzymes from the plasma membrane and re-delivers them to the apex. Here we track the trafficking of a chitin synthase (a cell-wall modifying enzyme) to demonstrate that it is polarized by endocytic recycling. This chitin synthase is delivered by exocytosis to the apex, but diffuses away until being captured by a subapical collar of actin patches (sites of endocytosis) from where it reaches a sorting endosome before undergoing transport to the nearest trans-Golgi cisternae and incorporating into secretory vesicles that re-deliver the enzyme to the apex. Because impairing transit across this pathway compromises apical extension markedly and results in severe morphological defects, the pathway could be manipulated to prevent fungal pathogenicity of plants and humans, an enormous burden on human welfare.
Collapse
Affiliation(s)
- Miguel Hernández-González
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Abstract
The Golgi complex is the central membrane and protein-sorting station in eukaryotic cells. Activation of Arf (ADP-ribosylation factor) GTPases is essential for vesicle formation via recruitment of cargo adaptors and coat proteins necessary for Golgi trafficking. Arf activation is spatially and temporally regulated by distinct guanine nucleotide exchange factors (GEFs) at different Golgi compartments. The yeast Arf-GEF Sec7 is a conserved and essential activator of Arf1 at the trans-Golgi network. Sec7 contains a highly conserved regulatory region, the homology upstream of Sec7 (HUS) box, with an unknown mechanistic role. In this study we explore how the HUS box, which is N-terminal to the catalytic domain, acts together with C-terminal regulatory domains in the allosteric activation of Sec7. We report that mutation of the HUS box disrupts positive feedback and allosteric activation of Sec7 by the GTPase Ypt31, a yeast Rab11 homolog. Taken together, our results support a model in which the inter- and intramolecular interactions of the HUS box and the C terminus are necessary for the allosteric activation of Sec7.
Collapse
Affiliation(s)
- Steve L Halaby
- From the Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | - J Christopher Fromme
- From the Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
46
|
Suda Y, Kurokawa K, Nakano A. Regulation of ER-Golgi Transport Dynamics by GTPases in Budding Yeast. Front Cell Dev Biol 2018; 5:122. [PMID: 29473037 PMCID: PMC5810278 DOI: 10.3389/fcell.2017.00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023] Open
Abstract
A large number of proteins are synthesized de novo in the endoplasmic reticulum (ER). They are transported through the Golgi apparatus and then delivered to their proper destinations. The ER and the Golgi play a central role in protein processing and sorting and show dynamic features in their forms. Ras super family small GTPases mediate the protein transport through and between these organelles. The ER-localized GTPase, Sar1, facilitates the formation of COPII transport carriers at the ER exit sites (ERES) on the ER for the transport of cargo proteins from the ER to the Golgi. The Golgi-localized GTPase, Arf1, controls intra-Golgi, and Golgi-to-ER transport of cargo proteins by the formation of COPI carriers. Rab GTPases localized at the Golgi, which are responsible for fusion of membranes, are thought to establish the identities of compartments. Recent evidence suggests that these small GTPases regulate not only discrete sites for generation/fusion of transport carriers, but also membrane dynamics of the organelles where they locate to ensure the integrity of transport. Here we summarize the current understandings about the membrane traffic between these organelles and highlight the cutting-edge advances from super-resolution live imaging of budding yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Day KJ, Casler JC, Glick BS. Budding Yeast Has a Minimal Endomembrane System. Dev Cell 2018; 44:56-72.e4. [PMID: 29316441 DOI: 10.1016/j.devcel.2017.12.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The endomembrane system consists of the secretory and endocytic pathways, which communicate by transport to and from the trans-Golgi network (TGN). In mammalian cells, the endocytic pathway includes early, late, and recycling endosomes. In budding yeast, different types of endosomes have been described, but the organization of the endocytic pathway has remained unclear. We performed a spatial and temporal analysis of yeast endosomal markers and endocytic cargoes. Our results indicate that the yeast TGN also serves as an early and recycling endosome. In addition, as previously described, yeast contains a late or prevacuolar endosome (PVE). Endocytic cargoes localize to the TGN shortly after internalization, and manipulations that perturb export from the TGN can slow the passage of endocytic cargoes to the PVE. Yeast apparently lacks a distinct early endosome. Thus, yeast has a simple endocytic pathway that may reflect the ancestral organization of the endomembrane system.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
48
|
Gustafson MA, Fromme JC. Regulation of Arf activation occurs via distinct mechanisms at early and late Golgi compartments. Mol Biol Cell 2017; 28:3660-3671. [PMID: 28978742 PMCID: PMC5706993 DOI: 10.1091/mbc.e17-06-0370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
At the Golgi complex, the biosynthetic sorting center of the cell, the Arf GTPases are responsible for coordinating vesicle formation. The Arf-GEFs activate Arf GTPases and are therefore the key molecular decision-makers for trafficking from the Golgi. In Saccharomyces cerevisiae, three conserved Arf-GEFs function at the Golgi: Sec7, Gea1, and Gea2. Our group has described the regulation of Sec7, the trans-Golgi Arf-GEF, through autoinhibition, positive feedback, dimerization, and interactions with a suite of small GTPases. However, we lack a clear understanding of the regulation of the early Golgi Arf-GEFs Gea1 and Gea2. Here we demonstrate that Gea1 and Gea2 prefer neutral over anionic membrane surfaces in vitro, consistent with their localization to the early Golgi. We illustrate a requirement for a critical mass of either Gea1 or Gea2 for cell growth under stress conditions. We show that the C-terminal domains of Gea1 and Gea2 toggle roles in the cytosol and at the membrane surface, preventing membrane binding in the absence of a recruiting interaction but promoting maximum catalytic activity once recruited. We also identify the small GTPase Ypt1 as a recruiter for Gea1 and Gea2. Our findings illuminate core regulatory mechanisms unique to the early Golgi Arf-GEFs.
Collapse
Affiliation(s)
- Margaret A Gustafson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
49
|
Wakade R, Labbaoui H, Stalder D, Arkowitz RA, Bassilana M. Overexpression of YPT6 restores invasive filamentous growth and secretory vesicle clustering in a Candida albicans arl1 mutant. Small GTPases 2017; 11:204-210. [PMID: 28960163 DOI: 10.1080/21541248.2017.1378157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth. Deletion of the Arf GTPase Arl1 results in hyphae that are shorter as well as reduced virulence. How Arl1 is regulated during hyphal growth, a process characteristic of filamentous fungi, yet absent in S. cerevisiae, is unknown. Here, we investigated the importance of the Rab6 homolog, Ypt6, in Arl1-dependent hyphal growth and determined that YPT6 overexpression specifically rescued the hyphal growth defect of an arl1 mutant, but not the converse. Furthermore, we show that deletion of ARL1 results in an alteration of the distribution of the Rab8 homolog, Sec4, in hyphal cells and that this defect is restored upon YPT6 overexpression.
Collapse
Affiliation(s)
- Rohan Wakade
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Hayet Labbaoui
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Danièle Stalder
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| |
Collapse
|
50
|
Thomas LL, Joiner AMN, Fromme JC. The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. J Cell Biol 2017; 217:283-298. [PMID: 29109089 PMCID: PMC5748984 DOI: 10.1083/jcb.201705214] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/01/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that activate Rab GTPases, and four different versions of TRAPP have been reported. Thomas et al. show that only two versions of TRAPP are detectable in normal cells and demonstrate that the TRAPPIII complex regulates Golgi trafficking in addition to its established role in autophagy. Rab GTPases serve as molecular switches to regulate eukaryotic membrane trafficking pathways. The transport protein particle (TRAPP) complexes activate Rab GTPases by catalyzing GDP/GTP nucleotide exchange. In mammalian cells, there are two distinct TRAPP complexes, yet in budding yeast, four distinct TRAPP complexes have been reported. The apparent differences between the compositions of yeast and mammalian TRAPP complexes have prevented a clear understanding of the specific functions of TRAPP complexes in all cell types. In this study, we demonstrate that akin to mammalian cells, wild-type yeast possess only two TRAPP complexes, TRAPPII and TRAPPIII. We find that TRAPPIII plays a major role in regulating Rab activation and trafficking at the Golgi in addition to its established role in autophagy. These disparate pathways share a common regulatory GTPase Ypt1 (Rab1) that is activated by TRAPPIII. Our findings lead to a simple yet comprehensive model for TRAPPIII function in both normal and starved eukaryotic cells.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Aaron M N Joiner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|