1
|
Nelson N, Vita DJ, Broadie K. Experience-dependent glial pruning of synaptic glomeruli during the critical period. Sci Rep 2024; 14:9110. [PMID: 38643298 PMCID: PMC11032375 DOI: 10.1038/s41598-024-59942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure. We find glial projections infiltrate brain neuropil in response to critical period experience, and use Draper (MEGF10) engulfment receptors to prune synaptic glomeruli. Downstream, we find antagonistic Basket (JNK) and Puckered (DUSP) signaling is required for the experience-dependent translocation of activated Basket into glial nuclei. Dependent on this signaling, we find critical period experience drives expression of the F-actin linking signaling scaffold Cheerio (FLNA), which is absolutely essential for the synaptic glomeruli pruning. We find Cheerio mediates experience-dependent regulation of the glial F-actin cytoskeleton for critical period remodeling. These results define a sequential pathway for experience-dependent brain synaptic glomeruli pruning in a strictly-defined critical period; input experience drives neuropil infiltration of glial projections, Draper/MEGF10 receptors activate a Basket/JNK signaling cascade for transcriptional activation, and Cheerio/FLNA induction regulates the glial actin cytoskeleton to mediate targeted synapse phagocytosis.
Collapse
Affiliation(s)
- Nichalas Nelson
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Dominic J Vita
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
2
|
Vuilleumier R, Miao M, Medina-Giro S, Ell CM, Flibotte S, Lian T, Kauwe G, Collins A, Ly S, Pyrowolakis G, Haghighi A, Allan D. Dichotomous cis-regulatory motifs mediate the maturation of the neuromuscular junction by retrograde BMP signaling. Nucleic Acids Res 2022; 50:9748-9764. [PMID: 36029115 PMCID: PMC9508838 DOI: 10.1093/nar/gkac730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Retrograde bone morphogenetic protein (BMP) signaling at the Drosophila neuromuscular junction (NMJ) has served as a paradigm to study TGF-β-dependent synaptic function and maturation. Yet, how retrograde BMP signaling transcriptionally regulates these functions remains unresolved. Here, we uncover a gene network, enriched for neurotransmission-related genes, that is controlled by retrograde BMP signaling in motor neurons through two Smad-binding cis-regulatory motifs, the BMP-activating (BMP-AE) and silencer (BMP-SE) elements. Unpredictably, both motifs mediate direct gene activation, with no involvement of the BMP derepression pathway regulators Schnurri and Brinker. Genome editing of candidate BMP-SE and BMP-AE within the locus of the active zone gene bruchpilot, and a novel Ly6 gene witty, demonstrated the role of these motifs in upregulating genes required for the maturation of pre- and post-synaptic NMJ compartments. Our findings uncover how Smad-dependent transcriptional mechanisms specific to motor neurons directly orchestrate a gene network required for synaptic maturation by retrograde BMP signaling.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Mo Miao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sonia Medina-Giro
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, 79104, Germany
- CIBSS - Centre for Integrative Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Hilde Mangold Haus, Habsburgerstrasse 49, University of Freiburg, Freiburg, 79104, Germany
| | - Stephane Flibotte
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Annie Collins
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sophia Ly
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - George Pyrowolakis
- CIBSS - Centre for Integrative Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Hilde Mangold Haus, Habsburgerstrasse 49, University of Freiburg, Freiburg, 79104, Germany
| | | | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
3
|
In toto light sheet fluorescence microscopy live imaging datasets of Ceratitis capitata embryonic development. Sci Data 2022; 9:340. [PMID: 35705572 PMCID: PMC9200851 DOI: 10.1038/s41597-022-01443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata, is an important model organism in biology and agricultural research with high economic relevance. However, information about its embryonic development is still sparse. We share nine long-term live imaging datasets acquired with light sheet fluorescence microscopy (484.5 h total recording time, 373 995 images, 256 Gb) with the scientific community. Six datasets show the embryonic development in toto for about 60 hours at 30 minutes intervals along four directions in three spatial dimensions, covering approximately 97% of the entire embryonic development period. Three datasets focus on germ cell formation and head involution. All imaged embryos hatched morphologically intact. Based on these data, we suggest a two-level staging system that functions as a morphogenetic framework for upcoming studies on medfly. Our data supports research on wild-type or aberrant morphogenesis, quantitative analyses, comparative approaches to insect development as well as studies related to pest control. Further, they can be used to test advanced image processing approaches or to train machine learning algorithms and/or neuronal networks.
Collapse
|
4
|
A role for Flower and cell death in controlling morphogen gradient scaling. Nat Cell Biol 2022; 24:424-433. [PMID: 35301437 DOI: 10.1038/s41556-022-00858-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
During development, morphogen gradients encode positional information to pattern morphological structures during organogenesis1. Some gradients, like that of Dpp in the fly wing, remain proportional to the size of growing organs-that is, they scale. Gradient scaling keeps morphological patterns proportioned in organs of different sizes2,3. Here we show a mechanism of scaling that ensures that, when the gradient is smaller than the organ, cell death trims the developing tissue to match the size of the gradient. Scaling is controlled by molecular associations between Dally and Pentagone, known factors involved in scaling, and a key factor that mediates cell death, Flower4-6. We show that Flower activity in gradient expansion is not dominated by cell death, but by the activity of Dally/Pentagone on scaling. Here we show a potential connection between scaling and cell death that may uncover a molecular toolbox hijacked by tumours.
Collapse
|
5
|
La Marca JE, Richardson HE. Two-Faced: Roles of JNK Signalling During Tumourigenesis in the Drosophila Model. Front Cell Dev Biol 2020; 8:42. [PMID: 32117973 PMCID: PMC7012784 DOI: 10.3389/fcell.2020.00042] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
The highly conserved c-Jun N-terminal Kinase (JNK) signalling pathway has many functions, regulating a diversity of processes: from cell movement during embryogenesis to the stress response of cells after environmental insults. Studies modelling cancer using the vinegar fly, Drosophila melanogaster, have identified both pro- and anti-tumourigenic roles for JNK signalling, depending on context. As a tumour suppressor, JNK signalling commonly is activated by conserved Tumour Necrosis Factor (TNF) signalling, which promotes the caspase-mediated death of tumourigenic cells. JNK pathway activation can also occur via actin cytoskeleton alterations, and after cellular damage inflicted by reactive oxygen species (ROS). Additionally, JNK signalling frequently acts in concert with Salvador-Warts-Hippo (SWH) signalling – either upstream of or parallel to this potent growth-suppressing pathway. As a tumour promoter, JNK signalling is co-opted by cells expressing activated Ras-MAPK signalling (among other pathways), and used to drive cell morphological changes, induce invasive behaviours, block differentiation, and enable persistent cell proliferation. Furthermore, JNK is capable of non-autonomous influences within tumour microenvironments by effecting the transcription of various cell growth- and proliferation-promoting molecules. In this review, we discuss these aspects of JNK signalling in Drosophila tumourigenesis models, and highlight recent publications that have expanded our knowledge of this important and versatile pathway.
Collapse
Affiliation(s)
- John E La Marca
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Helena E Richardson
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Chayengia M, Veikkolainen V, Jevtic M, Pyrowolakis G. Sequence environment of BMP-dependent activating elements controls transcriptional responses to Dpp signaling in Drosophila. Development 2019; 146:dev.176107. [PMID: 31110028 DOI: 10.1242/dev.176107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
Intercellular signaling pathways activate transcription factors, which, along with tissue-specific co-factors, regulate expression of target genes. Responses to TGFβ/BMP signals are mediated by Smad proteins, which form complexes and accumulate in the nucleus to directly bind and regulate enhancers of BMP targets upon signaling. In Drosophila, gene activation by BMP signaling often requires, in addition to direct input by Smads, the signal-dependent removal of the transcriptional repressor Brk. Previous studies on enhancers of BMP-activated genes have defined a BMP-responsive motif, the AE, which integrates activatory and repressive input by the Smad complex and Brk, respectively. Here, we address whether sequence variations within the core AE sequences might endow the motif with additional properties accounting for qualitative and quantitative differences in BMP responses, including tissue specificity of transcriptional activation and differential sensitivity to Smad and Brk inputs. By analyzing and cross-comparing three distinct BMP-responsive enhancers from the genes wit and D ad in two different epithelia, the wing imaginal disc and the follicular epithelium, we demonstrate that differences in the AEs contribute neither to the observed tissue-restriction of BMP responses nor to differences in the utilization of the Smad and Brk branches for transcriptional activation. Rather, our results suggest that the cis-environment of the BMP-response elements not only dictates tissue specificity but also differential sensitivity to the two BMP mediators.
Collapse
Affiliation(s)
- Mrinal Chayengia
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany.,Research Training Program GRK 1104, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany.,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Ville Veikkolainen
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany.,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Milica Jevtic
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - George Pyrowolakis
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany .,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany.,Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3-GENES GENOMES GENETICS 2018; 8:2361-2387. [PMID: 29776969 PMCID: PMC6027880 DOI: 10.1534/g3.118.200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell sheet morphogenesis characterizes key developmental transitions and homeostasis, in vertebrates and throughout phylogeny, including gastrulation, neural tube formation and wound healing. Dorsal closure, a process during Drosophila embryogenesis, has emerged as a model for cell sheet morphogenesis. ∼140 genes are currently known to affect dorsal closure and new genes are identified each year. Many of these genes were identified in screens that resulted in arrested development. Dorsal closure is remarkably robust and many questions regarding the molecular mechanisms involved in this complex biological process remain. Thus, it is important to identify all genes that contribute to the kinematics and dynamics of closure. Here, we used a set of large deletions (deficiencies), which collectively remove 98.5% of the genes on the right arm of Drosophila melanogaster’s 2nd chromosome to identify “dorsal closure deficiencies”. Through two crosses, we unambiguously identified embryos homozygous for each deficiency and time-lapse imaged them for the duration of closure. Images were analyzed for defects in cell shapes and tissue movements. Embryos homozygous for 47 deficiencies have notable, diverse defects in closure, demonstrating that a number of discrete processes comprise closure and are susceptible to mutational disruption. Further analysis of these deficiencies will lead to the identification of at least 30 novel “dorsal closure genes”. We expect that many of these novel genes will identify links to pathways and structures already known to coordinate various aspects of closure. We also expect to identify new processes and pathways that contribute to closure.
Collapse
|
8
|
Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu Rev Cell Dev Biol 2018; 33:169-202. [PMID: 28992442 DOI: 10.1146/annurev-cellbio-111315-125357] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Janice M Crawford
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Andreas Aristotelous
- Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
9
|
Beira JV, Torres J, Paro R. Signalling crosstalk during early tumorigenesis in the absence of Polycomb silencing. PLoS Genet 2018; 14:e1007187. [PMID: 29357360 PMCID: PMC5794193 DOI: 10.1371/journal.pgen.1007187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
In response to stress and injury a coordinated activation of conserved signalling modules, such as JNK and JAK/STAT, is critical to trigger regenerative tissue restoration. While these pathways rebuild homeostasis and promote faithful organ recovery, it is intriguing that they also become activated in various tumour conditions. Therefore, it is crucial to understand how similar pathways can achieve context-dependent functional outputs, likely depending on cellular states. Compromised chromatin regulation, upon removal of the Polycomb group member polyhomeotic, leads to tumour formation with ectopic activation of JNK signalling, mediated by egr/grnd, in addition to JAK/STAT and Notch. Employing quantitative analyses, we show that blocking ectopic signalling impairs ph tumour growth. Furthermore, JAK/STAT functions in parallel to JNK, while Notch relies on JNK. Here, we reveal a signalling hierarchy in ph tumours that is distinct from the regenerative processes regulated by these pathways. Absence of ph renders a permissive state for expression of target genes, but our results suggest that both loss of repression and the presence of activators may collectively regulate gene expression during tumorigenesis. Further dissecting the effect of signalling, developmental or stress-induced factors will thus elucidate the regulation of physiological responses and the contribution of context-specific cellular states.
Collapse
Affiliation(s)
- Jorge V. Beira
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| | - Joana Torres
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
| | - Renato Paro
- ETH Zürich, Department of Biosystems Science and Engineering, MattenstrasseBasel, Switzerland
- Faculty of Science, University of Basel, KlingelbergstrasseBasel, Switzerland
- * E-mail: (JVB); (RP)
| |
Collapse
|
10
|
Strobl F, Stelzer EH. Long-term fluorescence live imaging of Tribolium castaneum embryos: principles, resources, scientific challenges and the comparative approach. CURRENT OPINION IN INSECT SCIENCE 2016; 18:17-26. [PMID: 27939706 DOI: 10.1016/j.cois.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Light sheet-based fluorescence microscopy became an important tool in insect developmental biology due to its high acquisition speed, low photo-bleaching rate and the high survival probability of the specimens. Initially applied to document the embryogenesis of Drosophila melanogaster, it is now used to investigate the embryonic morphogenesis of emerging model organisms such as the red flour beetle Tribolium castaneum. Here, we discuss the principles of light sheet-based fluorescence microscopy and outline Tribolium as a model organism for developmental biology. We summarize labeling options and present two custom-made transgenic lines suitable for live imaging. Finally, we highlight studies on Tribolium that address scientific questions with fluorescence live imaging and discuss the comparative approach to investigate insect morphogenesis in an evolutionary context.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - Ernst Hk Stelzer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
La Fortezza M, Schenk M, Cosolo A, Kolybaba A, Grass I, Classen AK. JAK/STAT signalling mediates cell survival in response to tissue stress. Development 2016; 143:2907-19. [DOI: 10.1242/dev.132340] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Tissue homeostasis relies on the ability of tissues to respond to stress. Tissue regeneration and tumour models in Drosophila have shown that JNK is a prominent stress-response pathway promoting injury-induced apoptosis and compensatory proliferation. A central question remaining unanswered is how both responses are balanced by activation of a single pathway. JAK/STAT signalling, a potential JNK target, is implicated in promoting compensatory proliferation. While we observe JAK/STAT activation in imaginal discs upon damage, our data demonstrates that JAK/STAT and its downstream effector Zfh2 promote survival of JNK-signalling cells instead. The JNK component fos and the pro-apoptotic gene hid are regulated in a JAK/STAT-dependent manner. This molecular pathway restrains JNK-induced apoptosis and spatial propagation of JNK-signalling, thereby limiting the extent of tissue damage, as well as facilitating systemic and proliferative responses to injury. We find that the pro-survival function of JAK/STAT also drives tumour growth under conditions of chronic stress. Our study defines JAK/STAT function in tissue stress and illustrates how crosstalk between conserved signalling pathways establishes an intricate equilibrium between proliferation, apoptosis and survival to restore tissue homeostasis.
Collapse
Affiliation(s)
- Marco La Fortezza
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Madlin Schenk
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Andrea Cosolo
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Addie Kolybaba
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Isabelle Grass
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Anne-Kathrin Classen
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Abstract
Inhibitors of apoptosis (IAPs) family of genes encode baculovirus IAP-repeat domain-containing proteins with antiapoptotic function. These proteins also contain RING or UBC domains and act by binding to major proapoptotic factors and ubiquitylating them. High levels of IAPs inhibit caspase-mediated apoptosis. For these cells to undergo apoptosis, IAP function must be neutralized by IAP-antagonists. Mammalian IAP knockouts do not exhibit obvious developmental phenotypes, but the cells are more sensitized to apoptosis in response to injury. Loss of the mammalian IAP-antagonist ARTS results in reduced stem cell apoptosis. In addition to the antiapoptotic properties, IAPs regulate the innate immune response, and the loss of IAP function in humans is associated with immunodeficiency. The roles of IAPs in Drosophila apoptosis regulation are more apparent, where the loss of IAP1, or the expression of IAP-antagonists in Drosophila cells, is sufficient to trigger apoptosis. In this organism, apoptosis as a fate is conferred by the transcriptional induction of the IAP-antagonists. Many signaling pathways often converge on shared enhancer regions of IAP-antagonists. Cell death sensitivity is further regulated by posttranscriptional mechanisms, including those regulated by kinases, miRs, and ubiquitin ligases. These mechanisms are employed to eliminate damaged or virus-infected cells, limit neuroblast (neural stem cell) numbers, generate neuronal diversity, and sculpt tissue morphogenesis.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
13
|
Organista MF, Martín M, de Celis JM, Barrio R, López-Varea A, Esteban N, Casado M, de Celis JF. The Spalt Transcription Factors Generate the Transcriptional Landscape of the Drosophila melanogaster Wing Pouch Central Region. PLoS Genet 2015; 11:e1005370. [PMID: 26241320 PMCID: PMC4524721 DOI: 10.1371/journal.pgen.1005370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
The Drosophila genes spalt major (salm) and spalt-related (salr) encode Zn-finger transcription factors regulated by the Decapentaplegic (Dpp) signalling pathway in the wing imaginal disc. The function of these genes is required for cell survival and proliferation in the central region of the wing disc, and also for vein patterning in the lateral regions. The identification of direct Salm and Salr target genes, and the analysis of their functions, are critical steps towards understanding the genetic control of growth and patterning of the Drosophila wing imaginal disc by the Dpp pathway. To identify candidate Salm/Salr target genes, we have compared the expression profile of salm/salr knockdown wing discs with control discs in microarray experiments. We studied by in situ hybridization the expression pattern of the genes whose mRNA levels varied significantly, and uncovered a complex transcription landscape regulated by the Spalt proteins in the wing disc. Interestingly, candidate Salm/Salr targets include genes which expression is turned off and genes which expression is positively regulated by Salm/Salr. Furthermore, loss-of-function phenotypic analysis of these genes indicates, for a fraction of them, a requirement for wing growth and patterning. The identification and analysis of candidate Salm/Salr target genes opens a new avenue to reconstruct the genetic structure of the wing, linking the activity of the Dpp pathway to the development of this epithelial tissue. How signalling pathways regulate the formation of organs with a precise size and pattern of differentiation is a fundamental question in developmental genetics. One classical example of the link between signalling and organ development is the regulation of wing disc development by the Decapentaplegic/BMP (Dpp) signalling pathway in Drosophila. A key outcome of this pathway is the transcriptional activation of the spalt major (salm) and spalt related (salr) genes, both encoding transcription factors. In this manner, the identification of Salm/Salr target genes is a critical step towards the understanding of the mode of action of these proteins and the genetic logic underlying the regulation of wing development by the Dpp signalling pathway. In order to identify these target genes, we used expression microarrays, in situ hybridization and phenotypic analysis. We identified an unexpected complexity in the transcriptional landscape of the wing disc that includes genes positively and negatively regulated by Salm/Salr. These findings have major implications for the reconstruction of the genetic hierarchy initiated by the Dpp pathway and leading to the formation of a wing with a correct size and pattern, because some of the genes we identified could explain particular aspects of the sal mutant phenotype.
Collapse
Affiliation(s)
- María F. Organista
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Martín
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesus M. de Celis
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosa Barrio
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana López-Varea
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Casado
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose F. de Celis
- Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, C/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Ducuing A, Keeley C, Mollereau B, Vincent S. A DPP-mediated feed-forward loop canalizes morphogenesis during Drosophila dorsal closure. ACTA ACUST UNITED AC 2015; 208:239-48. [PMID: 25601405 PMCID: PMC4298692 DOI: 10.1083/jcb.201410042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During Drosophila dorsal closure, DPP and JNK signaling form a feed-forward loop that controls the specification and differentiation of leading edge cells to ensure robust morphogenesis. Development is robust because nature has selected various mechanisms to buffer the deleterious effects of environmental and genetic variations to deliver phenotypic stability. Robustness relies on smart network motifs such as feed-forward loops (FFLs) that ensure the reliable interpretation of developmental signals. In this paper, we show that Decapentaplegic (DPP) and JNK form a coherent FFL that controls the specification and differentiation of leading edge cells during Drosophila melanogaster dorsal closure (DC). We provide molecular evidence that through repression by Brinker (Brk), the DPP branch of the FFL filters unwanted JNK activity. High-throughput live imaging revealed that this DPP/Brk branch is dispensable for DC under normal conditions but is required when embryos are subjected to thermal stress. Our results indicate that the wiring of DPP signaling buffers against environmental challenges and canalizes cell identity. We propose that the main function of DPP pathway during Drosophila DC is to ensure robust morphogenesis, a distinct function from its well-established ability to spread spatial information.
Collapse
Affiliation(s)
- Antoine Ducuing
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Charlotte Keeley
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | - Stéphane Vincent
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| |
Collapse
|
15
|
BMP-dependent gene repression cascade in Drosophila eggshell patterning. Dev Biol 2015; 400:258-65. [PMID: 25704512 DOI: 10.1016/j.ydbio.2015.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 01/19/2015] [Accepted: 02/10/2015] [Indexed: 12/17/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) signal by activating Smad transcription factors to control a number of decisions during animal development. In Drosophila, signaling by the BMP ligand Decapentaplegic (Dpp) involves the activity of brinker (brk) which, in most contexts, is repressed by Dpp. Brk encodes a transcription factor which represses BMP signaling output by antagonizing Smad-dependent target gene activation. Here, we study BMP-dependent gene regulation during Drosophila oogenesis by following the signal transmission from Dpp to its target broad (br), a gene with a crucial function in eggshell patterning. We identify regulatory sequences that account for expression of both brk and br, and connect these to the transcription factors of the pathway. We show that Dpp directly regulates brk transcription through Smad- and Schnurri (Shn)-dependent repression. Brk is epistatic to Dpp in br expression and activates br indirectly, through removal of a repressor, which is yet to be identified. Our work provides first cis-regulatory insights into transcriptional interpretation of BMP signaling in eggshell morphogenesis and defines a transcriptional cascade that connects Dpp to target gene regulation.
Collapse
|
16
|
Shklover J, Mishnaevski K, Levy-Adam F, Kurant E. JNK pathway activation is able to synchronize neuronal death and glial phagocytosis in Drosophila. Cell Death Dis 2015; 6:e1649. [PMID: 25695602 PMCID: PMC4669801 DOI: 10.1038/cddis.2015.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Glial phagocytosis of superfluous neurons and damaged or aberrant neuronal material is crucial for normal development and maintenance of the CNS. However, the molecular mechanisms underlying the relationship between neuronal death and glial phagocytosis are poorly understood. We describe a novel mechanism that is able to synchronize neuronal cell death and glial phagocytosis of dying neurons in the Drosophila embryonic CNS. This mechanism involves c-Jun N-terminal kinase (JNK) signaling, which is required for developmental apoptosis of specific neurons during embryogenesis. We demonstrate that the dJNK pathway gain-of-function in neurons leads to dJNK signaling in glia, which results in upregulation of glial phagocytosis. Importantly, this promotion of phagocytosis is not mediated by upregulation of the glial phagocytic receptors SIMU and DRPR, but by increasing glial capacity to degrade apoptotic particles inside phagosomes. The proposed mechanism may be important for removal of damaged neurons in the developing and mature CNS.
Collapse
Affiliation(s)
- J Shklover
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - K Mishnaevski
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - F Levy-Adam
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - E Kurant
- Department of Genetics and Developmental Biology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|