1
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
2
|
Wang Z, Peng C, Wu W, Yan C, Lv Y, Li JT. Developmental regulation of conserved non-coding element evolution provides insights into limb loss in squamates. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2399-2414. [PMID: 37256419 DOI: 10.1007/s11427-023-2362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Limb loss shows recurrent phenotypic evolution across squamate lineages. Here, based on three de novo-assembled genomes of limbless lizards from different lineages, we showed that divergence of conserved non-coding elements (CNEs) played an important role in limb development. These CNEs were associated with genes required for limb initiation and outgrowth, and with regulatory signals in the early stage of limb development. Importantly, we identified the extensive existence of insertions and deletions (InDels) in the CNEs, with the numbers ranging from 111 to 756. Most of these CNEs with InDels were lineage-specific in the limbless squamates. Nearby genes of these InDel CNEs were important to early limb formation, such as Tbx4, Fgf10, and Gli3. Based on functional experiments, we found that nucleotide mutations and InDels both affected the regulatory function of the CNEs. Our study provides molecular evidence underlying limb loss in squamate reptiles from a developmental perspective and sheds light on the importance of regulatory element InDels in phenotypic evolution.
Collapse
Affiliation(s)
- Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
3
|
Ware A, Jones DH, Flis P, Chrysanthou E, Smith KE, Kümpers BMC, Yant L, Atkinson JA, Wells DM, Bhosale R, Bishopp A. Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters. Curr Biol 2023; 33:1795-1802.e4. [PMID: 36990089 DOI: 10.1016/j.cub.2023.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
Organ loss occurs frequently during plant and animal evolution. Sometimes, non-functional organs are retained through evolution. Vestigial organs are defined as genetically determined structures that have lost their ancestral (or salient) function.1,2,3 Duckweeds, an aquatic monocot family, exhibit both these characteristics. They possess a uniquely simple body plan, variably across five genera, two of which are rootless. Due to the existence of closely related species with a wide diversity in rooting strategies, duckweed roots represent a powerful system for investigating vestigiality. To explore this, we employed a panel of physiological, ionomic, and transcriptomic analyses, with the main goal of elucidating the extent of vestigiality in duckweed roots. We uncovered a progressive reduction in root anatomy as genera diverge and revealed that the root has lost its salient ancestral function as an organ required for supplying nutrients to the plant. Accompanying this, nutrient transporter expression patterns have lost the stereotypical root biased localization observed in other plant species. While other examples of organ loss such as limbs in reptiles4 or eyes in cavefish5 frequently display a binary of presence/absence, duckweeds provide a unique snapshot of an organ with varying degrees of vestigialization in closely related neighbors and thus provide a unique resource for exploration of how organs behave at different stages along the process of loss.
Collapse
Affiliation(s)
- Alexander Ware
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Dylan H Jones
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Elina Chrysanthou
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Kellie E Smith
- Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; School of Life Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Britta M C Kümpers
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Levi Yant
- Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; School of Life Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; Future Food Beacon, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
4
|
Sun L, Rong X, Liu X, Yu Z, Zhang Q, Ren W, Yang G, Xu S. Evolutionary genetics of flipper forelimb and hindlimb loss from limb development-related genes in cetaceans. BMC Genomics 2022; 23:797. [DOI: 10.1186/s12864-022-09024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Cetacean hindlimbs were lost and their forelimb changed into flippers characterized by webbed digits and hyperphalangy, thus allowing them to adapt to a completely aquatic environment. However, the underlying molecular mechanism behind cetacean limb development remains poorly understood.
Results
In the present study, we explored the evolution of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with that of other mammals. TBX5, a forelimb specific expression gene, was identified to have been under accelerated evolution in the ancestral branches of cetaceans. In addition, 32 cetacean-specific changes were examined in the SHH signaling network (SHH, PTCH1, TBX5, BMPs and SMO), within which mutations could yield webbed digits or an additional phalange. These findings thus suggest that the SHH signaling network regulates cetacean flipper formation. By contrast, the regulatory activity of the SHH gene enhancer—ZRS in cetaceans—was significantly lower than in mice, which is consistent with the cessation of SHH gene expression in the hindlimb bud during cetacean embryonic development. It was suggested that the decreased SHH activity regulated by enhancer ZRS might be one of the reasons for hindlimb degeneration in cetaceans. Interestingly, a parallel / convergent site (D42G) and a rapidly evolving CNE were identified in marine mammals in FGF10 and GREM1, respectively, and shown to be essential to restrict limb bud size; this is molecular evidence explaining the convergence of flipper-forelimb and shortening or degeneration of hindlimbs in marine mammals.
Conclusions
We did evolutionary analyses of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with those of other mammals to provide novel insights into the molecular basis of flipper forelimb and hindlimb loss in cetaceans.
Collapse
|
5
|
Rowley AJ, Square TA, Miller CT. Site pleiotropy of a stickleback Bmp6 enhancer. Dev Biol 2022; 492:111-118. [PMID: 36198347 DOI: 10.1016/j.ydbio.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
Abstract
Development and regeneration are orchestrated by gene regulatory networks that operate in part through transcriptional enhancers. Although many enhancers are pleiotropic and are active in multiple tissues, little is known about whether enhancer pleiotropy is due to 1) site pleiotropy, in which individual transcription factor binding sites (TFBS) are required for activity in multiple tissues, or 2) multiple distinct sites that regulate expression in different tissues. Here, we investigated the pleiotropy of an intronic enhancer of the stickleback Bone morphogenetic protein 6 (Bmp6) gene. This enhancer was previously shown to regulate evolved changes in tooth number and tooth regeneration, and is highly pleiotropic, with robust activity in both fins and teeth throughout embryonic, larval, and adult life, and in the heart and kidney in adult fish. We tested the hypothesis that the pleiotropy of this enhancer is due to site pleiotropy of an evolutionarily conserved predicted Foxc1 TFBS. Transgenic analysis and site-directed mutagenesis experiments both deleting and scrambling this predicted Foxc1 TFBS revealed that the binding site is required for enhancer activity in both teeth and fins throughout embryonic, larval, and adult development, and in the heart and kidney in adult fish. Collectively these data support a model where the pleiotropy of this Bmp6 enhancer is due to site pleiotropy and this putative binding site is required for enhancer activity in multiple anatomical sites from the embryo to the adult.
Collapse
Affiliation(s)
- Alyssa J Rowley
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Laiker I, Frankel N. Pleiotropic Enhancers are Ubiquitous Regulatory Elements in the Human Genome. Genome Biol Evol 2022; 14:evac071. [PMID: 35552697 PMCID: PMC9156028 DOI: 10.1093/gbe/evac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Enhancers are regulatory elements of genomes that determine spatio-temporal patterns of gene expression. The human genome contains a vast number of enhancers, which largely outnumber protein-coding genes. Historically, enhancers have been regarded as highly tissue-specific. However, recent evidence has demonstrated that many enhancers are pleiotropic, with activity in multiple developmental contexts. Yet, the extent and impact of pleiotropy remain largely unexplored. In this study we analyzed active enhancers across human organs based on the analysis of both eRNA transcription (FANTOM5 consortium data sets) and chromatin architecture (ENCODE consortium data sets). We show that pleiotropic enhancers are pervasive in the human genome and that most enhancers active in a particular organ are also active in other organs. In addition, our analysis suggests that the proportion of context-specific enhancers of a given organ is explained, at least in part, by the proportion of context-specific genes in that same organ. The notion that such a high proportion of human enhancers can be pleiotropic suggests that small regions of regulatory DNA contain abundant regulatory information and that these regions evolve under important evolutionary constraints.
Collapse
Affiliation(s)
- Ian Laiker
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | - Nicolás Frankel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| |
Collapse
|
7
|
Chebib J, Guillaume F. The relative impact of evolving pleiotropy and mutational correlation on trait divergence. Genetics 2022; 220:iyab205. [PMID: 34864966 PMCID: PMC8733425 DOI: 10.1093/genetics/iyab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 01/24/2023] Open
Abstract
Both pleiotropic connectivity and mutational correlations can restrict the decoupling of traits under divergent selection, but it is unknown which is more important in trait evolution. To address this question, we create a model that permits within-population variation in both pleiotropic connectivity and mutational correlation, and compare their relative importance to trait evolution. Specifically, we developed an individual-based stochastic model where mutations can affect whether a locus affects a trait and the extent of mutational correlations in a population. We find that traits can decouple whether there is evolution in pleiotropic connectivity or mutational correlation, but when both can evolve, then evolution in pleiotropic connectivity is more likely to allow for decoupling to occur. The most common genotype found in this case is characterized by having one locus that maintains connectivity to all traits and another that loses connectivity to the traits under stabilizing selection (subfunctionalization). This genotype is favored because it allows the subfunctionalized locus to accumulate greater effect size alleles, contributing to increasingly divergent trait values in the traits under divergent selection without changing the trait values of the other traits (genetic modularization). These results provide evidence that partial subfunctionalization of pleiotropic loci may be a common mechanism of trait decoupling under regimes of corridor selection.
Collapse
Affiliation(s)
- Jobran Chebib
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich 8057, Switzerland
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
8
|
Richardson MK. Theories, laws, and models in evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:36-61. [PMID: 34570438 PMCID: PMC9292786 DOI: 10.1002/jez.b.23096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary developmental biology (evo-devo) is the study of the evolution of developmental mechanisms. Here, I review some of the theories, models, and laws in evo-devo, past and present. Nineteenth-century evo-devo was dominated by recapitulation theory and archetypes. It also gave us germ layer theory, the vertebral theory of the skull, floral organs as modified leaves, and the "inverted invertebrate" theory, among others. Newer theories and models include the frameshift theory, the genetic toolkit for development, the ABC model of flower development, the developmental hourglass, the zootype, Urbilateria, and the hox code. Some of these new theories show the influence of archetypes and recapitulation. Interestingly, recent studies support the old "primordial leaf," "inverted invertebrate," and "segmented head" theories. Furthermore, von Baer's first three laws may now need to be rehabilitated, and the hourglass model modified, in view of what Abzhanov has pointed out about the maternal-zygotic transition. There are many supposed "laws" of evo-devo but I argue that these are merely generalizations about trends in particular lineages. I argue that the "body plan" is an archetype, and is often used in such a way that it lacks any scientific meaning. Looking to the future, one challenge for evo-devo will be to develop new theories and models to accommodate the wealth of new data from high-throughput sequencing, including single-cell sequencing. One step in this direction is the use of sophisticated in silico analyses, as in the "transcriptomic hourglass" models.
Collapse
|
9
|
Roscito JG, Sameith K, Kirilenko BM, Hecker N, Winkler S, Dahl A, Rodrigues MT, Hiller M. Convergent and lineage-specific genomic differences in limb regulatory elements in limbless reptile lineages. Cell Rep 2022; 38:110280. [DOI: 10.1016/j.celrep.2021.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
|
10
|
Hordyjewska-Kowalczyk E, Nowosad K, Jamsheer A, Tylzanowski P. Genotype-phenotype correlation in clubfoot (talipes equinovarus). J Med Genet 2021; 59:209-219. [PMID: 34782442 DOI: 10.1136/jmedgenet-2021-108040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Clubfoot (talipes equinovarus) is a congenital malformation affecting muscles, bones, connective tissue and vascular or neurological structures in limbs. It has a complex aetiology, both genetic and environmental. To date, the most important findings in clubfoot genetics involve PITX1 variants, which were linked to clubfoot phenotype in mice and humans. Additionally, copy number variations encompassing TBX4 or single nucleotide variants in HOXC11, the molecular targets of the PITX1 transcription factor, were linked to the clubfoot phenotype. In general, genes of cytoskeleton and muscle contractile apparatus, as well as components of the extracellular matrix and connective tissue, are frequently linked with clubfoot aetiology. Last but not least, an equally important element, that brings us closer to a better understanding of the clubfoot genotype/phenotype correlation, are studies on the two known animal models of clubfoot-the pma or EphA4 mice. This review will summarise the current state of knowledge of the molecular basis of this congenital malformation.
Collapse
Affiliation(s)
- Ewa Hordyjewska-Kowalczyk
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Karol Nowosad
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Wielkopolskie, Poland
| | - Przemko Tylzanowski
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland .,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
11
|
Rasys AM, Pau SH, Irwin KE, Luo S, Kim HQ, Wahle MA, Trainor PA, Menke DB, Lauderdale JD. Ocular elongation and retraction in foveated reptiles. Dev Dyn 2021; 250:1584-1599. [PMID: 33866663 PMCID: PMC10731578 DOI: 10.1002/dvdy.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pronounced asymmetric changes in ocular globe size during eye development have been observed in a number of species ranging from humans to lizards. In contrast, largely symmetric changes in globe size have been described for other species like rodents. We propose that asymmetric changes in the three-dimensional structure of the developing eye correlate with the types of retinal remodeling needed to produce areas of high photoreceptor density. To test this idea, we systematically examined three-dimensional aspects of globe size as a function of eye development in the bifoveated brown anole, Anolis sagrei. RESULTS During embryonic development, the anole eye undergoes dynamic changes in ocular shape. Initially spherical, the eye elongates in the presumptive foveal regions of the retina and then proceeds through a period of retraction that returns the eye to its spherical shape. During this period of retraction, pit formation and photoreceptor cell packing are observed. We found a similar pattern of elongation and retraction associated with the single fovea of the veiled chameleon, Chamaeleo calyptratus. CONCLUSIONS These results, together with those reported for other foveated species, support the idea that areas of high photoreceptor packing occur in regions where the ocular globe asymmetrically elongates and retracts during development.
Collapse
Affiliation(s)
- Ashley M. Rasys
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
| | - Shana H. Pau
- Department of Genetics, The University of Georgia, Athens, Georgia
| | - Katherine E. Irwin
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
| | - Sherry Luo
- Department of Genetics, The University of Georgia, Athens, Georgia
| | - Hannah Q. Kim
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
| | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Anatomy & Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas
| | - Douglas B. Menke
- Department of Genetics, The University of Georgia, Athens, Georgia
| | - James D. Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Royle SR, Tabin CJ, Young JJ. Limb positioning and initiation: An evolutionary context of pattern and formation. Dev Dyn 2021; 250:1264-1279. [PMID: 33522040 PMCID: PMC10623539 DOI: 10.1002/dvdy.308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Before limbs or fins, can be patterned and grow they must be initiated. Initiation of the limb first involves designating a portion of lateral plate mesoderm along the flank as the site of the future limb. Following specification, a myriad of cellular and molecular events interact to generate a bud that will grow and form the limb. The past three decades has provided a wealth of understanding on how those events generate the limb bud and how variations in them result in different limb forms. Comparatively, much less attention has been given to the earliest steps of limb formation and what impacts altering the position and initiation of the limb have had on evolution. Here, we first review the processes and pathways involved in these two phases of limb initiation, as determined from amniote model systems. We then broaden our scope to examine how variation in the limb initiation module has contributed to biological diversity in amniotes. Finally, we review what is known about limb initiation in fish and amphibians, and consider what mechanisms are conserved across vertebrates.
Collapse
Affiliation(s)
- Samantha R Royle
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John J Young
- Department of Biology, Simmons University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Poe S, Donald LAH, Anderson C. What constrains adaptive radiation? Documentation and explanation of under-evolved morphologies in Anolis lizards. Proc Biol Sci 2021; 288:20210340. [PMID: 34187191 DOI: 10.1098/rspb.2021.0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adaptive radiations fill ecological and morphological space during evolutionary diversification. Why do some trait combinations evolve during such radiations, whereas others do not? 'Required' constraints of pleiotropy and developmental interaction frequently are implicated in explanations for such patterns, but selective forces also may discourage particular trait combinations. Here, we use a dataset of 351 species to demonstrate the dearth of some theoretically plausible trait combinations of limb, toe and tail length in Anolis lizards. For example, disproportionately few Anolis species display long limbs and short toes. We evaluate recovered patterns within three species of Anolis, and find that cladewide patterns are not evident at intraspecific levels. For example, within species, the combination of long limbs and short toes is not significantly rarer than long limbs and long toes. Differences in scale complicate inter- and intraspecific comparisons and disallow concrete conclusions of cause. However, the absence of the interspecific pattern at the intraspecific level is more compatible with selection favouring particular trait combinations than with 'required' forces dictating which trait combinations are available for selection. We also demonstrate the isometry of toe, tail and hindlimb length relative to body length between species but allometry in four of nine trait-body comparisons within species.
Collapse
Affiliation(s)
- Steven Poe
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
14
|
Fuiten AM, Cresko WA. Evolutionary divergence of a Hoxa2b hindbrain enhancer in syngnathids mimics results of functional assays. Dev Genes Evol 2021; 231:57-71. [PMID: 34003345 DOI: 10.1007/s00427-021-00676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Hoxa2 genes provide critical patterning signals during development, and their regulation and function have been extensively studied. We report a previously uncharacterized significant sequence divergence of a highly conserved hindbrain hoxa2b enhancer element in the family syngnathidae (pipefishes, seahorses, pipehorses, seadragons). We compared the hox cis-regulatory element variation in the Gulf pipefish and two species of seahorse against eight other species of fish, as well as human and mouse. We annotated the hoxa2b enhancer element binding sites across three species of seahorse, four species of pipefish, and one species of ghost pipefish. Finally, we performed in situ hybridization analysis of hoxa2b expression in Gulf pipefish embryos. We found that all syngnathid fish examined share a modified rhombomere 4 hoxa2b enhancer element, despite the fact that this element has been found to be highly conserved across all vertebrates examined previously. Binding element sequence motifs and spacing between binding elements have been modified for the hoxa2b enhancer in several species of pipefish and seahorse, and that the loss of the Prep/Meis binding site and further space shortening happened after ghost pipefish split from the rest of the syngnathid clade. We showed that expression of this gene in rhombomere 4 is lower relative to the surrounding rhombomeres in developing Gulf pipefish embryos, reflecting previously published functional tests for this enhancer. Our findings highlight the benefits of studying highly derived, diverse taxa for understanding of gene regulatory evolution and support the hypothesis that natural mutations can occur in deeply conserved pathways in ways potentially related to phenotypic diversity.
Collapse
Affiliation(s)
- Allison M Fuiten
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
- Present address: Department of Dermatology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
15
|
Singh D, Yi SV. Enhancer pleiotropy, gene expression, and the architecture of human enhancer-gene interactions. Mol Biol Evol 2021; 38:3898-3909. [PMID: 33749795 PMCID: PMC8383896 DOI: 10.1093/molbev/msab085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Enhancers are often studied as noncoding regulatory elements that modulate the precise spatiotemporal expression of genes in a highly tissue-specific manner. This paradigm has been challenged by recent evidence of individual enhancers acting in multiple tissues or developmental contexts. However, the frequency of these enhancers with high degrees of “pleiotropy” out of all putative enhancers is not well understood. Consequently, it is unclear how the variation of enhancer pleiotropy corresponds to the variation in expression breadth of target genes. Here, we use multi-tissue chromatin maps from diverse human tissues to investigate the enhancer–gene interaction architecture while accounting for 1) the distribution of enhancer pleiotropy, 2) the variations of regulatory links from enhancers to target genes, and 3) the expression breadth of target genes. We show that most enhancers are tissue-specific and that highly pleiotropy enhancers account for <1% of all putative regulatory sequences in the human genome. Notably, several genomic features are indicative of increasing enhancer pleiotropy, including longer sequence length, greater number of links to genes, increasing abundance and diversity of encoded transcription factor motifs, and stronger evolutionary conservation. Intriguingly, the number of enhancers per gene remains remarkably consistent for all genes (∼14). However, enhancer pleiotropy does not directly translate to the expression breadth of target genes. We further present a series of Gaussian Mixture Models to represent this organization architecture. Consequently, we demonstrate that a modest trend of more pleiotropic enhancers targeting more broadly expressed genes can generate the observed diversity of expression breadths in the human genome.
Collapse
Affiliation(s)
- Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Saxena A, Cooper KL. Diversification of the vertebrate limb: sequencing the events. Curr Opin Genet Dev 2021; 69:42-47. [PMID: 33647833 DOI: 10.1016/j.gde.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Naturalists leading up to the early 20th century were captivated by the diversity of limb form and function and described its development in a variety of species. The advent of discoveries in genetics followed by molecular biology led to focused efforts in few 'model' species, namely mouse and chicken, to understand conserved mechanisms of limb axis specification and development of the musculoskeletal system. 'Non-traditional' species largely fell by the wayside until their recent resurgence into the spotlight with advances in next-generation sequencing technologies (NGS). In this review, we focus on how the use of NGS has provided insights into the development, loss, and diversification of amniote limbs. Coupled with advances in chromatin interrogation techniques and functional tests in vivo, NGS is opening possibilities to understand the genetic mechanisms that govern the remarkable radiation of vertebrate limb form and function.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Nolte MJ, Jing P, Dewey CN, Payseur BA. Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biol Evol 2020; 12:1277-1301. [PMID: 32531054 PMCID: PMC7487164 DOI: 10.1093/gbe/evaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Between 4,000 and 8,800 genes were significantly differentially expressed across the evaluated organs, representing between 20% and 50% of detected transcripts, with 20% or more of differentially expressed transcripts in each organ exhibiting expression fold changes of at least 2×. A minimum of 73 candidate genes for extreme size evolution, including Irs1 and Lrp1, were identified by considering differential expression jointly with other data sets: 1) genomic positions of published quantitative trait loci for body weight and growth rate, 2) whole-genome sequencing of 16 wild-caught Gough Island mice that revealed fixed single-nucleotide differences between the strains, and 3) publicly available tissue-specific regulatory elements. Additionally, patterns of differential expression across three time points in the liver revealed that Arid5b potentially regulates hundreds of genes. Functional enrichment analyses pointed to cell cycling, mitochondrial function, signaling pathways, inflammatory response, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Collectively, our results indicate that extensive gene regulatory evolution in metabolic organs accompanied the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.
Collapse
Affiliation(s)
- Mark J Nolte
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Peicheng Jing
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison
| |
Collapse
|
18
|
Nasoori A. Formation, structure, and function of extra-skeletal bones in mammals. Biol Rev Camb Philos Soc 2020; 95:986-1019. [PMID: 32338826 DOI: 10.1111/brv.12597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
This review describes the formation, structure, and function of bony compartments in antlers, horns, ossicones, osteoderm and the os penis/os clitoris (collectively referred to herein as AHOOO structures) in extant mammals. AHOOOs are extra-skeletal bones that originate from subcutaneous (dermal) tissues in a wide variety of mammals, and this review elaborates on the co-development of the bone and skin in these structures. During foetal stages, primordial cells for the bony compartments arise in subcutaneous tissues. The epithelial-mesenchymal transition is assumed to play a key role in the differentiation of bone, cartilage, skin and other tissues in AHOOO structures. AHOOO ossification takes place after skeletal bone formation, and may depend on sexual maturity. Skin keratinization occurs in tandem with ossification and may be under the control of androgens. Both endochondral and intramembranous ossification participate in bony compartment formation. There is variation in gradients of density in different AHOOO structures. These gradients, which vary according to function and species, primarily reduce mechanical stress. Anchorage of AHOOOs to their surrounding tissues fortifies these structures and is accomplished by bone-bone fusion and Sharpey fibres. The presence of the integument is essential for the protection and function of the bony compartments. Three major functions can be attributed to AHOOOs: mechanical, visual, and thermoregulatory. This review provides the first extensive comparative description of the skeletal and integumentary systems of AHOOOs in a variety of mammals.
Collapse
Affiliation(s)
- Alireza Nasoori
- School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
19
|
Amândio AR, Lopez-Delisle L, Bolt CC, Mascrez B, Duboule D. A complex regulatory landscape involved in the development of mammalian external genitals. eLife 2020; 9:e52962. [PMID: 32301703 PMCID: PMC7185996 DOI: 10.7554/elife.52962] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/17/2020] [Indexed: 02/04/2023] Open
Abstract
Developmental genes are often controlled by large regulatory landscapes matching topologically associating domains (TADs). In various contexts, the associated chromatin backbone is modified by specific enhancer-enhancer and enhancer-promoter interactions. We used a TAD flanking the mouse HoxD cluster to study how these regulatory architectures are formed and deconstructed once their function achieved. We describe this TAD as a functional unit, with several regulatory sequences acting together to elicit a transcriptional response. With one exception, deletion of these sequences didn't modify the transcriptional outcome, a result at odds with a conventional view of enhancer function. The deletion and inversion of a CTCF site located near these regulatory sequences did not affect transcription of the target gene. Slight modifications were nevertheless observed, in agreement with the loop extrusion model. We discuss these unexpected results considering both conventional and alternative explanations relying on the accumulation of poorly specific factors within the TAD backbone.
Collapse
Affiliation(s)
- Ana Rita Amândio
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of GenevaGenevaSwitzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Genetics and Evolution, University of GenevaGenevaSwitzerland
- Collège de FranceParisFrance
| |
Collapse
|
20
|
Discrete Hedgehog Factor Expression and Action in the Developing Phallus. Int J Mol Sci 2020; 21:ijms21041237. [PMID: 32059607 PMCID: PMC7072906 DOI: 10.3390/ijms21041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023] Open
Abstract
Hypospadias is a failure of urethral closure within the penis occurring in 1 in 125 boys at birth and is increasing in frequency. While paracrine hedgehog signalling is implicated in the process of urethral closure, how these factors act on a tissue level to execute closure itself is unknown. This study aimed to understand the role of different hedgehog signalling members in urethral closure. The tammar wallaby (Macropus eugenii) provides a unique system to understand urethral closure as it allows direct treatment of developing offspring because mothers give birth to young before urethral closure begins. Wallaby pouch young were treated with vehicle or oestradiol (known to induce hypospadias in males) and samples subjected to RNAseq for differential expression and gene ontology analyses. Localisation of Sonic Hedgehog (SHH) and Indian Hedgehog (IHH), as well as the transcription factor SOX9, were assessed in normal phallus tissue using immunofluorescence. Normal tissue culture explants were treated with SHH or IHH and analysed for AR, ESR1, PTCH1, GLI2, SOX9, IHH and SHH expression by qPCR. Gene ontology analysis showed enrichment for bone differentiation terms in male samples compared with either female samples or males treated with oestradiol. Expression of SHH and IHH localised to specific tissue areas during development, akin to their compartmentalised expression in developing bone. Treatment of phallus explants with SHH or IHH induced factor-specific expression of genes associated with bone differentiation. This reveals a potential developmental interaction involved in urethral closure that mimics bone differentiation and incorporates discrete hedgehog activity within the developing phallus and phallic urethra.
Collapse
|
21
|
Roseman CC, Capellini TD, Jagoda E, Williams SA, Grabowski M, O'Connor C, Polk JD, Cheverud JM. Variation in mouse pelvic morphology maps to locations enriched in Sox9 Class II and Pitx1 regulatory features. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:100-112. [PMID: 32017444 DOI: 10.1002/jez.b.22926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/12/2019] [Accepted: 12/21/2019] [Indexed: 11/10/2022]
Abstract
Variation in pelvic morphology has a complex genetic basis and its patterning and specification is governed by conserved developmental pathways. Whether the mechanisms underlying the differentiation and specification of the pelvis also produce the morphological covariation on which natural selection may act, is still an open question in evolutionary developmental biology. We use high-resolution quantitative trait locus (QTL) mapping in the F34 generation of an advanced intercross experiment (LG,SM-G34 ) to characterize the genetic architecture of the mouse pelvis. We test the prediction that genomic features linked to developmental patterning and differentiation of the hind limb and pelvis and the regulation of chondrogenesis are overrepresented in QTL. We find 31 single QTL trait associations at the genome- or chromosome-wise significance level coalescing to 27 pleiotropic loci. We recover further QTL at a more relaxed significance threshold replicating locations found in a previous experiment in an earlier generation of the same population. QTL were more likely than chance to harbor Pitx1 and Sox9 Class II chromatin immunoprecipitation-seq features active during development of skeletal features. There was weak or no support for the enrichment of seven more categories of developmental features drawn from the literature. Our results suggest that genotypic variation is channeled through a subset of developmental processes involved in the generation of phenotypic variation in the pelvis. This finding indicates that the evolvability of complex traits may be subject to biases not evident from patterns of covariance among morphological features or developmental patterning when either is considered in isolation.
Collapse
Affiliation(s)
- Charles C Roseman
- Victor E. Shelford Vivarium, Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, Illinois
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Evelyn Jagoda
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Scott A Williams
- Department of Anthropology, Center for the Study of Human Origins, New York University, New York, New York.,New York Consortium in Evolutionary Primatology, New York, New York
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Christine O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota.,Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota
| | - John D Polk
- Department of Anthropology, University of Illinois, Urbana-Champaign, Illinois.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, Illinois
| | | |
Collapse
|
22
|
Rice G, Rebeiz M. Evolution: How Many Phenotypes Do Regulatory Mutations Affect? Curr Biol 2019; 29:R21-R23. [PMID: 30620910 DOI: 10.1016/j.cub.2018.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in gene regulatory regions are thought to play an important role in the evolution of morphological structures. This is largely due to their minimal pleiotropic effects, limiting their impact to one particular body part. A recent study finds that one such regulatory mutation may affect two particular morphological structures.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
23
|
Palci A, Hutchinson MN, Caldwell MW, Smith KT, Lee MSY. The homologies and evolutionary reduction of the pelvis and hindlimbs in snakes, with the first report of ossified pelvic vestiges in an anomalepidid (Liotyphlops beui). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
We report the first example of ossified pelvic vestiges in an anomalepidid snake, Liotyplophs beui, and provide a review of the diversity of limb and pelvic elements within Serpentes. We trace the evolution, homology and reduction of the pelvic elements and hindlimbs from the oldest known snakes through to living forms. Evolutionary analysis of the pelvic and limb data shows that the most recent common ancestor of all living snakes (Serpentes) most probably retained all three pelvic elements and rudimentary hindlimbs (femoral spurs). Subsequently, there have been multiple losses of ossified pelvic and hindlimb elements and regaining of ossified pelvic elements. Reduction of the pelvis has followed different routes in the two primary groups of living snakes (scolecophidians and alethinophidians). The single remaining rod-like element in some scolecophidians is the ischium, whereas the single remaining rod-like element in many basal alethinophidians is the pubis. Notably, many basal alethinophidians share a distinctive configuration of cloacal spur (claw), femur and a sizeable pubis, which is likely to be related functionally to the widespread use of the hindlimbs in mating and courtship, rather than the usual representation of the bones as non-functional vestiges.
Collapse
Affiliation(s)
- Alessandro Palci
- Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Mark N Hutchinson
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
- Herpetology Section, South Australian Museum, North Terrace, Adelaide SA, Australia
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Krister T Smith
- Department of Messel Research and Mammalogy, Senckenberg Research Institute, Senckenberganlage, Frankfurt am Main, Germany
| | - Michael S Y Lee
- Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
24
|
Flap-Footed Lizards (Gekkota: Pygopodidae) Have Forelimbs, Albeit During Embryonic Development. J HERPETOL 2019. [DOI: 10.1670/19-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Langer BE, Hiller M. TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences. Nucleic Acids Res 2019; 47:e19. [PMID: 30496469 PMCID: PMC6393245 DOI: 10.1093/nar/gky1200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Changes in gene regulation are important for phenotypic and in particular morphological evolution. However, it remains challenging to identify the transcription factors (TFs) that contribute to differences in gene regulation and thus to phenotypic differences between species. Here, we present TFforge (Transcription Factor forward genomics), a computational method to identify TFs that are involved in the loss of phenotypic traits. TFforge screens an input set of regulatory genomic regions to detect TFs that exhibit a significant binding site divergence signature in species that lost a particular phenotypic trait. Using simulated data of modular and pleiotropic regulatory elements, we show that TFforge can identify the correct TFs for many different evolutionary scenarios. We applied TFforge to available eye regulatory elements to screen for TFs that exhibit a significant binding site decay signature in subterranean mammals. This screen identified interacting and co-binding eye-related TFs, and thus provides new insights into which TFs likely contribute to eye degeneration in these species. TFforge has broad applicability to identify the TFs that contribute to phenotypic changes between species, and thus can help to unravel the gene-regulatory differences that underlie phenotypic evolution.
Collapse
Affiliation(s)
- Björn E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Germany
| |
Collapse
|
26
|
Genome Sequencing of the Japanese Eel ( Anguilla japonica) for Comparative Genomic Studies on tbx4 and a tbx4 Gene Cluster in Teleost Fishes. Mar Drugs 2019; 17:md17070426. [PMID: 31330852 PMCID: PMC6669545 DOI: 10.3390/md17070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Limbs originated from paired fish fins are an important innovation in Gnathostomata. Many studies have focused on limb development-related genes, of which the T-box transcription factor 4 gene (tbx4) has been considered as one of the most essential factors in the regulation of the hindlimb development. We previously confirmed pelvic fin loss in tbx4-knockout zebrafish. Here, we report a high-quality genome assembly of the Japanese eel (Anguilla japonica), which is an economically important fish without pelvic fins. The assembled genome is 1.13 Gb in size, with a scaffold N50 of 1.03 Mb. In addition, we collected 24 tbx4 sequences from 22 teleost fishes to explore the correlation between tbx4 and pelvic fin evolution. However, we observed complete exon structures of tbx4 in several pelvic-fin-loss species such as Ocean sunfish (Mola mola) and ricefield eel (Monopterus albus). More interestingly, an inversion of a special tbx4 gene cluster (brip1-tbx4-tbx2b- bcas3) occurred twice independently, which coincides with the presence of fin spines. A nonsynonymous mutation (M82L) was identified in the nuclear localization sequence (NLS) of the Japanese eel tbx4. We also examined variation and loss of hindlimb enhancer B (HLEB), which may account for pelvic fin loss in Tetraodontidae and Diodontidae. In summary, we generated a genome assembly of the Japanese eel, which provides a valuable genomic resource to study the evolution of fish tbx4 and helps elucidate the mechanism of pelvic fin loss in teleost fishes. Our comparative genomic studies, revealed for the first time a potential correlation between the tbx4 gene cluster and the evolutionary development of toxic fin spines. Because fin spines in teleosts are usually venoms, this tbx4 gene cluster may facilitate the genetic engineering of toxin-related marine drugs.
Collapse
|
27
|
Langer BE, Roscito JG, Hiller M. REforge Associates Transcription Factor Binding Site Divergence in Regulatory Elements with Phenotypic Differences between Species. Mol Biol Evol 2019; 35:3027-3040. [PMID: 30256993 PMCID: PMC6278867 DOI: 10.1093/molbev/msy187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Elucidating the genomic determinants of morphological differences between species is key to understanding how morphological diversity evolved. While differences in cis-regulatory elements are an important genetic source for morphological evolution, it remains challenging to identify regulatory elements involved in phenotypic differences. Here, we present Regulatory Element forward genomics (REforge), a computational approach that detects associations between transcription factor binding site divergence in putative regulatory elements and phenotypic differences between species. By simulating regulatory element evolution in silico, we show that this approach has substantial power to detect such associations. To validate REforge on real data, we used known binding motifs for eye-related transcription factors and identified significant binding site divergence in vision-impaired subterranean mammals in 1% of all conserved noncoding elements. We show that these genomic regions are significantly enriched in regulatory elements that are specifically active in mouse eye tissues, and that several of them are located near genes, which are required for eye development and photoreceptor function and are implicated in human eye disorders. Thus, our genome-wide screen detects widespread divergence of eye-regulatory elements and highlights regulatory regions that likely contributed to eye degeneration in subterranean mammals. REforge has broad applicability to detect regulatory elements that could be involved in many other phenotypes, which will help to reveal the genomic basis of morphological diversity.
Collapse
Affiliation(s)
- Björn E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| |
Collapse
|
28
|
Pigeon foot feathering reveals conserved limb identity networks. Dev Biol 2019; 454:128-144. [PMID: 31247188 DOI: 10.1016/j.ydbio.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.
Collapse
|
29
|
Sabarís G, Laiker I, Preger-Ben Noon E, Frankel N. Actors with Multiple Roles: Pleiotropic Enhancers and the Paradigm of Enhancer Modularity. Trends Genet 2019; 35:423-433. [DOI: 10.1016/j.tig.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
30
|
Ching ST, Infante CR, Du W, Sharir A, Park S, Menke DB, Klein OD. Isl1 mediates mesenchymal expansion in the developing external genitalia via regulation of Bmp4, Fgf10 and Wnt5a. Hum Mol Genet 2019; 27:107-119. [PMID: 29126155 DOI: 10.1093/hmg/ddx388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Genital malformations are among the most common human birth defects, and both genetic and environmental factors can contribute to these malformations. Development of the external genitalia in mammals relies on complex signaling networks, and disruption of these signaling pathways can lead to genital defects. Islet-1 (ISL1), a member of the LIM/Homeobox family of transcription factors, has been identified as a major susceptibility gene for classic bladder exstrophy in humans, a common form of the bladder exstrophy-epispadias complex (BEEC), and is implicated in a role in urinary tract development. We report that deletion of Isl1 from the genital mesenchyme in mice led to hypoplasia of the genital tubercle and prepuce, with an ectopic urethral opening and epispadias-like phenotype. These mice also developed hydroureter and hydronephrosis. Identification of ISL1 transcriptional targets via ChIP-Seq and expression analyses revealed that Isl1 regulates several important signaling pathways during embryonic genital development, including the BMP, WNT, and FGF cascades. An essential function of Isl1 during development of the external genitalia is to induce Bmp4-mediated apoptosis in the genital mesenchyme. Together, these studies demonstrate that Isl1 plays a critical role during development of the external genitalia and forms the basis for a greater understanding of the molecular mechanisms underlying the pathogenesis of BEEC and urinary tract defects in humans.
Collapse
Affiliation(s)
- Saunders T Ching
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Carlos R Infante
- Department of Genetics, University of Georgia, GA 30602, USA.,Department of Molecular and Cellular Biology, University of Arizona, AZ 85721, USA
| | - Wen Du
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.,State Key Laboratory of Oral Diseases, Department of Prosthetics, West China College of Stomatology, Sichuan University, Sichuan Sheng 610041, China
| | - Amnon Sharir
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, GA 30602, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Thompson AC, Capellini TD, Guenther CA, Chan YF, Infante CR, Menke DB, Kingsley DM. A novel enhancer near the Pitx1 gene influences development and evolution of pelvic appendages in vertebrates. eLife 2018; 7:38555. [PMID: 30499775 PMCID: PMC6269122 DOI: 10.7554/elife.38555] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
Vertebrate pelvic reduction is a classic example of repeated evolution. Recurrent loss of pelvic appendages in sticklebacks has previously been linked to natural mutations in a pelvic enhancer that maps upstream of Pitx1. The sequence of this upstream PelA enhancer is not conserved to mammals, so we have surveyed a large region surrounding the mouse Pitx1 gene for other possible hind limb control sequences. Here we identify a new pelvic enhancer, PelB, that maps downstream rather than upstream of Pitx1. PelB drives expression in the posterior portion of the developing hind limb, and deleting the sequence from mice alters the size of several hind limb structures. PelB sequences are broadly conserved from fish to mammals. A wild stickleback population lacking the pelvis has an insertion/deletion mutation that disrupts the structure and function of PelB, suggesting that changes in this ancient enhancer contribute to evolutionary modification of pelvic appendages in nature.
Collapse
Affiliation(s)
- Abbey C Thompson
- Department of Developmental Biology, Stanford University School of Medicine, California, United States.,Department of Genetics, Stanford University School of Medicine, California, United States
| | - Terence D Capellini
- Department of Developmental Biology, Stanford University School of Medicine, California, United States
| | - Catherine A Guenther
- Department of Developmental Biology, Stanford University School of Medicine, California, United States.,Howard Hughes Medical Institute, Stanford University, California, United States
| | - Yingguang Frank Chan
- Department of Developmental Biology, Stanford University School of Medicine, California, United States
| | - Carlos R Infante
- Department of Genetics, University of Georgia, Georgia, United States
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Georgia, United States
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, California, United States.,Howard Hughes Medical Institute, Stanford University, California, United States
| |
Collapse
|
32
|
Roscito JG, Sameith K, Parra G, Langer BE, Petzold A, Moebius C, Bickle M, Rodrigues MT, Hiller M. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat Commun 2018; 9:4737. [PMID: 30413698 PMCID: PMC6226452 DOI: 10.1038/s41467-018-07122-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
Detecting the genomic changes underlying phenotypic changes between species is a main goal of evolutionary biology and genomics. Evolutionary theory predicts that changes in cis-regulatory elements are important for morphological changes. We combined genome sequencing, functional genomics and genome-wide comparative analyses to investigate regulatory elements in lineages that lost morphological traits. We first show that limb loss in snakes is associated with widespread divergence of limb regulatory elements. We next show that eye degeneration in subterranean mammals is associated with widespread divergence of eye regulatory elements. In both cases, sequence divergence results in an extensive loss of transcription factor binding sites. Importantly, diverged regulatory elements are associated with genes required for normal limb patterning or normal eye development and function, suggesting that regulatory divergence contributed to the loss of these phenotypes. Together, our results show that genome-wide decay of the phenotype-specific cis-regulatory landscape is a hallmark of lost morphological traits. Cis-regulatory elements are important factors for morphological changes. Here, the authors show widespread divergence of limb and eye regulatory elements in limb loss in snakes and eye degeneration in subterranean mammals respectively.
Collapse
Affiliation(s)
- Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany.,Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Katrin Sameith
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany
| | - Genis Parra
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany
| | - Bjoern E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.,Center for Systems Biology Dresden, Dresden, 01307, Germany
| | - Andreas Petzold
- Center for Regenerative Therapies TU Dresden, Dresden, 01307, Germany
| | - Claudia Moebius
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | | | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany. .,Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany. .,Center for Systems Biology Dresden, Dresden, 01307, Germany.
| |
Collapse
|
33
|
|
34
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
35
|
Abstract
Two groups have studied the loss of limbs in snake evolution by focusing on a long-distance cis-acting enhancer of Sonic Hedgehog. They find a progressive degeneration of binding sites for key transcription factors, mirroring the progressive limblessness occurring in these reptiles.
Collapse
Affiliation(s)
- Maria M Kaltcheva
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
36
|
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res 2018; 45:12611-12624. [PMID: 29121339 PMCID: PMC5728398 DOI: 10.1093/nar/gkx1074] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics has revealed a class of non-protein-coding genomic sequences that display an extraordinary degree of conservation between two or more organisms, regularly exceeding that found within protein-coding exons. These elements, collectively referred to as conserved non-coding elements (CNEs), are non-randomly distributed across chromosomes and tend to cluster in the vicinity of genes with regulatory roles in multicellular development and differentiation. CNEs are organized into functional ensembles called genomic regulatory blocks–dense clusters of elements that collectively coordinate the expression of shared target genes, and whose span in many cases coincides with topologically associated domains. CNEs display sequence properties that set them apart from other sequences under constraint, and have recently been proposed as useful markers for the reconstruction of the evolutionary history of organisms. Disruption of several of these elements is known to contribute to diseases linked with development, and cancer. The emergence, evolutionary dynamics and functions of CNEs still remain poorly understood, and new approaches are required to enable comprehensive CNE identification and characterization. Here, we review current knowledge and identify challenges that need to be tackled to resolve the impasse in understanding extreme non-coding conservation.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James W D King
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alexander J Nash
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ge Tan
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
37
|
Wang JS, Infante CR, Park S, Menke DB. PITX1 promotes chondrogenesis and myogenesis in mouse hindlimbs through conserved regulatory targets. Dev Biol 2017; 434:186-195. [PMID: 29273440 DOI: 10.1016/j.ydbio.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
The PITX1 transcription factor is expressed during hindlimb development, where it plays a critical role in directing hindlimb growth and the specification of hindlimb morphology. While it is known that PITX1 regulates hindlimb formation, in part, through activation of the Tbx4 gene, other transcriptional targets remain to be elucidated. We have used a combination of ChIP-seq and RNA-seq to investigate enhancer regions and target genes that are directly regulated by PITX1 in embryonic mouse hindlimbs. In addition, we have analyzed PITX1 binding sites in hindlimbs of Anolis lizards to identify ancient PITX1 regulatory targets. We find that PITX1-bound regions in both mouse and Anolis hindlimbs are strongly associated with genes implicated in limb and skeletal system development. Gene expression analyses reveal a large number of misexpressed genes in the hindlimbs of Pitx1-/- mouse embryos. By intersecting misexpressed genes with genes that have neighboring mouse PITX1 binding sites, we identified 440 candidate targets of PITX1. Of these candidates, 68 exhibit ultra-conserved PITX1 binding events that are shared between mouse and Anolis hindlimbs. Among the ancient targets of PITX1 are important regulators of cartilage and skeletal muscle development, including Sox9 and Six1. Our data suggest that PITX1 promotes chondrogenesis and myogenesis in the hindlimb by direct regulation of several key members of the cartilage and muscle transcriptional networks.
Collapse
Affiliation(s)
- Jialiang S Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Carlos R Infante
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
38
|
Emerling CA, Widjaja AD, Nguyen NN, Springer MS. Their loss is our gain: regressive evolution in vertebrates provides genomic models for uncovering human disease loci. J Med Genet 2017; 54:787-794. [PMID: 28814606 DOI: 10.1136/jmedgenet-2017-104837] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Throughout Earth's history, evolution's numerous natural 'experiments' have resulted in a diverse range of phenotypes. Though de novo phenotypes receive widespread attention, degeneration of traits inherited from an ancestor is a very common, yet frequently neglected, evolutionary path. The latter phenomenon, known as regressive evolution, often results in vertebrates with phenotypes that mimic inherited disease states in humans. Regressive evolution of anatomical and/or physiological traits is typically accompanied by inactivating mutations underlying these traits, which frequently occur at loci identical to those implicated in human diseases. Here we discuss the potential utility of examining the genomes of vertebrates that have experienced regressive evolution to inform human medical genetics. This approach is low cost and high throughput, giving it the potential to rapidly improve knowledge of disease genetics. We discuss two well-described examples, rod monochromacy (congenital achromatopsia) and amelogenesis imperfecta, to demonstrate the utility of this approach, and then suggest methods to equip non-experts with the ability to corroborate candidate genes and uncover new disease loci.
Collapse
Affiliation(s)
- Christopher A Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Biology, University of California, Riverside, California, USA
| | - Andrew D Widjaja
- Department of Biochemistry, University of California, Riverside, California, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Nancy N Nguyen
- Department of Bioengineering, University of California, Riverside, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mark S Springer
- Department of Biology, University of California, Riverside, California, USA
| |
Collapse
|
39
|
Leal F, Cohn MJ. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 2017; 56. [DOI: 10.1002/dvg.23077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Francisca Leal
- Howard Hughes Medical Institute, UF Genetics Institute, University of Florida; Gainesville FL 32610
- Department of Biology; University of Florida; Gainesville FL 32610
| | - Martin J. Cohn
- Department of Biology; University of Florida; Gainesville FL 32610
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville FL 32610
| |
Collapse
|
40
|
Infante CR, Rasys AM, Menke DB. Appendages and gene regulatory networks: Lessons from the limbless. Genesis 2017; 56. [PMID: 29076617 DOI: 10.1002/dvg.23078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Among squamate reptiles, dozens of lineages have independently evolved complete or partial limb reduction. This remarkable convergence of limbless and limb-reduced phenotypes provides multiple natural replicates of different ages to explore the evolution and development of the vertebrate limb and the gene regulatory network that controls its formation. The most successful and best known of the limb-reduced squamates are snakes, which evolved a limb-reduced body form more than 100 million years ago. Recent studies have revealed the unexpected finding that many ancient limb enhancers are conserved in the genomes of snakes. Analyses in limbed animals show that many of these limb enhancers are also active during development of the phallus, suggesting that these enhancers may have been retained in snakes due their importance in regulating transcription in the external genitalia. This hypothesis is substantiated by functional tests of snake enhancers, which demonstrate that snake enhancer elements have lost limb function while retaining genital enhancer function. The large degree of overlap in the gene regulatory networks deployed during limb and phallus development may act to constrain the divergence of shared gene network components and the evolution of appendage morphology. Future studies will reveal whether limb regulatory elements have undergone similar functional changes in other lineages of limb-reduced squamates.
Collapse
Affiliation(s)
- Carlos R Infante
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, 85721
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602.,Department of Genetics, University of Georgia, Athens, Georgia, 30602
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
41
|
Klaczko J, Gilman CA, Irschick DJ. Hemipenis shape and hindlimb size are highly correlated in Anolis lizards. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Emerling CA. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Mol Phylogenet Evol 2017; 115:40-49. [PMID: 28739369 DOI: 10.1016/j.ympev.2017.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/11/2023]
Abstract
Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.
Collapse
|
43
|
Rebeiz M, Tsiantis M. Enhancer evolution and the origins of morphological novelty. Curr Opin Genet Dev 2017; 45:115-123. [PMID: 28527813 DOI: 10.1016/j.gde.2017.04.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 01/07/2023]
Abstract
A central goal of evolutionary biology is to understand the genetic origin of morphological novelties-i.e. anatomical structures unique to a taxonomic group. Elaboration of morphology during development depends on networks of regulatory genes that activate patterned gene expression through transcriptional enhancer regions. We summarize recent case studies and genome-wide investigations that have uncovered diverse mechanisms though which new enhancers arise. We also discuss how these enhancer-originating mechanisms have clarified the history of genetic networks underlying diversification of genital structures in flies, limbs and neural crest in chordates, and plant leaves. These studies have identified enhancers that were pivotal for morphological divergence and highlighted how novel genetic networks shaping form emerged from pre-existing ones.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15215, USA.
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany.
| |
Collapse
|
44
|
Abstract
The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.
Collapse
Affiliation(s)
- Florence Petit
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,University of Lille, CHU Lille, EA 7364-RADEME, F-59000 Lille, France
| | - Karen E Sears
- School of Integrative Biology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,Institute for Human Genetics, University of California San Francisco, California 94158, USA
| |
Collapse
|
45
|
Tschopp P, Tabin CJ. Deep homology in the age of next-generation sequencing. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150475. [PMID: 27994118 PMCID: PMC5182409 DOI: 10.1098/rstb.2015.0475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/14/2022] Open
Abstract
The principle of homology is central to conceptualizing the comparative aspects of morphological evolution. The distinctions between homologous or non-homologous structures have become blurred, however, as modern evolutionary developmental biology (evo-devo) has shown that novel features often result from modification of pre-existing developmental modules, rather than arising completely de novo. With this realization in mind, the term 'deep homology' was coined, in recognition of the remarkably conserved gene expression during the development of certain animal structures that would not be considered homologous by previous strict definitions. At its core, it can help to formulate an understanding of deeper layers of ontogenetic conservation for anatomical features that lack any clear phylogenetic continuity. Here, we review deep homology and related concepts in the context of a gene expression-based homology discussion. We then focus on how these conceptual frameworks have profited from the recent rise of high-throughput next-generation sequencing. These techniques have greatly expanded the range of organisms amenable to such studies. Moreover, they helped to elevate the traditional gene-by-gene comparison to a transcriptome-wide level. We will end with an outlook on the next challenges in the field and how technological advances might provide exciting new strategies to tackle these questions.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Patrick Tschopp
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
46
|
Sebé-Pedrós A, Ruiz-Trillo I. Evolution and Classification of the T-Box Transcription Factor Family. Curr Top Dev Biol 2017; 122:1-26. [DOI: 10.1016/bs.ctdb.2016.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Sanger TJ, Kircher BK. Model Clades Versus Model Species: Anolis Lizards as an Integrative Model of Anatomical Evolution. Methods Mol Biol 2017; 1650:285-297. [PMID: 28809029 DOI: 10.1007/978-1-4939-7216-6_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anolis lizards , known for their replicated patterns of morphological diversification, are widely studied in the fields of evolution and ecology. As a textbook example of adaptive radiation, this genus has supported decades of intense study in natural history, behavior, morphological evolution, and systematics. Following the publication of the A. carolinensis genome, research on Anolis lizards has expanded into new areas, toward obtaining an understanding the developmental and genetic bases of anole diversity. Here, we discuss recent progress in these areas and the burgeoning methodological toolkit that has been used to elucidate the genetic mechanisms underlying anatomical variation in this group. We also highlight the growing number of studies that have used A. carolinensis as the representative squamate in large-scale comparison of amniote evolution and development . Finally, we address one of the largest technical challenges biologists are facing in making Anolis a model for integrative studies of ecology, evolution, development , and genetics, the development of ex-ovo culturing techniques that have broad utility. Ultimately, with the power to ask questions across all biological scales in this diverse genus full, anoles are rapidly becoming a uniquely integrative and powerful biological system.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA.
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, FL, 32601, USA
| |
Collapse
|
48
|
Kvon EZ, Kamneva OK, Melo US, Barozzi I, Osterwalder M, Mannion BJ, Tissières V, Pickle CS, Plajzer-Frick I, Lee EA, Kato M, Garvin TH, Akiyama JA, Afzal V, Lopez-Rios J, Rubin EM, Dickel DE, Pennacchio LA, Visel A. Progressive Loss of Function in a Limb Enhancer during Snake Evolution. Cell 2016; 167:633-642.e11. [PMID: 27768887 DOI: 10.1016/j.cell.2016.09.028] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/07/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.
Collapse
Affiliation(s)
- Evgeny Z Kvon
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Olga K Kamneva
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Uirá S Melo
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Iros Barozzi
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marco Osterwalder
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Brandon J Mannion
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Catherine S Pickle
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Elizabeth A Lee
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tyler H Garvin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer A Akiyama
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veena Afzal
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Lopez-Rios
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Edward M Rubin
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Diane E Dickel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Len A Pennacchio
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
| | - Axel Visel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
49
|
Young JJ, Tabin CJ. Saunders's framework for understanding limb development as a platform for investigating limb evolution. Dev Biol 2016; 429:401-408. [PMID: 27840200 DOI: 10.1016/j.ydbio.2016.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
Abstract
John W. Saunders, Jr. made seminal discoveries unveiling how chick embryos develop their limbs. He discovered the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the domains of interdigital cell death within the developing limb and determined their function through experimental analysis. These discoveries provided the basis for subsequent molecular understanding of how vertebrate limbs are induced, patterned, and differentiated. These mechanisms are strongly conserved among the vast diversity of tetrapod limbs suggesting that relatively minor changes and tweaks to the molecular cascades are responsible for the diversity observed in nature. Analysis of the pathway systems first identified by Saunders in the context of animals displaying limb reduction show how alterations in these pathways have resulted in multiple mechanisms of limb and digit loss. Other classes of modification to these same patterning systems are seen at the root of other, novel limb morphological alterations and elaborations.
Collapse
Affiliation(s)
- John J Young
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Schultz NG, Lough-Stevens M, Abreu E, Orr T, Dean MD. The Baculum was Gained and Lost Multiple Times during Mammalian Evolution. Integr Comp Biol 2016; 56:644-56. [PMID: 27252214 PMCID: PMC6080509 DOI: 10.1093/icb/icw034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rapid evolution of male genitalia is a nearly ubiquitous pattern across sexually reproducing organisms, likely driven by the evolutionary pressures of male-male competition, male-female interactions, and perhaps pleiotropic effects of selection. The penis of many mammalian species contains a baculum, a bone that displays astonishing morphological diversity. The evolution of baculum size and shape does not consistently correlate with any aspects of mating system, hindering our understanding of the evolutionary processes affecting it. One potential explanation for the lack of consistent comparative results is that the baculum is not actually a homologous structure. If the baculum of different groups evolved independently, then the assumption of homology inherent in comparative studies is violated. Here, we specifically test this hypothesis by modeling the presence/absence of bacula of 954 mammalian species across a well-established phylogeny and show that the baculum evolved a minimum of nine times, and was lost a minimum of ten times. Three different forms of bootstrapping show our results are robust to species sampling. Furthermore, groups with a baculum show evidence of higher rates of diversification. Our study offers an explanation for the inconsistent results in the literature, and provides insight into the evolution of this remarkable structure.
Collapse
Affiliation(s)
- Nicholas G Schultz
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Michael Lough-Stevens
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Eric Abreu
- West Adams Preparatory High School, 1500 W Washington Blvd, Los Angeles, CA 90007, USA
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Matthew D Dean
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|