1
|
Lang C, Maxian O, Anneken A, Munro E. Oligomerization and positive feedback on membrane recruitment encode dynamically stable PAR-3 asymmetries in the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.04.552031. [PMID: 39253498 PMCID: PMC11383301 DOI: 10.1101/2023.08.04.552031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Studies of PAR polarity have emphasized a paradigm in which mutually antagonistic PAR proteins form complementary polar domains in response to transient cues. A growing body of work suggests that the oligomeric scaffold PAR-3 can form unipolar asymmetries without mutual antagonism, but how it does so is largely unknown. Here we combine single molecule analysis and modeling to show how the interplay of two positive feedback loops promote dynamically stable unipolar PAR-3 asymmetries in early C. elegans embryos. First, the intrinsic dynamics of PAR-3 membrane binding and oligomerization encode negative feedback on PAR-3 dissociation. Second, membrane-bound PAR-3 promotes its own recruitment through a mechanism that requires the anterior polarity proteins CDC-42, PAR-6 and PKC-3. Using a kinetic model tightly constrained by our experimental measurements, we show that these two feedback loops are individually required and jointly sufficient to encode dynamically stable and locally inducible unipolar PAR-3 asymmetries in the absence of posterior inhibition. Given the central role of PAR-3, and the conservation of PAR-3 membrane-binding, oligomerization, and core interactions with PAR-6/aPKC, these results have widespread implications for PAR-mediated polarity in metazoa.
Collapse
Affiliation(s)
- Charlie Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
- Current address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Ondrej Maxian
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Alexander Anneken
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Biophysical Models of PAR Cluster Transport by Cortical Flow in C. elegans Early Embryogenesis. Bull Math Biol 2022; 84:40. [PMID: 35142872 DOI: 10.1007/s11538-022-00997-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
Abstract
The clustering of membrane-bound proteins facilitates their transport by cortical actin flow in early Caenorhabditis elegans embryo cell polarity. PAR-3 clustering is critical for this process, yet the biophysical processes that couple protein clusters to cortical flow remain unknown. We develop a discrete, stochastic agent-based model of protein clustering and test four hypothetical models for how clusters may interact with the flow. Results show that the canonical way to assess transport characteristics from single-particle tracking data used thus far in this area, the Péclet number, is insufficient to distinguish these hypotheses and that all models can account for transport characteristics quantified by this measure. However, using this model, we demonstrate that these different cluster-cortex interactions may be distinguished using a different metric, namely the scalar projection of cluster displacement on to the flow displacement vector. Our results thus provide a testable way to use existing single-particle tracking data to test how endogenous protein clusters may interact with the cortical flow to localize during polarity establishment. To facilitate this investigation, we also develop both improved simulation and semi-analytic methodologies to quantify motion summary statistics (e.g., Péclet number and scalar projection) for these stochastic models as a function of biophysical parameters.
Collapse
|
3
|
Zhao X, Garcia JQ, Tong K, Chen X, Yang B, Li Q, Dai Z, Shi X, Seiple IB, Huang B, Guo S. Polarized endosome dynamics engage cytoplasmic Par-3 that recruits dynein during asymmetric cell division. SCIENCE ADVANCES 2021; 7:eabg1244. [PMID: 34117063 PMCID: PMC8195473 DOI: 10.1126/sciadv.abg1244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In the developing embryos, the cortical polarity regulator Par-3 is critical for establishing Notch signaling asymmetry between daughter cells during asymmetric cell division (ACD). How cortically localized Par-3 establishes asymmetric Notch activity in the nucleus is not understood. Here, using in vivo time-lapse imaging of mitotic radial glia progenitors in the developing zebrafish forebrain, we uncover that during horizontal ACD along the anteroposterior embryonic axis, endosomes containing the Notch ligand DeltaD (Dld) move toward the cleavage plane and preferentially segregate into the posterior (subsequently basal) Notchhi daughter. This asymmetric segregation requires the activity of Par-3 and dynein motor complex. Using label retention expansion microscopy, we further detect Par-3 in the cytosol colocalizing the dynein light intermediate chain 1 (Dlic1) onto Dld endosomes. Par-3, Dlic1, and Dld are associated in protein complexes in vivo. Our data reveal an unanticipated mechanism by which cytoplasmic Par-3 directly polarizes Notch signaling components during ACD.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kai Tong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xingye Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bin Yang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94143, USA
| | - Qi Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhipeng Dai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94143, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Lin DW, Liu Y, Lee YQ, Yang PJ, Ho CT, Hong JC, Hsiao JC, Liao DC, Liang AJ, Hung TC, Chen YC, Tu HL, Hsu CP, Huang HC. Construction of intracellular asymmetry and asymmetric division in Escherichia coli. Nat Commun 2021; 12:888. [PMID: 33563962 PMCID: PMC7873278 DOI: 10.1038/s41467-021-21135-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/09/2021] [Indexed: 01/23/2023] Open
Abstract
The design principle of establishing an intracellular protein gradient for asymmetric cell division is a long-standing fundamental question. While the major molecular players and their interactions have been elucidated via genetic approaches, the diversity and redundancy of natural systems complicate the extraction of critical underlying features. Here, we take a synthetic cell biology approach to construct intracellular asymmetry and asymmetric division in Escherichia coli, in which division is normally symmetric. We demonstrate that the oligomeric PopZ from Caulobacter crescentus can serve as a robust polarized scaffold to functionalize RNA polymerase. Furthermore, by using another oligomeric pole-targeting DivIVA from Bacillus subtilis, the newly synthesized protein can be constrained to further establish intracellular asymmetry, leading to asymmetric division and differentiation. Our findings suggest that the coupled oligomerization and restriction in diffusion may be a strategy for generating a spatial gradient for asymmetric cell division.
Collapse
Affiliation(s)
- Da-Wei Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yang Liu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yue-Qi Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Po-Jiun Yang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chia-Tse Ho
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Jui-Chung Hong
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | | | - Der-Chien Liao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - An-Jou Liang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Tzu-Chiao Hung
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chun Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Shamipour S, Caballero-Mancebo S, Heisenberg CP. Cytoplasm's Got Moves. Dev Cell 2021; 56:213-226. [PMID: 33321104 DOI: 10.1016/j.devcel.2020.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | |
Collapse
|
6
|
Dziengelewski C, Rodrigue MA, Caillier A, Jacquet K, Boulanger MC, Bergeman J, Fuchs M, Lambert H, Laprise P, Richard DE, Bordeleau F, Huot MÉ, Lavoie JN. Adenoviral protein E4orf4 interacts with the polarity protein Par3 to induce nuclear rupture and tumor cell death. J Cell Biol 2020; 219:151580. [PMID: 32328642 PMCID: PMC7147092 DOI: 10.1083/jcb.201805122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor cell–selective killing activity of the adenovirus type 2 early region 4 ORF4 (E4orf4) protein is poorly defined at the molecular level. Here, we show that the tumoricidal effect of E4orf4 is typified by changes in nuclear dynamics that depend on its interaction with the polarity protein Par3 and actomyosin contractility. Mechanistically, E4orf4 induced a high incidence of nuclear bleb formation and repetitive nuclear ruptures, which promoted nuclear efflux of E4orf4 and loss of nuclear integrity. This process was regulated by nucleocytoskeletal connections, Par3 clustering proximal to nuclear lamina folds, and retrograde movement of actin bundles that correlated with nuclear ruptures. Significantly, Par3 also regulated the incidence of spontaneous nuclear ruptures facilitated by the downmodulation of lamins. This work uncovered a novel role for Par3 in controlling the actin-dependent forces acting on the nuclear envelope to remodel nuclear shape, which might be a defining feature of tumor cells that is harnessed by E4orf4.
Collapse
Affiliation(s)
- Claire Dziengelewski
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Alexia Caillier
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Marie-Chloé Boulanger
- Department of Surgery, Quebec Heart and Lung Institute/Research Center, Université Laval, Québec, Canada
| | - Jonathan Bergeman
- Institut de Recherches Clinique de Montréal, Montréal, Québec, Canada
| | - Margit Fuchs
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Faculty of Management, Dalhousie University, Halifax, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Patrick Laprise
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - François Bordeleau
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
7
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
8
|
Samandar Eweis D, Plastino J. Roles of Actin in the Morphogenesis of the Early Caenorhabditis elegans Embryo. Int J Mol Sci 2020; 21:ijms21103652. [PMID: 32455793 PMCID: PMC7279410 DOI: 10.3390/ijms21103652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
The cell shape changes that ensure asymmetric cell divisions are crucial for correct development, as asymmetric divisions allow for the formation of different cell types and therefore different tissues. The first division of the Caenorhabditis elegans embryo has emerged as a powerful model for understanding asymmetric cell division. The dynamics of microtubules, polarity proteins, and the actin cytoskeleton are all key for this process. In this review, we highlight studies from the last five years revealing new insights about the role of actin dynamics in the first asymmetric cell division of the early C. elegans embryo. Recent results concerning the roles of actin and actin binding proteins in symmetry breaking, cortical flows, cortical integrity, and cleavage furrow formation are described.
Collapse
Affiliation(s)
- Dureen Samandar Eweis
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France;
- Sorbonne Université, 75005 Paris, France
| | - Julie Plastino
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France;
- Sorbonne Université, 75005 Paris, France
- Correspondence:
| |
Collapse
|
9
|
Loyer N, Januschke J. Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Curr Opin Cell Biol 2020; 62:70-77. [DOI: 10.1016/j.ceb.2019.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
|
10
|
Allard CAH, Opalko HE, Moseley JB. Stable Pom1 clusters form a glucose-modulated concentration gradient that regulates mitotic entry. eLife 2019; 8:e46003. [PMID: 31050341 PMCID: PMC6524964 DOI: 10.7554/elife.46003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Control of cell size requires molecular size sensors that are coupled to the cell cycle. Rod-shaped fission yeast cells divide at a threshold size partly due to Cdr2 kinase, which forms nodes at the medial cell cortex where it inhibits the Cdk1-inhibitor Wee1. Pom1 kinase phosphorylates and inhibits Cdr2, and forms cortical concentration gradients from cell poles. Pom1 inhibits Cdr2 signaling to Wee1 specifically in small cells, but the time and place of their regulatory interactions were unclear. We show that Pom1 forms stable oligomeric clusters that dynamically sample the cell cortex. Binding frequency is patterned into a concentration gradient by the polarity landmarks Tea1 and Tea4. Pom1 clusters colocalize with Cdr2 nodes, forming a glucose-modulated inhibitory threshold against node activation. Our work reveals how Pom1-Cdr2-Wee1 operates in multiprotein clusters at the cortex to promote mitotic entry at a cell size that can be modified by nutrient availability.
Collapse
Affiliation(s)
- Corey A H Allard
- Department of Biochemistry and Cell BiologyThe Geisel School of Medicine at DartmouthHanoverUnited States
| | - Hannah E Opalko
- Department of Biochemistry and Cell BiologyThe Geisel School of Medicine at DartmouthHanoverUnited States
| | - James B Moseley
- Department of Biochemistry and Cell BiologyThe Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|