1
|
Xu M, Chen ZY, Li Y, Li Y, Guo G, Dai RZ, Ni N, Tao J, Wang HY, Chen QL, Wang H, Zhou H, Yang YN, Chen S, Chen L. Rab2A-mediated Golgi-lipid droplet interactions support very-low-density lipoprotein secretion in hepatocytes. EMBO J 2024:10.1038/s44318-024-00288-x. [PMID: 39496977 DOI: 10.1038/s44318-024-00288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Lipid droplets (LDs) serve as crucial hubs for lipid trafficking and metabolic regulation through their numerous interactions with various organelles. While the interplay between LDs and the Golgi apparatus has been recognized, their roles and underlying mechanisms remain poorly understood. Here, we reveal the role of Ras-related protein Rab-2A (Rab2A) in mediating LD-Golgi interactions, thereby contributing to very-low-density lipoprotein (VLDL) lipidation and secretion in hepatocytes. Mechanistically, our findings identify a selective interaction between Golgi-localized Rab2A and 17-beta-hydroxysteroid dehydrogenase 13 (HSD17B13) protein residing on LDs. This complex facilitates dynamic organelle communication between the Golgi apparatus and LDs, thus contributing to lipid transfer from LDs to the Golgi apparatus for VLDL2 lipidation and secretion. Attenuation of Rab2A activity via AMP-activated protein kinase (AMPK) suppresses the Rab2A-HSD17B13 complex formation, impairing LD-Golgi interactions and subsequent VLDL secretion. Furthermore, genetic inhibition of Rab2A and HSD17B13 in the liver reduces the serum triglyceride and cholesterol levels. Collectively, this study provides a new perspective on the interactions between the Golgi apparatus and LDs.
Collapse
Affiliation(s)
- Min Xu
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Zi-Yue Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Yang Li
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China
| | - Yue Li
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Ge Guo
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Rong-Zheng Dai
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Na Ni
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China
| | - Jing Tao
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Qiao-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Hong Zhou
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China.
| | - Yi-Ning Yang
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, 830000, Urumqi, China.
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, 830000, Urumqi, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 830000, Urumqi, China.
- Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, 830000, Urumqi, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China.
| | - Liang Chen
- College of Life Sciences, Anhui Medical University, 230032, Hefei, China.
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230001, Hefei, China.
| |
Collapse
|
2
|
Yang NV, Chao JY, Garton KA, Tran T, King SM, Orr J, Oei JH, Crawford A, Kang M, Zalpuri R, Jorgens DM, Konchadi P, Chorba JS, Theusch E, Krauss RM. TOMM40 regulates hepatocellular and plasma lipid metabolism via an LXR-dependent pathway. Mol Metab 2024:102056. [PMID: 39489289 DOI: 10.1016/j.molmet.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The gene encoding TOMM40 (Transporter of Outer Mitochondrial Membrane 40) is adjacent to that encoding APOE, which has a central role in lipid and lipoprotein metabolism. Human genetic variants near APOE and TOMM40 are strongly associated with plasma lipid levels, but a specific role for TOMM40 in lipid metabolism has not been established. We show here that suppression of TOMM40 in human hepatoma cells upregulates expression of APOE and LDLR in part via activation of LXRB (NR1H2) by oxysterols, with consequent increased uptake of VLDL and LDL. This is in part due to disruption of mitochondria-endoplasmic reticulum contact sites, with resulting accrual of reactive oxygen species and non-enzymatically derived oxysterols. With TOMM40 knockdown, cellular triglyceride and lipid droplet content are increased, effects attributable in part to receptor-mediated VLDL uptake, since lipid staining is significantly reduced by concomitant suppression of either LDLR or APOE. In contrast, cellular cholesterol content is reduced due to LXRB-mediated upregulation of the ABCA1 transporter as well as increased production and secretion of oxysterol-derived cholic acid. Consistent with the findings in hepatoma cells, in vivo knockdown of TOMM40 in mice results in significant reductions of plasma triglyceride and cholesterol concentrations, reduced hepatic cholesterol and increased triglyceride content, and accumulation of lipid droplets leading to development of steatosis. These findings demonstrate a role for TOMM40 in regulating hepatic lipid and plasma lipoprotein levels and identify mechanisms linking mitochondrial function with lipid metabolism.
Collapse
Affiliation(s)
- Neil V Yang
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Justin Y Chao
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelly A Garton
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA
| | - Tommy Tran
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Sarah M King
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Joseph Orr
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jacob H Oei
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Alexandra Crawford
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Misun Kang
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle M Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Pranav Konchadi
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John S Chorba
- Department of Medicine, University of California, San Francisco, CA, USA; Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Ronald M Krauss
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Johns E, Ma Y, Louphrasitthiphol P, Peralta C, Hunter MV, Raymond JH, Molina H, Goding CR, White RM. The Lipid Droplet Protein DHRS3 Is a Regulator of Melanoma Cell State. Pigment Cell Melanoma Res 2024. [PMID: 39479752 DOI: 10.1111/pcmr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
Lipid droplets are fat storage organelles composed of a protein envelope and lipid-rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid-mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
Collapse
Affiliation(s)
- Eleanor Johns
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yilun Ma
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | | | - Christopher Peralta
- The Proteomics Resource Center at the Rockefeller University, New York, New York, USA
| | - Miranda V Hunter
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeremy H Raymond
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Henrik Molina
- The Proteomics Resource Center at the Rockefeller University, New York, New York, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
6
|
Breckels LM, Hutchings C, Ingole KD, Kim S, Lilley KS, Makwana MV, McCaskie KJA, Villanueva E. Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations. Cell Chem Biol 2024; 31:1665-1687. [PMID: 39303701 DOI: 10.1016/j.chembiol.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.
Collapse
Affiliation(s)
- Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Charlotte Hutchings
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kishor D Ingole
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Suyeon Kim
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Mehul V Makwana
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kieran J A McCaskie
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
7
|
Yang M, Ge J, Liu YL, Wang HY, Wang ZH, Li DP, He R, Xie YY, Deng HY, Peng XM, Wang WS, Liu JD, Zhu ZZ, Yu XF, Maretich P, Kajimura S, Pan RP, Chen Y. Sortilin-mediated translocation of mitochondrial ACSL1 impairs adipocyte thermogenesis and energy expenditure in male mice. Nat Commun 2024; 15:7746. [PMID: 39232011 PMCID: PMC11374900 DOI: 10.1038/s41467-024-52218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Beige fat activation involves a fuel switch to fatty acid oxidation following chronic cold adaptation. Mitochondrial acyl-CoA synthetase long-chain family member 1 (ACSL1) localizes in the mitochondria and plays a key role in fatty acid oxidation; however, the regulatory mechanism of the subcellular localization remains poorly understood. Here, we identify an endosomal trafficking component sortilin (encoded by Sort1) in adipose tissues that shows dynamic expression during beige fat activation and facilitates the translocation of ACSL1 from the mitochondria to the endolysosomal pathway for degradation. Depletion of sortilin in adipocytes results in an increase of mitochondrial ACSL1 and the activation of AMPK/PGC1α signaling, thereby activating beige fat and preventing high-fat diet (HFD)-induced obesity and insulin resistance. Collectively, our findings indicate that sortilin controls adipose tissue fatty acid oxidation by substrate fuel selection during beige fat activation and provides a potential targeted approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Min Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Ge
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Lian Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan-Yu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Han Wang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Pei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Yu Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Yan Deng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Min Peng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-She Wang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Dai Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng-Zhe Zhu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Feng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Pema Maretich
- Research Laboratory of Electronics and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Ru-Ping Pan
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nuclear Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China.
| |
Collapse
|
8
|
Oslund RC, Holland PM, Lesley SA, Fadeyi OO. Therapeutic potential of cis-targeting bispecific antibodies. Cell Chem Biol 2024; 31:1473-1489. [PMID: 39111317 DOI: 10.1016/j.chembiol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024]
Abstract
The growing clinical success of bispecific antibodies (bsAbs) has led to rapid interest in leveraging dual targeting in order to generate novel modes of therapeutic action beyond mono-targeting approaches. While bsAbs that bind targets on two different cells (trans-targeting) are showing promise in the clinic, the co-targeting of two proteins on the same cell surface through cis-targeting bsAbs (cis-bsAbs) is an emerging strategy to elicit new functionalities. This includes the ability to induce proximity, enhance binding to a target, increase target/cell selectivity, and/or co-modulate function on the cell surface with the goal of altering, reversing, or eradicating abnormal cellular activity that contributes to disease. In this review, we focus on the impact of cis-bsAbs in the clinic, their emerging applications, and untangle the intricacies of improving bsAb discovery and development.
Collapse
|
9
|
Qiao Y, Gu M, Wang X, Chen R, Kong L, Li S, Li J, Liu Q, Hou S, Wang Z. Revealing Dynamics of Protein Phosphorylation: A Study on the Cashmere Fineness Disparities in Liaoning Cashmere Goats. Mol Biotechnol 2024:10.1007/s12033-024-01244-0. [PMID: 39117978 DOI: 10.1007/s12033-024-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Exploring the landscape of protein phosphorylation, this investigation focuses on skin samples from LCG (Liaoning Cashmere Goats), characterized by different levels of cashmere fineness. Employing LC-MS/MS technology, we meticulously scrutinized FT-LCG (fine-type Liaoning Cashmere Goats) and CT-LCG (coarse-type Liaoning Cashmere Goats). Identifying 512 modified proteins, encompassing 1368 phosphorylated peptide segments and 1376 quantifiable phosphorylation sites, our exploration further revealed consistent phosphorylation sites in both groups. Analysis of phosphorylated peptides unveiled kinase substrates, prominently featuring Protein Kinase C, Protein Kinase B and MAPK3-MAPK1-MAPK7-NLK-group. Differential analysis spotlighted 28 disparate proteins, comprising six upregulated and twenty-two downregulated. Cluster analysis showcased the robust clustering efficacy of the two sample groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses underscored the significance of the purine metabolism pathway, suggesting its pivotal role in modulating cashmere fineness in LCG. Notably, through differential protein analysis, two crucial proteins were identified: HSL-X (hormone-sensitive lipase isoform X1) and KPRP (keratinocyte proline-rich protein). Further evidence supports LIPE and KPRP as key genes regulating cashmere fineness, paving the way for promising avenues in further research. These findings not only contribute to a nuanced understanding of protein-level dynamics in cashmere but also provide a theoretical foundation for the selective breeding of superior Liaoning Cashmere Goat strands.
Collapse
Affiliation(s)
- Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lingchao Kong
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuaitong Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiaqi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qingkun Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sibing Hou
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
10
|
Bhushan V, Nita-Lazar A. Recent Advancements in Subcellular Proteomics: Growing Impact of Organellar Protein Niches on the Understanding of Cell Biology. J Proteome Res 2024; 23:2700-2722. [PMID: 38451675 PMCID: PMC11296931 DOI: 10.1021/acs.jproteome.3c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The mammalian cell is a complex entity, with membrane-bound and membrane-less organelles playing vital roles in regulating cellular homeostasis. Organellar protein niches drive discrete biological processes and cell functions, thus maintaining cell equilibrium. Cellular processes such as signaling, growth, proliferation, motility, and programmed cell death require dynamic protein movements between cell compartments. Aberrant protein localization is associated with a wide range of diseases. Therefore, analyzing the subcellular proteome of the cell can provide a comprehensive overview of cellular biology. With recent advancements in mass spectrometry, imaging technology, computational tools, and deep machine learning algorithms, studies pertaining to subcellular protein localization and their dynamic distributions are gaining momentum. These studies reveal changing interaction networks because of "moonlighting proteins" and serve as a discovery tool for disease network mechanisms. Consequently, this review aims to provide a comprehensive repository for recent advancements in subcellular proteomics subcontexting methods, challenges, and future perspectives for method developers. In summary, subcellular proteomics is crucial to the understanding of the fundamental cellular mechanisms and the associated diseases.
Collapse
Affiliation(s)
- Vanya Bhushan
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
11
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
12
|
Van Woerkom A, Harney DJ, Nagarajan SR, Hakeem-Sanni MF, Lin J, Hooke M, Pulpitel T, Cooney GJ, Larance M, Saunders DN, Brandon AE, Hoy AJ. Hepatic lipid droplet-associated proteome changes distinguish dietary-induced fatty liver from glucose tolerance in male mice. Am J Physiol Endocrinol Metab 2024; 326:E842-E855. [PMID: 38656127 PMCID: PMC11376491 DOI: 10.1152/ajpendo.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.
Collapse
Affiliation(s)
- Andries Van Woerkom
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Dylan J Harney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jinfeng Lin
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Hooke
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Darren N Saunders
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Schott MB, Rozeveld CN, Bhatt S, Crossman B, Krueger EW, Weller SG, Rasineni K, Casey CA, McNiven MA. Ethanol disrupts hepatocellular lipophagy by altering Rab5-centric LD-lysosome trafficking. Hepatol Commun 2024; 8:e0446. [PMID: 38780316 PMCID: PMC11124685 DOI: 10.1097/hc9.0000000000000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Previous reports suggest that lipid droplets (LDs) in the hepatocyte can be catabolized by a direct engulfment from nearby endolysosomes (microlipophagy). Further, it is likely that this process is compromised by chronic ethanol (EtOH) exposure leading to hepatic steatosis. This study investigates the hepatocellular machinery supporting microlipophagy and EtOH-induced alterations in this process with a focus on the small, endosome-associated, GTPase Rab5. METHODS AND RESULTS Here we report that this small Ras-related GTPase is a resident component of LDs, and its activity is important for hepatocellular LD-lysosome proximity and physical interactions. We find that Rab5 siRNA knockdown causes an accumulation of LDs in hepatocytes by inhibiting lysosome dependent LD catabolism. Importantly, Rab5 appears to support this process by mediating the recruitment of early endosomal and or multivesicular body compartments to the LD surface before lysosome fusion. Interestingly, while wild-type or a constituently active GTPase form (Q79L) of Rab5 supports LD-lysosome transport, this process is markedly reduced in cells expressing a GTPase dead (S34N) Rab5 protein or in hepatocytes exposed to chronic EtOH. CONCLUSIONS These findings support the novel premise of an early endosomal/multivesicular body intermediate compartment on the LD surface that provides a "docking" site for lysosomal trafficking, not unlike the process that occurs during the hepatocellular degradation of endocytosed ligands that is also known to be compromised by EtOH exposure.
Collapse
Affiliation(s)
- Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cody N. Rozeveld
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Saumya Bhatt
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bridget Crossman
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eugene W. Krueger
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shaun G. Weller
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Carol A. Casey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Aumailley L, Bodein A, Adjibade P, Leclercq M, Bourassa S, Droit A, Mazroui R, Lebel M. Combined transcriptomics and proteomics unveil the impact of vitamin C in modulating specific protein abundance in the mouse liver. Biol Res 2024; 57:26. [PMID: 38735981 PMCID: PMC11088995 DOI: 10.1186/s40659-024-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Vitamin C (ascorbate) is a water-soluble antioxidant and an important cofactor for various biosynthetic and regulatory enzymes. Mice can synthesize vitamin C thanks to the key enzyme gulonolactone oxidase (Gulo) unlike humans. In the current investigation, we used Gulo-/- mice, which cannot synthesize their own ascorbate to determine the impact of this vitamin on both the transcriptomics and proteomics profiles in the whole liver. The study included Gulo-/- mouse groups treated with either sub-optimal or optimal ascorbate concentrations in drinking water. Liver tissues of females and males were collected at the age of four months and divided for transcriptomics and proteomics analysis. Immunoblotting, quantitative RT-PCR, and polysome profiling experiments were also conducted to complement our combined omics studies. RESULTS Principal component analyses revealed distinctive differences in the mRNA and protein profiles as a function of sex between all the mouse cohorts. Despite such sexual dimorphism, Spearman analyses of transcriptomics data from females and males revealed correlations of hepatic ascorbate levels with transcripts encoding a wide array of biological processes involved in glucose and lipid metabolisms as well as in the acute-phase immune response. Moreover, integration of the proteomics data showed that ascorbate modulates the abundance of various enzymes involved in lipid, xenobiotic, organic acid, acetyl-CoA, and steroid metabolism mainly at the transcriptional level, especially in females. However, several proteins of the mitochondrial complex III significantly correlated with ascorbate concentrations in both males and females unlike their corresponding transcripts. Finally, poly(ribo)some profiling did not reveal significant enrichment difference for these mitochondrial complex III mRNAs between Gulo-/- mice treated with sub-optimal and optimal ascorbate levels. CONCLUSIONS Thus, the abundance of several subunits of the mitochondrial complex III are regulated by ascorbate at the post-transcriptional levels. Our extensive omics analyses provide a novel resource of altered gene expression patterns at the transcriptional and post-transcriptional levels under ascorbate deficiency.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, 2705 Laurier Blvd., Local R-2714, Québec City, QC, G1V 4G2, Canada
| | - Antoine Bodein
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec City, QC, Canada
| | - Pauline Adjibade
- Cancer Research Center, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Mickaël Leclercq
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec City, QC, Canada
| | - Sylvie Bourassa
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Arnaud Droit
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec City, QC, Canada
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Rachid Mazroui
- Cancer Research Center, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, 2705 Laurier Blvd., Local R-2714, Québec City, QC, G1V 4G2, Canada.
| |
Collapse
|
15
|
Klingelhuber F, Frendo-Cumbo S, Omar-Hmeadi M, Massier L, Kakimoto P, Taylor AJ, Couchet M, Ribicic S, Wabitsch M, Messias AC, Iuso A, Müller TD, Rydén M, Mejhert N, Krahmer N. A spatiotemporal proteomic map of human adipogenesis. Nat Metab 2024; 6:861-879. [PMID: 38565923 PMCID: PMC11132986 DOI: 10.1038/s42255-024-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
White adipocytes function as major energy reservoirs in humans by storing substantial amounts of triglycerides, and their dysfunction is associated with metabolic disorders; however, the mechanisms underlying cellular specialization during adipogenesis remain unknown. Here, we generate a spatiotemporal proteomic atlas of human adipogenesis, which elucidates cellular remodelling as well as the spatial reorganization of metabolic pathways to optimize cells for lipid accumulation and highlights the coordinated regulation of protein localization and abundance during adipocyte formation. We identify compartment-specific regulation of protein levels and localization changes of metabolic enzymes to reprogramme branched-chain amino acids and one-carbon metabolism to provide building blocks and reduction equivalents. Additionally, we identify C19orf12 as a differentiation-induced adipocyte lipid droplet protein that interacts with the translocase of the outer membrane complex of lipid droplet-associated mitochondria and regulates adipocyte lipid storage by determining the capacity of mitochondria to metabolize fatty acids. Overall, our study provides a comprehensive resource for understanding human adipogenesis and for future discoveries in the field.
Collapse
Affiliation(s)
- Felix Klingelhuber
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Scott Frendo-Cumbo
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pamela Kakimoto
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Austin J Taylor
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Morgane Couchet
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Sara Ribicic
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
- Endocrinology unit, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
16
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
17
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. Proc Natl Acad Sci U S A 2024; 121:e2318619121. [PMID: 38657050 PMCID: PMC11067037 DOI: 10.1073/pnas.2318619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA94080
| | | | | | | | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | | | | | | |
Collapse
|
18
|
Zhu Y, Akkaya KC, Ruta J, Yokoyama N, Wang C, Ruwolt M, Lima DB, Lehmann M, Liu F. Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies. Nat Commun 2024; 15:3290. [PMID: 38632225 PMCID: PMC11024108 DOI: 10.1038/s41467-024-47569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Kerem Can Akkaya
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Julia Ruta
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Nanako Yokoyama
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Cong Wang
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Max Ruwolt
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Diogo Borges Lima
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Martin Lehmann
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany.
| |
Collapse
|
19
|
Windham IA, Powers AE, Ragusa JV, Wallace ED, Zanellati MC, Williams VH, Wagner CH, White KK, Cohen S. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. J Cell Biol 2024; 223:e202305003. [PMID: 38334983 PMCID: PMC10857907 DOI: 10.1083/jcb.202305003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to lipogenesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the endoplasmic reticulum (ER) lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs after a fatty acid pulse, which contain more unsaturated triglyceride after fatty acid pulse-chase. This LD size phenotype was rescued by chimeric APOE that targets only LDs. Like APOE depletion, APOE4-expressing astrocytes form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 causes aberrant LD composition and morphology. Our study contributes to accumulating evidence that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation, which could contribute to Alzheimer's disease risk.
Collapse
Affiliation(s)
- Ian A. Windham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex E. Powers
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joey V. Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - E. Diane Wallace
- Mass Spectrometry Core Laboratory, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Clara Zanellati
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria H. Williams
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colby H. Wagner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen K. White
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Johns E, Ma Y, Louphrasitthipol P, Peralta C, Hunter MV, Raymond JH, Molina H, Goding CR, White RM. The lipid droplet protein DHRS3 is a regulator of melanoma cell state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586589. [PMID: 38586016 PMCID: PMC10996640 DOI: 10.1101/2024.03.25.586589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.
Collapse
|
21
|
Bórquez JC, Díaz-Castro F, La Fuente FPD, Espinoza K, Figueroa AM, Martínez-Ruíz I, Hernández V, López-Soldado I, Ventura R, Domingo JC, Bosch M, Fajardo A, Sebastián D, Espinosa A, Pol A, Zorzano A, Cortés V, Hernández-Alvarez MI, Troncoso R. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD. Metabolism 2024; 152:155765. [PMID: 38142958 DOI: 10.1016/j.metabol.2023.155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.
Collapse
Affiliation(s)
- Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Francisco Pino-de La Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Karla Espinoza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Ana María Figueroa
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile
| | - Inma Martínez-Ruíz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Vanessa Hernández
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain
| | - Iliana López-Soldado
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Raúl Ventura
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - David Sebastián
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, Chile; Department of Medical Technology, Faculty of Medicine, University of Chile, Chile
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona (BIST), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Chile.
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Chile; Obesity-induced Accelerated Aging (ObAGE), Universidad de Chile, Chile.
| |
Collapse
|
22
|
Wit M, Belykh A, Sumara G. Protein kinase D (PKD) on the crossroad of lipid absorption, synthesis and utilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119653. [PMID: 38104800 DOI: 10.1016/j.bbamcr.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for β-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while β-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
23
|
Sánchez-Marco J, Bidooki SH, Abuobeid R, Barranquero C, Herrero-Continente T, Arnal C, Martínez-Beamonte R, Lasheras R, Surra JC, Navarro MA, Rodríguez-Yoldi MJ, Arruebo M, Sebastian V, Osada J. Thioredoxin domain containing 5 is involved in the hepatic storage of squalene into lipid droplets in a sex-specific way. J Nutr Biochem 2024; 124:109503. [PMID: 37898391 DOI: 10.1016/j.jnutbio.2023.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Hepatic thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family found associated with anti-steatotic properties of squalene and located in the endoplasmic reticulum and in lipid droplets. Considering that the latter are involved in hepatic squalene accumulation, the present research was aimed to investigate the role of TXNDC5 on hepatic squalene management in mice and in the AML12 hepatic cell line. Wild-type and TXNDC5-deficient (KO) mice were fed Western diets with or without 1% squalene supplementation for 6 weeks. In males, but not in females, absence of TXNDC5 blocked hepatic, but not duodenal, squalene accumulation. Hepatic lipid droplets were isolated and characterized using label-free LC-MS/MS analysis. TXNDC5 accumulated in this subcellular compartment of mice receiving squalene and was absent in TXNDC5-KO male mice. The latter mice were unable to store squalene in lipid droplets. CALR and APMAP were some of the proteins that responded to the squalene administration in all studied conditions. CALR and APMAP were positively associated with lipid droplets in the presence of squalene and they were decreased by the absence of TXNDC5. The increased squalene content was reproduced in vitro using AML12 cells incubated with squalene-loaded nanoparticles and this effect was not observed in an engineered cell line lacking TXNDC5. The phenomenon was also present when incubated in the presence of a squalene epoxidase inhibitor, suggesting a mechanism of squalene exocytosis involving CALR and APMAP. In conclusion, squalene accumulation in hepatic lipid droplets is sex-dependent on TXNDC5 that blocks its secretion.
Collapse
Affiliation(s)
- Javier Sánchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Roubi Abuobeid
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Herrero-Continente
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Lasheras
- Laboratorio Agroambiental, Servicio de Seguridad Agroalimentaria de la Dirección General de Alimentación y Fomento Agroalimentario, Gobierno de Aragón, Zaragoza, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Farmacología, Fisiología, Medicina Legal y Forense, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Victor Sebastian
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Ersoy U, Kanakis I, Alameddine M, Pedraza-Vazquez G, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction accelerates skeletal muscle loss and reduces muscle fibre size by impairing proteostasis and mitochondrial homeostasis. Redox Biol 2024; 69:102980. [PMID: 38064763 PMCID: PMC10755587 DOI: 10.1016/j.redox.2023.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/01/2024] Open
Abstract
The early life environment significantly affects the development of age-related skeletal muscle disorders. However, the long-term effects of lactational protein restriction on skeletal muscle are still poorly defined. Our study revealed that male mice nursed by dams fed a low-protein diet during lactation exhibited skeletal muscle growth restriction. This was associated with a dysregulation in the expression levels of genes related to the ribosome, mitochondria and skeletal muscle development. We reported that lifelong protein restriction accelerated loss of type-IIa muscle fibres and reduced muscle fibre size by impairing mitochondrial homeostasis and proteostasis at 18 months of age. However, feeding a normal-protein diet following lactational protein restriction prevented accelerated fibre loss and fibre size reduction in later life. These findings provide novel insight into the mechanisms by which lactational protein restriction hinders skeletal muscle growth and includes evidence that lifelong dietary protein restriction accelerated skeletal muscle loss in later life.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Gibran Pedraza-Vazquez
- Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK
| | - Mandy Jayne Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Cervone DT, Moreno-Justicia R, Quesada JP, Deshmukh AS. Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise. Scand J Med Sci Sports 2024; 34:e14334. [PMID: 36973869 DOI: 10.1111/sms.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
Acute exercise and chronic exercise training elicit beneficial whole-body changes in physiology that ultimately depend on profound alterations to the dynamics of tissue-specific proteins. Since the work accomplished during exercise owes predominantly to skeletal muscle, it has received the majority of interest from exercise scientists that attempt to unravel adaptive mechanisms accounting for salutary metabolic effects and performance improvements that arise from training. Contemporary scientists are also beginning to use mass spectrometry-based proteomics, which is emerging as a powerful approach to interrogate the muscle protein signature in a more comprehensive manner. Collectively, these technologies facilitate the analysis of skeletal muscle protein dynamics from several viewpoints, including changes to intracellular proteins (expression proteomics), secreted proteins (secretomics), post-translational modifications as well as fiber-, cell-, and organelle-specific changes. This review aims to highlight recent literature that has leveraged new workflows and advances in mass spectrometry-based proteomics to further our understanding of training-related changes in skeletal muscle. We call attention to untapped areas in skeletal muscle proteomics research relating to exercise training and metabolism, as well as basic points of contention when applying mass spectrometry-based analyses, particularly in the study of human biology. We further encourage researchers to couple the hypothesis-generating and descriptive nature of omics data with functional analyses that propel our understanding of the complex adaptive responses in skeletal muscle that occur with acute and chronic exercise.
Collapse
Affiliation(s)
- Daniel T Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Prats Quesada
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Zhang X, Li X, Xiong X. Applying proteomics in metabolic dysfunction-associated steatotic liver disease: From mechanism to biomarkers. Clin Res Hepatol Gastroenterol 2023; 47:102230. [PMID: 37931846 DOI: 10.1016/j.clinre.2023.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), which represents the most common cause of liver disease, is emerging as a major health problem around the world. However, the molecular events that underline the pathogenesis and the progression of MASLD remain to be fully elucidated. Advanced stages of MASLD is strongly associated with liver-related outcomes and overall mortality. Despite this, highly accurate, sensitive, and non-invasive diagnostic tools are currently not aviailable, yet no FDA approved drugs for MASLD. The advance of proteomics has enable the study of protein expression, post-translational modifications (PTMs), subcellular distribution, and interactions. In this review, we discuss insights gained from the recent proteomics studies that shed new light on the pathogenesis, diagnosis and potential theraputic targets of MASLD.
Collapse
Affiliation(s)
- Xiaofu Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenlin Road, Xuhui District, Shanghai 200032, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenlin Road, Xuhui District, Shanghai 200032, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenlin Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
27
|
Moltó E, Pintado C, Louzada RA, Bernal-Mizrachi E, Andrés A, Gallardo N, Bonzon-Kulichenko E. Unbiased Phosphoproteome Mining Reveals New Functional Sites of Metabolite-Derived PTMs Involved in MASLD Development. Int J Mol Sci 2023; 24:16172. [PMID: 38003361 PMCID: PMC10671570 DOI: 10.3390/ijms242216172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are paramount in health and disease. Phosphoproteome analysis by enrichment techniques is becoming increasingly attractive for biomedical research. Recent findings show co-enrichment of other phosphate-containing biologically relevant PTMs, but these results were obtained by closed searches focused on the modifications sought. Open searches are a breakthrough in high-throughput PTM analysis (OS-PTM), identifying practically all PTMs detectable by mass spectrometry, even unknown ones, with their modified sites, in a hypothesis-free and deep manner. Here we reanalyze liver phosphoproteome by OS-PTM, demonstrating its extremely complex nature. We found extensive Lys glycerophosphorylations (pgK), as well as modification with glycerylphosphorylethanolamine on Glu (gpetE) and flavin mononucleotide on His (fmnH). The functionality of these metabolite-derived PTMs is demonstrated during metabolic dysfunction-associated steatotic liver disease (MASLD) development in mice. MASLD elicits specific alterations in pgK, epgE and fmnH in the liver, mainly on glycolytic enzymes and mitochondrial proteins, suggesting an increase in glycolysis and mitochondrial ATP production from the early insulin-resistant stages. Thus, we show new possible mechanisms based on metabolite-derived PTMs leading to intrahepatic lipid accumulation during MASLD development and reinforce phosphoproteome enrichment as a valuable tool with which to study the functional implications of a variety of low-abundant phosphate-containing PTMs in cell physiology.
Collapse
Affiliation(s)
- Eduardo Moltó
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Cristina Pintado
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Ruy Andrade Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Antonio Andrés
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain
| | - Elena Bonzon-Kulichenko
- Biochemistry Section, Regional Center for Biomedical Research (CRIB), Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain
| |
Collapse
|
28
|
Zhang Y, Shi J, Tan C, Liu Y, Xu YJ. Oilomics: An important branch of foodomics dealing with oil science and technology. Food Res Int 2023; 173:113301. [PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Guo S, Li C, Lian L, Le Z, Ren Y, Liao YX, Shen J, Hou JT. Fluorescence Imaging of Diabetic Cataract-Associated Lipid Droplets in Living Cells and Patient-Derived Tissues. ACS Sens 2023; 8:3882-3891. [PMID: 37737091 DOI: 10.1021/acssensors.3c01439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Diabetic cataract (DC) surgery carries risks such as slow wound healing, macular edema, and progression of retinopathy and is faced with a deficiency of effective drugs. In this context, we proposed a protocol to evaluate the drug's efficacy using lipid droplets (LDs) as the marker. For this purpose, a fluorescent probe PTZ-LD for LDs detection is developed based on the phenothiazine unit. The probe displays polarity-dependent emission variations, i.e., lower polarity leading to stronger intensity. Especially, the probe exhibits photostability superior to that of Nile Red, a commercial LDs staining dye. Using the probe, the formation of LDs in DC-modeled human lens epithelial (HLE) cells is validated, and the interplay of LDs-LDs and LDs-others are investigated. Unexpectedly, lipid transfer between LDs is visualized. Moreover, the therapeutic efficacy of various drugs in DC-modeled HLE cells is assessed. Ultimately, more LDs were found in lens epithelial tissues from DC patients than in cataract tissues for the first time. We anticipate that this work can attract more attention to the important roles of LDs during DC progression.
Collapse
Affiliation(s)
- Shuai Guo
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Lili Lian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Zhenmin Le
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Yueping Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Ye-Xin Liao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning 530008, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
30
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562302. [PMID: 37873239 PMCID: PMC10592801 DOI: 10.1101/2023.10.13.562302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD to date. Despite its discovery twenty years ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA 94080, USA
| | | | | | - John Ferbas
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rati Verma
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | | |
Collapse
|
31
|
Schessner JP, Albrecht V, Davies AK, Sinitcyn P, Borner GHH. Deep and fast label-free Dynamic Organellar Mapping. Nat Commun 2023; 14:5252. [PMID: 37644046 PMCID: PMC10465578 DOI: 10.1038/s41467-023-41000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
The Dynamic Organellar Maps (DOMs) approach combines cell fractionation and shotgun-proteomics for global profiling analysis of protein subcellular localization. Here, we enhance the performance of DOMs through data-independent acquisition (DIA) mass spectrometry. DIA-DOMs achieve twice the depth of our previous workflow in the same mass spectrometry runtime, and substantially improve profiling precision and reproducibility. We leverage this gain to establish flexible map formats scaling from high-throughput analyses to extra-deep coverage. Furthermore, we introduce DOM-ABC, a powerful and user-friendly open-source software tool for analyzing profiling data. We apply DIA-DOMs to capture subcellular localization changes in response to starvation and disruption of lysosomal pH in HeLa cells, which identifies a subset of Golgi proteins that cycle through endosomes. An imaging time-course reveals different cycling patterns and confirms the quantitative predictive power of our translocation analysis. DIA-DOMs offer a superior workflow for label-free spatial proteomics as a systematic phenotype discovery tool.
Collapse
Affiliation(s)
- Julia P Schessner
- Department of Proteomics and Signal Transduction, Systems Biology of Membrane Trafficking Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Vincent Albrecht
- Department of Proteomics and Signal Transduction, Systems Biology of Membrane Trafficking Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexandra K Davies
- Department of Proteomics and Signal Transduction, Systems Biology of Membrane Trafficking Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Pavel Sinitcyn
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Systems Biology of Membrane Trafficking Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
32
|
Plewes MR, Talbott HA, Saviola AJ, Woods NT, Schott MB, Davis JS. Luteal Lipid Droplets: A Novel Platform for Steroid Synthesis. Endocrinology 2023; 164:bqad124. [PMID: 37586092 PMCID: PMC10445418 DOI: 10.1210/endocr/bqad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Progesterone is an essential steroid hormone that is required to initiate and maintain pregnancy in mammals and serves as a metabolic intermediate in the synthesis of endogenously produced steroids, including sex hormones and corticosteroids. Steroidogenic luteal cells of the corpus luteum have the tremendous capacity to synthesize progesterone. These specialized cells are highly enriched with lipid droplets that store lipid substrate, which can be used for the synthesis of steroids. We recently reported that hormone-stimulated progesterone synthesis by luteal cells requires protein kinase A-dependent mobilization of cholesterol substrate from lipid droplets to mitochondria. We hypothesize that luteal lipid droplets are enriched with steroidogenic enzymes and facilitate the synthesis of steroids in the corpus luteum. In the present study, we analyzed the lipid droplet proteome, conducted the first proteomic analysis of lipid droplets under acute cyclic adenosine monophosphate (cAMP)-stimulated conditions, and determined how specific lipid droplet proteins affect steroidogenesis. Steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 and 3 beta-hydroxysteroid dehydrogenase (HSD3B), were highly abundant on lipid droplets of the bovine corpus luteum. High-resolution confocal microscopy confirmed the presence of active HSD3B on the surface of luteal lipid droplets. We report that luteal lipid droplets have the capacity to synthesize progesterone from pregnenolone. Lastly, we analyzed the lipid droplet proteome following acute stimulation with cAMP analog, 8-Br-cAMP, and report increased association of HSD3B with luteal lipid droplets following stimulation. These findings provide novel insights into the role of luteal lipid droplets in steroid synthesis.
Collapse
Affiliation(s)
- Michele R Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center,Omaha, NE 68198-3255, USA
- Department of Research Services, Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center,Omaha, NE 68198-5870, USA
| | - Heather A Talbott
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center,Omaha, NE 68198-3255, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045USA
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198-6805, USA
| | - Micah B Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center,Omaha, NE 68198-5870, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center,Omaha, NE 68198-3255, USA
- Department of Research Services, Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center,Omaha, NE 68198-5870, USA
| |
Collapse
|
33
|
Zhou M, Kong B, Zhang X, Xiao K, Lu J, Li W, Li M, Li Z, Ji W, Hou J, Xu T. A proximity labeling strategy enables proteomic analysis of inter-organelle membrane contacts. iScience 2023; 26:107159. [PMID: 37485370 PMCID: PMC10362359 DOI: 10.1016/j.isci.2023.107159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Inter-organelle membrane contacts are highly dynamic and act as central hubs for many biological processes, but the protein compositions remain largely unknown due to the lack of efficient tools. Here, we developed BiFCPL to analyze the contact proteome in living cells by a bimolecular fluorescence complementation (BiFC)-based proximity labeling (PL) strategy. BiFCPL was applied to study mitochondria-endoplasmic reticulum contacts (MERCs) and mitochondria-lipid droplet (LD) contacts. We identified 403 highly confident MERC proteins, including many transiently resident proteins and potential tethers. Moreover, we demonstrated that mitochondria-LD contacts are sensitive to nutrient status. A comparative proteomic analysis revealed that 60 proteins are up- or downregulated at contact sites under metabolic challenge. We verified that SQLE, an enzyme for cholesterol synthesis, accumulates at mitochondria-LD contact sites probably to utilize local ATP for cholesterol synthesis. This work provides an efficient method to identify key proteins at inter-organelle membrane contacts in living cells.
Collapse
Affiliation(s)
- Maoge Zhou
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingjie Kong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Xiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixing Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Zonghong Li
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
34
|
Ventura AE, Pokorna S, Huhn N, Santos TCB, Prieto M, Futerman AH, Silva LC. Cell lipid droplet heterogeneity and altered biophysical properties induced by cell stress and metabolic imbalance. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159347. [PMID: 37271251 DOI: 10.1016/j.bbalip.2023.159347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Lipid droplets (LD) are important regulators of lipid metabolism and are implicated in several diseases. However, the mechanisms underlying the roles of LD in cell pathophysiology remain elusive. Hence, new approaches that enable better characterization of LD are essential. This study establishes that Laurdan, a widely used fluorescent probe, can be used to label, quantify, and characterize changes in cell LD properties. Using lipid mixtures containing artificial LD we show that Laurdan GP depends on LD composition. Accordingly, enrichment in cholesterol esters (CE) shifts Laurdan GP from ~0.60 to ~0.70. Moreover, live-cell confocal microscopy shows that cells present multiple LD populations with distinctive biophysical features. The hydrophobicity and fraction of each LD population are cell type dependent and change differently in response to nutrient imbalance, cell density, and upon inhibition of LD biogenesis. The results show that cellular stress caused by increased cell density and nutrient overload increased the number of LD and their hydrophobicity and contributed to the formation of LD with very high GP values, likely enriched in CE. In contrast, nutrient deprivation was accompanied by decreased LD hydrophobicity and alterations in cell plasma membrane properties. In addition, we show that cancer cells present highly hydrophobic LD, compatible with a CE enrichment of these organelles. The distinct biophysical properties of LD contribute to the diversity of these organelles, suggesting that the specific alterations in their properties might be one of the mechanisms triggering LD pathophysiological actions and/or be related to the different mechanisms underlying LD metabolism.
Collapse
Affiliation(s)
- Ana E Ventura
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarka Pokorna
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Natalie Huhn
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Tânia C B Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liana C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
35
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Vera-Montecinos A, Galiano-Landeira J, Roldán M, Vidal-Domènech F, Claro E, Ramos B. A Novel Localization of METTL7A in Bergmann Glial Cells in Human Cerebellum. Int J Mol Sci 2023; 24:ijms24098405. [PMID: 37176112 PMCID: PMC10179429 DOI: 10.3390/ijms24098405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Methyltransferase-like protein 7A (METTL7A) is a member of the METTL family of methyltransferases.Little information is available regarding the cellular expression of METTL7A in the brain. METTL7A is commonly located in the endoplasmic reticulum and to a lesser extent, in the lipid droplets of some cells. Several studies have reported altered protein and RNA levels in different brain areas in schizophrenia. One of these studies found reduced protein levels of METTL7A in the cerebellar cortex in schizophrenia and stress murine models. Since there is limited information in the literature about METTL7A, we characterized its cellular and subcellular localizations in the human cerebellum using immunohistochemical analysis with laser confocal microscopy. Our study reveals a novel METTL7A localization in GFAP-positive cells, with higher expression in the end-feet of the Bergmann glia, which participate in the cerebrospinal fluid-brain parenchyma barrier. Further 3D reconstruction image analysis showed that METTL7A was expressed in the contacts between the Bergmann glia and Purkinje neurons. METTL7A was also detected in lipid droplets in some cells in the white matter. The localization of METTL7A in the human cerebellar glia limitans could suggest a putative role in maintaining the cerebellar parenchyma homeostasis and in the regulation of internal cerebellar circuits by modulating the synaptic activity of Purkinje neurons.
Collapse
Affiliation(s)
- América Vera-Montecinos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Jordi Galiano-Landeira
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malalties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Francisco Vidal-Domènech
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Enrique Claro
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Belén Ramos
- Psiquiatria Molecular, Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| |
Collapse
|
37
|
Zhu Z, Chen Y, Qin X, Liu S, Wang J, Ren H. Multidimensional landscape of non-alcoholic fatty liver disease-related disease spectrum uncovered by big omics data: Profiling evidence and new perspectives. SMART MEDICINE 2023; 2:e20220029. [PMID: 39188279 PMCID: PMC11236021 DOI: 10.1002/smmd.20220029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/22/2023] [Indexed: 08/28/2024]
Abstract
Characterized by hepatic lipid accumulation, non-alcoholic fatty liver disease (NAFLD) is a multifactorial metabolic disorder that could promote the progression of non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Benefiting from recent advances in omics technologies, such as high-throughput sequencing, voluminous profiling data in HCC-integrated molecular science into clinical medicine helped clinicians with rational guidance for treatments. In this review, we conclude the majority of publicly available omics data on the NAFLD-related disease spectrum and bring up new insights to inspire next-generation therapeutics against this increasingly prevalent disease spectrum in the post-genomic era.
Collapse
Affiliation(s)
- Zhengyi Zhu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Yuyan Chen
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xueqian Qin
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Shujun Liu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
38
|
Di Y, Li W, Salovska B, Ba Q, Hu Z, Wang S, Liu Y. A basic phosphoproteomic-DIA workflow integrating precise quantification of phosphosites in systems biology. BIOPHYSICS REPORTS 2023; 9:82-98. [PMID: 37753060 PMCID: PMC10518521 DOI: 10.52601/bpr.2023.230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 09/28/2023] Open
Abstract
Phosphorylation is one of the most important post-translational modifications (PTMs) of proteins, governing critical protein functions. Most human proteins have been shown to undergo phosphorylation, and phosphoproteomic studies have been widely applied due to recent advancements in high-resolution mass spectrometry technology. Although the experimental workflow for phosphoproteomics has been well-established, it would be useful to optimize and summarize a detailed, feasible protocol that combines phosphoproteomics and data-independent acquisition (DIA), along with follow-up data analysis procedures due to the recent instrumental and bioinformatic advances in measuring and understanding tens of thousands of site-specific phosphorylation events in a single experiment. Here, we describe an optimized Phos-DIA protocol, from sample preparation to bioinformatic analysis, along with practical considerations and experimental configurations for each step. The protocol is designed to be robust and applicable for both small-scale phosphoproteomic analysis and large-scale quantification of hundreds of samples for studies in systems biology and systems medicine.
Collapse
Affiliation(s)
- Yi Di
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Wenxue Li
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Barbora Salovska
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Qian Ba
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yansheng Liu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
39
|
Windham IA, Ragusa JV, Wallace ED, Wagner CH, White KK, Cohen S. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538740. [PMID: 37162939 PMCID: PMC10168303 DOI: 10.1101/2023.04.28.538740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to neutral lipid synthesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the ER lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs containing more unsaturated triglyceride. This LD size distribution phenotype was rescued by chimeric APOE that targets only LDs. APOE4 - expressing astrocytes also form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the larger LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 is a toxic gain of function variant that causes aberrant LD composition and morphology. We propose that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation or lipotoxicity, which could contribute to Alzheimer's disease risk. Summary Windham et al . discover that APOE in astrocytes can traffic to lipid droplets (LDs), where it modulates LD composition and size. Astrocytes expressing the Alzheimer's risk variant APOE4 form large LDs with impaired turnover and increased peroxidation sensitivity.
Collapse
|
40
|
Coassolo L, Liu T, Jung Y, Taylor NP, Zhao M, Charville GW, Nissen SB, Yki-Jarvinen H, Altman RB, Svensson KJ. Mapping transcriptional heterogeneity and metabolic networks in fatty livers at single-cell resolution. iScience 2023; 26:105802. [PMID: 36636354 PMCID: PMC9830221 DOI: 10.1016/j.isci.2022.105802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease is a heterogeneous disease with unclear underlying molecular mechanisms. Here, we perform single-cell RNA sequencing of hepatocytes and hepatic non-parenchymal cells to map the lipid signatures in mice with non-alcoholic fatty liver disease (NAFLD). We uncover previously unidentified clusters of hepatocytes characterized by either high or low srebp1 expression. Surprisingly, the canonical lipid synthesis driver Srebp1 is not predictive of hepatic lipid accumulation, suggestive of other drivers of lipid metabolism. By combining transcriptional data at single-cell resolution with computational network analyses, we find that NAFLD is associated with high constitutive androstane receptor (CAR) expression. Mechanistically, CAR interacts with four functional modules: cholesterol homeostasis, bile acid metabolism, fatty acid metabolism, and estrogen response. Nuclear expression of CAR positively correlates with steatohepatitis in human livers. These findings demonstrate significant cellular differences in lipid signatures and identify functional networks linked to hepatic steatosis in mice and humans.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Tianyun Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yunshin Jung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikki P. Taylor
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Gregory W. Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Silas Boye Nissen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Hannele Yki-Jarvinen
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Russ B. Altman
- Departments of Bioengineering, Genetics & Medicine, Stanford University, Stanford, CA, USA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| |
Collapse
|
41
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
42
|
Mou M, Pan Z, Lu M, Sun H, Wang Y, Luo Y, Zhu F. Application of Machine Learning in Spatial Proteomics. J Chem Inf Model 2022; 62:5875-5895. [PMID: 36378082 DOI: 10.1021/acs.jcim.2c01161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spatial proteomics is an interdisciplinary field that investigates the localization and dynamics of proteins, and it has gained extensive attention in recent years, especially the subcellular proteomics. Numerous evidence indicate that the subcellular localization of proteins is associated with various cellular processes and disease progression. Mass spectrometry (MS)-based and imaging-based experimental approaches have been developed to acquire large-scale spatial proteomic data. To allow the reliable analysis of increasingly complex spatial proteomics data, machine learning (ML) methods have been widely used in both MS-based and imaging-based spatial proteomic data analysis pipelines. Here, we comprehensively survey the applications of ML in spatial proteomics from following aspects: (1) data resources for spatial proteome are comprehensively introduced; (2) the roles of different ML algorithms in data analysis pipelines are elaborated; (3) successful applications of spatial proteomics and several analytical tools integrating ML methods are presented; (4) challenges existing in modern ML-based spatial proteomics studies are discussed. This review provides guidelines for researchers seeking to apply ML methods to analyze spatial proteomic data and can facilitate insightful understanding of cell biology as well as the future research in medical and drug discovery communities.
Collapse
Affiliation(s)
- Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Kaur S, Kidambi S, Ortega-Ribera M, Thuy LTT, Nieto N, Cogger VC, Xie WF, Tacke F, Gracia-Sancho J. In Vitro Models for the Study of Liver Biology and Diseases: Advances and Limitations. Cell Mol Gastroenterol Hepatol 2022; 15:559-571. [PMID: 36442812 PMCID: PMC9868680 DOI: 10.1016/j.jcmgh.2022.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In vitro models of liver (patho)physiology, new technologies, and experimental approaches are progressing rapidly. Based on cell lines, induced pluripotent stem cells or primary cells derived from mouse or human liver as well as whole tissue (slices), such in vitro single- and multicellular models, including complex microfluidic organ-on-a-chip systems, provide tools to functionally understand mechanisms of liver health and disease. The International Society of Hepatic Sinusoidal Research (ISHSR) commissioned this working group to review the currently available in vitro liver models and describe the advantages and disadvantages of each in the context of evaluating their use for the study of liver functionality, disease modeling, therapeutic discovery, and clinical applicability.
Collapse
Affiliation(s)
- Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Martí Ortega-Ribera
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Victoria C Cogger
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jordi Gracia-Sancho
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland.
| |
Collapse
|
44
|
Vps37a regulates hepatic glucose production by controlling glucagon receptor localization to endosomes. Cell Metab 2022; 34:1824-1842.e9. [PMID: 36243006 DOI: 10.1016/j.cmet.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023]
Abstract
During mammalian energy homeostasis, the glucagon receptor (Gcgr) plays a key role in regulating both glucose and lipid metabolisms. However, the mechanisms by which these distinct signaling arms are differentially regulated remain poorly understood. Using a Cy5-glucagon agonist, we show that the endosomal protein Vps37a uncouples glucose production from lipid usage downstream of Gcgr signaling by altering intracellular receptor localization. Hepatocyte-specific knockdown of Vps37a causes an accumulation of Gcgr in endosomes, resulting in overactivation of the cAMP/PKA/p-Creb signaling pathway to gluconeogenesis without affecting β-oxidation. Shifting the receptor back to the plasma membrane rescues the differential signaling and highlights the importance of the spatiotemporal localization of Gcgr for its metabolic effects. Importantly, since Vps37a knockdown in animals fed with a high-fat diet leads to hyperglycemia, although its overexpression reduces blood glucose levels, these data reveal a contribution of endosomal signaling to metabolic diseases that could be exploited for treatments of type 2 diabetes.
Collapse
|
45
|
Volkmar N, Gawden‐Bone CM, Williamson JC, Nixon‐Abell J, West JA, St George‐Hyslop PH, Kaser A, Lehner PJ. Regulation of membrane fluidity by RNF145-triggered degradation of the lipid hydrolase ADIPOR2. EMBO J 2022; 41:e110777. [PMID: 35993436 PMCID: PMC9531299 DOI: 10.15252/embj.2022110777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/19/2022] Open
Abstract
The regulation of membrane lipid composition is critical for cellular homeostasis. Cells are particularly sensitive to phospholipid saturation, with increased saturation causing membrane rigidification and lipotoxicity. How mammalian cells sense membrane lipid composition and reverse fatty acid (FA)-induced membrane rigidification is poorly understood. Here we systematically identify proteins that differ between mammalian cells fed saturated versus unsaturated FAs. The most differentially expressed proteins were two ER-resident polytopic membrane proteins: the E3 ubiquitin ligase RNF145 and the lipid hydrolase ADIPOR2. In unsaturated lipid membranes, RNF145 is stable, promoting its lipid-sensitive interaction, ubiquitination and degradation of ADIPOR2. When membranes become enriched in saturated FAs, RNF145 is rapidly auto-ubiquitinated and degraded, stabilising ADIPOR2, whose hydrolase activity restores lipid homeostasis and prevents lipotoxicity. We therefore identify RNF145 as a FA-responsive ubiquitin ligase which, together with ADIPOR2, defines an autoregulatory pathway that controls cellular membrane lipid homeostasis and prevents acute lipotoxic stress.
Collapse
Affiliation(s)
- Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
- Present address:
Institute for Molecular Systems Biology (IMSB)ETH ZürichZürichSwitzerland
| | - Christian M Gawden‐Bone
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | | | - James A West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | | | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
46
|
Identification of two pathways mediating protein targeting from ER to lipid droplets. Nat Cell Biol 2022; 24:1364-1377. [PMID: 36050470 PMCID: PMC9481466 DOI: 10.1038/s41556-022-00974-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation. Using systematic, unbiased approaches in Drosophila cells, we identified specific membrane-fusion machinery, including regulators, a tether and SNARE proteins, that are required for the late targeting pathway. Components of this fusion machinery localize to LD–ER interfaces and organize at ER exit sites. We identified multiple cargoes for early and late ER-to-LD targeting pathways. Our findings provide a model for how proteins target to LDs from the ER either during LD formation or by protein-catalysed formation of membrane bridges. Song et al. identify two protein-targeting pathways from the endoplasmic reticulum to (1) early lipid droplets (LDs) and (2) mature lipid droplets. They define key factors mediating the second, late pathway and its many cargoes.
Collapse
|
47
|
Spatial Proteomics Reveals Differences in the Cellular Architecture of Antibody-Producing CHO and Plasma Cell-Derived Cells. Mol Cell Proteomics 2022; 21:100278. [PMID: 35934186 PMCID: PMC9562429 DOI: 10.1016/j.mcpro.2022.100278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/18/2023] Open
Abstract
Most of the recombinant biotherapeutics employed today to combat severe illnesses, for example, various types of cancer or autoimmune diseases, are produced by Chinese hamster ovary (CHO) cells. To meet the growing demand of these pharmaceuticals, CHO cells are under constant development in order to enhance their stability and productivity. The last decades saw a shift from empirical cell line optimization toward rational cell engineering using a growing number of large omics datasets to alter cell physiology on various levels. Especially proteomics workflows reached new levels in proteome coverage and data quality because of advances in high-resolution mass spectrometry instrumentation. One type of workflow concentrates on spatial proteomics by usage of subcellular fractionation of organelles with subsequent shotgun mass spectrometry proteomics and machine learning algorithms to determine the subcellular localization of large portions of the cellular proteome at a certain time point. Here, we present the first subcellular spatial proteome of a CHO-K1 cell line producing high titers of recombinant antibody in comparison to the spatial proteome of an antibody-producing plasma cell-derived myeloma cell line. Both cell lines show colocalization of immunoglobulin G chains with chaperones and proteins associated in protein glycosylation within the endoplasmic reticulum compartment. However, we report differences in the localization of proteins associated to vesicle-mediated transport, transcription, and translation, which may affect antibody production in both cell lines. Furthermore, pairing subcellular localization data with protein expression data revealed elevated protein masses for organelles in the secretory pathway in plasma cell-derived MPC-11 (Merwin plasma cell tumor-11) cells. Our study highlights the potential of subcellular spatial proteomics combined with protein expression as potent workflow to identify characteristics of highly efficient recombinant protein-expressing cell lines. Data are available via ProteomeXchange with identifier PXD029115.
Collapse
|
48
|
Sánchez-Álvarez M, del Pozo MÁ, Bosch M, Pol A. Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Front Cell Dev Biol 2022; 10:901321. [PMID: 35756995 PMCID: PMC9213792 DOI: 10.3389/fcell.2022.901321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel del Pozo
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
49
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
50
|
Kim SQ, Mohallem R, Franco J, Buhman KK, Kim KH, Aryal UK. Multi-Omics Approach Reveals Dysregulation of Protein Phosphorylation Correlated with Lipid Metabolism in Mouse Non-Alcoholic Fatty Liver. Cells 2022; 11:cells11071172. [PMID: 35406736 PMCID: PMC8997945 DOI: 10.3390/cells11071172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity caused by overnutrition is a major risk factor for non-alcoholic fatty liver disease (NAFLD). Several lipid intermediates such as fatty acids, glycerophospholipids and sphingolipids are implicated in NAFLD, but detailed characterization of lipids and their functional links to proteome and phosphoproteome remain to be elucidated. To characterize this complex molecular relationship, we used a multi-omics approach by conducting comparative proteomic, phoshoproteomic and lipidomic analyses of high fat (HFD) and low fat (LFD) diet fed mice livers. We quantified 2447 proteins and 1339 phosphoproteins containing 1650 class I phosphosites, of which 669 phosphosites were significantly different between HFD and LFD mice livers. We detected alterations of proteins associated with cellular metabolic processes such as small molecule catabolic process, monocarboxylic acid, long- and medium-chain fatty acid, and ketone body metabolic processes, and peroxisome organization. We observed a significant downregulation of protein phosphorylation in HFD fed mice liver in general. Untargeted lipidomics identified upregulation of triacylglycerols, glycerolipids and ether glycerophosphocholines and downregulation of glycerophospholipids, such as lysoglycerophospholipids, as well as ceramides and acylcarnitines. Analysis of differentially regulated phosphosites revealed phosphorylation dependent deregulation of insulin signaling as well as lipogenic and lipolytic pathways during HFD induced obesity. Thus, this study reveals a molecular connection between decreased protein phosphorylation and lipolysis, as well as lipid-mediated signaling in diet-induced obesity.
Collapse
Affiliation(s)
- Sora Q. Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.Q.K.); (K.K.B.)
| | - Rodrigo Mohallem
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Jackeline Franco
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
| | - Kimberly K. Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.Q.K.); (K.K.B.)
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Uma K. Aryal
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-4960
| |
Collapse
|