1
|
Comtois F, Jacques JF, Métayer L, Ouedraogo WYD, Ouangraoua A, Denault JB, Roucou X. Noncanonical altPIDD1 protein: unveiling the true major translational output of the PIDD1 gene. Life Sci Alliance 2025; 8:e202402910. [PMID: 39532532 PMCID: PMC11557682 DOI: 10.26508/lsa.202402910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Proteogenomics has enabled the detection of novel proteins encoded in noncanonical or alternative open reading frames (altORFs) in genes already coding a reference protein. Reanalysis of proteomic and ribo-seq data revealed that the p53-induced death domain-containing protein (or PIDD1) gene encodes a second 171 amino acid protein, altPIDD1, in addition to the known 910-amino acid-long PIDD1 protein. The two ORFs overlap almost completely, and the translation initiation site of altPIDD1 is located upstream of PIDD1. AltPIDD1 has more translational and protein level evidence than PIDD1 across various cell lines and tissues. In HEK293 cells, the altPIDD1 to PIDD1 ratio is 40 to 1, as measured with isotope-labeled (heavy) peptides and targeted proteomics. AltPIDD1 localizes to cytoskeletal structures labeled with phalloidin and interacts with cytoskeletal proteins. Unlike most noncanonical proteins, altPIDD1 is not evolutionarily young but emerged in placental mammals. Overall, we identify PIDD1 as a dual-coding gene, with altPIDD1, not the annotated protein, being the primary product of translation.
Collapse
Affiliation(s)
- Frédérick Comtois
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Jacques
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
| | - Lenna Métayer
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Aïda Ouangraoua
- Department of Informatics, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-Bernard Denault
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| |
Collapse
|
2
|
Schapfl MA, LoMastro GM, Braun VZ, Hirai M, Levine MS, Kiermaier E, Labi V, Holland AJ, Villunger A. Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity. Nat Commun 2024; 15:8890. [PMID: 39406735 PMCID: PMC11480410 DOI: 10.1038/s41467-024-53222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Centrioles define centrosome structure and function. Deregulation of centriole numbers can cause developmental defects and cancer. The p53 tumor suppressor limits the growth of cells lacking or harboring additional centrosomes and can be engaged by the "mitotic surveillance" or the "PIDDosome pathway", respectively. Here, we show that early B cell progenitors frequently present extra centrioles, ensuing their high proliferative activity and related DNA damage. Extra centrioles are efficiently cleared during B cell maturation. In contrast, centriole loss upon Polo-like kinase 4 (Plk4) deletion causes apoptosis and arrests B cell development. This defect can be rescued by co-deletion of Usp28, a critical component of the mitotic surveillance pathway, that restores cell survival and maturation. Centriole-deficient mature B cells are proliferation competent and mount a humoral immune response. Our findings imply that progenitor B cells are intolerant to centriole loss but permissive to centriole amplification, a feature potentially facilitating their malignant transformation.
Collapse
Affiliation(s)
- Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent Z Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maretoshi Hirai
- Department of Pharmacology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Verena Labi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
5
|
Madakashira BP, Magnani E, Ranjan S, Sadler KC. DNA hypomethylation activates Cdk4/6 and Atr to induce DNA replication and cell cycle arrest to constrain liver outgrowth in zebrafish. Nucleic Acids Res 2024; 52:3069-3087. [PMID: 38321933 PMCID: PMC11014291 DOI: 10.1093/nar/gkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.
Collapse
|
6
|
Bezborodkina NN, Brodsky VY, Kudryavtsev BN. The role of cellular polyploidy in the regeneration of the cirrhotic liver in rats and humans. COMPARATIVE CYTOGENETICS 2024; 18:51-57. [PMID: 38601956 PMCID: PMC11004551 DOI: 10.3897/compcytogen.18.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024]
Abstract
Polyploidy is a condition in which a cell has multiple diploid sets of chromosomes. Two forms of polyploidy are known. One of them, generative polyploidy, is characteristic of all cells of the organism, while the other form develops only in some somatic tissues at certain stages of postnatal ontogenesis. Whole genome duplication has played a particularly important role in the evolution of plants and animals, while the role of cellular (somatic) polyploidy in organisms remains largely unclear. In this work we investigated the contribution of cellular polyploidy to the normal and the reparative liver growth of Rattusnorvegicus (Berkenhout, 1769) and Homosapiens Linnaeus, 1758. It is shown that polyploidy makes a significant contribution to the increase of the liver mass both in the course of normal postnatal development and during pathological process.
Collapse
Affiliation(s)
- Natalia N. Bezborodkina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb.1, St Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt PetersburgRussia
| | - Vsevolod Ya. Brodsky
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., Moscow 119334, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Boris N. Kudryavtsev
- Saint-Petersburg State University, University ave 26, St Petersburg 198504, RussiaSaint-Petersburg State UniversitySt PetersburgRussia
| |
Collapse
|
7
|
Braun VZ, Karbon G, Schuler F, Schapfl MA, Weiss JG, Petermann PY, Spierings DC, Tijhuis AE, Foijer F, Labi V, Villunger A. Extra centrosomes delay DNA damage-driven tumorigenesis. SCIENCE ADVANCES 2024; 10:eadk0564. [PMID: 38552015 PMCID: PMC10980279 DOI: 10.1126/sciadv.adk0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Deregulated centrosome numbers are frequently found in human cancer and can promote malignancies in model organisms. Current research aims to clarify if extra centrosomes are cause or consequence of malignant transformation, and if their biogenesis can be targeted for therapy. Here, we show that oncogene-driven blood cancer is inert to genetic manipulation of centrosome numbers, whereas the formation of DNA damage-induced malignancies is delayed. We provide first evidence that this unexpected phenomenon is connected to extra centrosomes eliciting a pro-death signal engaging the apoptotic machinery. Apoptosis induction requires the PIDDosome multi-protein complex, as it can be abrogated by loss of any of its three components, Caspase-2, Raidd/Cradd, or Pidd1. BCL2 overexpression equally blocks cell death, documenting for the first time induction of mitochondrial apoptosis downstream of extra centrosomes. Our findings demonstrate context-dependent effects of centrosome amplification during transformation and ask to adjust current belief that extra centrosomes are intrinsically pro-tumorigenic.
Collapse
Affiliation(s)
- Vincent Z. Braun
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A. Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Y. Petermann
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Andrea E. Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Verena Labi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
8
|
Wilson SR, Duncan AW. The Ploidy State as a Determinant of Hepatocyte Proliferation. Semin Liver Dis 2023; 43:460-471. [PMID: 37967885 PMCID: PMC10862383 DOI: 10.1055/a-2211-2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the "ploidy conveyor," undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.
Collapse
Affiliation(s)
- Sierra R. Wilson
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Garcia‐Carpio I, Braun VZ, Weiler ES, Leone M, Niñerola S, Barco A, Fava LL, Villunger A. Extra centrosomes induce PIDD1-mediated inflammation and immunosurveillance. EMBO J 2023; 42:e113510. [PMID: 37530438 PMCID: PMC10577638 DOI: 10.15252/embj.2023113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Unscheduled increases in ploidy underlie defects in tissue function, premature aging, and malignancy. A concomitant event to polyploidization is the amplification of centrosomes, the main microtubule organization centers in animal cells. Supernumerary centrosomes are frequent in tumors, correlating with higher aggressiveness and poor prognosis. However, extra centrosomes initially also exert an onco-protective effect by activating p53-induced cell cycle arrest. If additional signaling events initiated by centrosomes help prevent pathology is unknown. Here, we report that extra centrosomes, arising during unscheduled polyploidization or aberrant centriole biogenesis, induce activation of NF-κB signaling and sterile inflammation. This signaling requires the NEMO-PIDDosome, a multi-protein complex composed of PIDD1, RIPK1, and NEMO/IKKγ. Remarkably, the presence of supernumerary centrosomes suffices to induce a paracrine chemokine and cytokine profile, able to polarize macrophages into a pro-inflammatory phenotype. Furthermore, extra centrosomes increase the immunogenicity of cancer cells and render them more susceptible to NK-cell attack. Hence, the PIDDosome acts as a dual effector, able to engage not only the p53 network for cell cycle control but also NF-κB signaling to instruct innate immunity.
Collapse
Affiliation(s)
- Irmina Garcia‐Carpio
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vincent Z Braun
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Elias S Weiler
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Marina Leone
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sergio Niñerola
- Instituto de Neurociencias, Consejo Superior de Investigaciones CientíficasUniversidad Miguel HernándezAlicanteSpain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones CientíficasUniversidad Miguel HernándezAlicanteSpain
| | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Andreas Villunger
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
10
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|
11
|
Wen Z, Lin YH, Wang S, Fujiwara N, Rong R, Jin KW, Yang DM, Yao B, Yang S, Wang T, Xie Y, Hoshida Y, Zhu H, Xiao G. Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images. Genes (Basel) 2023; 14:921. [PMID: 37107679 PMCID: PMC10137944 DOI: 10.3390/genes14040921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin W. Jin
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shengjie Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute Mouse Genome Engineering Core, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Weiss JG, Gallob F, Rieder P, Villunger A. Apoptosis as a Barrier against CIN and Aneuploidy. Cancers (Basel) 2022; 15:cancers15010030. [PMID: 36612027 PMCID: PMC9817872 DOI: 10.3390/cancers15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68-90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the "aneuploidy paradox" that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy.
Collapse
Affiliation(s)
- Johannes G. Weiss
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Filip Gallob
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patricia Rieder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43–512-9003-70380; Fax: +43–512-9003-73960
| |
Collapse
|
13
|
Moreno E, Matondo AB, Bongiovanni L, van de Lest CHA, Molenaar MR, Toussaint MJM, van Essen SC, Houweling M, Helms JB, Westendorp B, de Bruin A. Inhibition of polyploidization in Pten-deficient livers reduces steatosis. Liver Int 2022; 42:2442-2452. [PMID: 35924448 PMCID: PMC9826152 DOI: 10.1111/liv.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/11/2023]
Abstract
The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers.
Collapse
Affiliation(s)
- Eva Moreno
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Augustine B. Matondo
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Laura Bongiovanni
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Chris H. A. van de Lest
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Martijn R. Molenaar
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Mathilda J. M. Toussaint
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C. van Essen
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Martin Houweling
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - J. Bernd Helms
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Bart Westendorp
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Alain de Bruin
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands,Pediatrics, Division Molecular GeneticsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
14
|
Kim JY, Wang LQ, Sladky VC, Oh TG, Liu J, Trinh K, Eichin F, Downes M, Hosseini M, Jacotot ED, Evans RM, Villunger A, Karin M. PIDDosome-SCAP crosstalk controls high-fructose-diet-dependent transition from simple steatosis to steatohepatitis. Cell Metab 2022; 34:1548-1560.e6. [PMID: 36041455 PMCID: PMC9547947 DOI: 10.1016/j.cmet.2022.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/17/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023]
Abstract
Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.
Collapse
Affiliation(s)
- Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Lily Q Wang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Junlai Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kaitlyn Trinh
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Etienne D Jacotot
- INSERM U1164 Sorbonne Université, Campus Pierre et Marie Curie, Paris 75005, France; Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10033, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute of Biological Studies, La Jolla, CA 9037, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
16
|
Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, LoMastro GM, Larman T, Holland AJ. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022; 36:gad.349727.122. [PMID: 35981754 PMCID: PMC9480857 DOI: 10.1101/gad.349727.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023]
Abstract
Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hanan Akbari
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatianna Larman
- Divison of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
17
|
Enhancer methylation dynamics drive core transcriptional regulatory circuitry in pan-cancer. Oncogene 2022; 41:3474-3484. [PMID: 35655092 DOI: 10.1038/s41388-022-02359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022]
Abstract
Accumulating evidence has demonstrated that enhancer methylation has strong and dynamic regulatory effects on gene expression. Some transcription factors (TFs) can auto- and cross-regulate in a feed-forward manner, and cooperate with their enhancers to form core transcriptional regulatory circuitries (CRCs). However, the elaborated regulatory mechanism between enhancer methylation and CRC remains the tip of the iceberg. Here, we revealed that DNA methylation could drive the tissue-specific enhancer basal transcription and target gene expression in human cancers. By integrating methylome, transcriptome, and 3D genomic data, we identified enhancer methylation triplets (enhancer methylation-enhancer transcription-target gene expression) and dissected potential regulatory patterns within them. Moreover, we observed that cancer-specific core TFs regulated by enhancers were able to shape their enhancer methylation forming the enhancer methylation-driven CRCs (emCRCs). Further parsing of clinical implications showed rewired emCRCs could serve as druggable targets and prognostic risk markers. In summary, the integrative analysis of enhancer methylation regulome would facilitate portraying the cancer epigenomics landscape and developing the epigenetic anti-cancer approaches.
Collapse
|
18
|
Heinke P, Rost F, Rode J, Trus P, Simonova I, Lázár E, Feddema J, Welsch T, Alkass K, Salehpour M, Zimmermann A, Seehofer D, Possnert G, Damm G, Druid H, Brusch L, Bergmann O. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst 2022; 13:499-507.e12. [PMID: 35649419 DOI: 10.1016/j.cels.2022.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Physiological liver cell replacement is central to maintaining the organ's high metabolic activity, although its characteristics are difficult to study in humans. Using retrospective radiocarbon (14C) birth dating of cells, we report that human hepatocytes show continuous and lifelong turnover, allowing the liver to remain a young organ (average age <3 years). Hepatocyte renewal is highly dependent on the ploidy level. Diploid hepatocytes show more than 7-fold higher annual birth rates than polyploid hepatocytes. These observations support the view that physiological liver cell renewal in humans is mainly dependent on diploid hepatocytes, whereas polyploid cells are compromised in their ability to divide. Moreover, cellular transitions between diploid and polyploid hepatocytes are limited under homeostatic conditions. With these findings, we present an integrated model of homeostatic liver cell generation in humans that provides fundamental insights into liver cell turnover dynamics.
Collapse
Affiliation(s)
- Paula Heinke
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Julian Rode
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Palina Trus
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Irina Simonova
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Joshua Feddema
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thilo Welsch
- Visceral-, Thoracic- and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kanar Alkass
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Andrea Zimmermann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Göran Possnert
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lutz Brusch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
19
|
PIDD1 in cell cycle control, sterile inflammation and cell death. Biochem Soc Trans 2022; 50:813-824. [PMID: 35343572 PMCID: PMC9162469 DOI: 10.1042/bst20211186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.
Collapse
|
20
|
Wang D, Tang W, Zhang P, Liu Z, Lyu F, Xiao Y, Ni D, Zhang P. Comprehensive analysis of the functional and prognostic value of E2F transcription factors in human prostate cancer through data mining and experimental validation. Transl Cancer Res 2022; 10:5095-5109. [PMID: 35116361 PMCID: PMC8797606 DOI: 10.21037/tcr-21-1532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
Background A growing body of evidence shows that E2F transcription factors play a significant role in the tumorigenesis of prostate cancer. However, their functional and prognostic value has not been fully illustrated. Therefore, we used bioinformatics methods to further analyze the possible roles of E2F transcription factors in the development and progression of prostate cancer. Methods We explored the expression levels of E2F transcription factors using data from The Cancer Genome Atlas (TCGA) and Oncomine database in paired and unpaired samples. The clinical correlation and prognostic value of E2F transcription factors were assessed. Using the R package “pROC”, we judged the diagnostic value of E2F transcription factors. The online website tool cBioPortal was also employed to find possible gene alterations of E2F transcription factors in samples from TCGA. The R package “clusterprofiler” was used to conduct functional analysis. Moreover, we also used the Tumor Immune Estimation Resource to search for the associations between E2F transcription factors and the infiltration levels of 6 kinds of immune cells. Finally, quantitative real-time polymerase chain reaction (PCR) was conducted to validate the expression levels of E2F transcription factors in human paired prostate tissues. Results E2F1/2/3/5 messenger RNA (mRNA) expression levels were higher in prostate cancer tissues than in normal tissues, while E2F4 and E2F6 mRNA expression levels were lower (P<0.05). All E2F transcription factors were associated with clinical parameters. Kaplan-Meier analysis revealed that E2F1/4/6/8 were notably associated with the overall survival of patients with prostate cancer (P<0.05). Receiver operating characteristic (ROC) curve results showed that except for E2F7, the other E2F transcription factors had diagnostic value for prostate cancer (P<0.05). We further found close associations between E2F transcription factors and the infiltration levels of immune cells. The results of quantitative real-time PCR were consistent with those from public databases. Conclusions E2F transcription factor family members are differentially expressed in prostate cancer and are significantly related to the prognosis of patients, suggesting that they may be adopted as biomarkers for prognosis prediction and the treatment of prostate cancer.
Collapse
Affiliation(s)
- Decai Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wensen Tang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingbao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zijian Liu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Lyu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Dynamic Spatiotemporal Expression Pattern of the Senescence-Associated Factor p16Ink4a in Development and Aging. Cells 2022; 11:cells11030541. [PMID: 35159350 PMCID: PMC8833900 DOI: 10.3390/cells11030541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
A plethora of factors have been attributed to underly aging, including oxidative stress, telomere shortening and cellular senescence. Several studies have shown a significant role of the cyclin-dependent kinase inhibitor p16ink4a in senescence and aging. However, its expression in development has been less well documented. Therefore, to further clarify a potential role of p16 in development and aging, we conducted a developmental expression study of p16, as well as of p19ARF and p21, and investigated their expression on the RNA level in brain, heart, liver, and kidney of mice at embryonic, postnatal, adult, and old ages. P16 expression was further assessed on the protein level by immunohistochemistry. Expression of p16 was highly dynamic in all organs in embryonic and postnatal stages and increased dramatically in old mice. Expression of p19 and p21 was less variable and increased to a moderate extent at old age. In addition, we observed a predominant expression of p16 mRNA and protein in liver endothelial cells versus non-endothelial cells of old mice, which suggests a functional role specifically in liver endothelium of old subjects. Thus, p16 dynamic spatiotemporal expression might implicate p16 in developmental and physiological processes in addition to its well-known function in the build-up of senescence.
Collapse
|
22
|
Kim JY, Yang IS, Kim HJ, Yoon JY, Han YH, Seong JK, Lee MO. RORα contributes to the maintenance of genome ploidy in the liver of mice with diet-induced nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab 2022; 322:E118-E131. [PMID: 34894722 DOI: 10.1152/ajpendo.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatic polyploidization is closely linked to the progression of nonalcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism is not clearly understood. In this study, we demonstrated the role of retinoic acid-related orphan receptor α (RORα) in the maintenance of genomic integrity, particularly in the pathogenesis of NAFLD, using the high-fat diet (HFD)-fed liver-specific RORα knockout (RORα-LKO) mouse model. First, we observed that the loss of hepatic retinoic acid receptor-related orphan receptor α (RORα) accelerated hepatocyte nuclear polyploidization after HFD feeding. In 70% partial hepatectomy experiments, enrichment of hepatocyte polyploidy was more obvious in the RORα-LKO animals, which was accompanied by early progression to the S phase and blockade of the G2/M transition, suggesting a potential role of RORα in suppressing hepatocyte polyploidization in the regenerating liver. An analysis of a publicly available RNA sequencing (RNA-seq) and chromatin immunoprecipitation-seq dataset, together with the Search Tool of the Retrieval of Interacting Genes/Proteins database resource, revealed that DNA endoreplication was the top-enriched biological process Gene Ontology term. Furthermore, we found that E2f7 and E2f8, which encode key transcription factors for DNA endoreplication, were the downstream targets of RORα-induced transcriptional repression. Finally, we showed that the administration of JC1-40, an RORα activator (5 mg/kg body wt), significantly reduced hepatic nuclear polyploidization in the HFD-fed mice. Together, our observations suggest that the RORα-induced suppression of hepatic polyploidization may provide new insights into the pathological polyploidy of NAFLD and may contribute to the development of therapeutic strategies for the treatment of NAFLD.NEW & NOTEWORTHY It has been reported that hepatic polyploidization is closely linked to the progression of NAFLD. Here, we showed that the genetic depletion of hepatic RORα in mice accelerated hepatocyte polyploidization after high-fat diet feeding. The mechanism could be the RORα-mediated repression of E2f7 and E2f8, key transcription factors for DNA endoreplication. Thus, preservation of genome integrity by RORα could provide a new insight for developing therapeutics against the disease.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - In Sook Yang
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Yeun Yoon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yong-Hyun Han
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute of Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Sazonova EV, Petrichuk SV, Kopeina GS, Zhivotovsky B. A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biol Direct 2021; 16:25. [PMID: 34886882 PMCID: PMC8656038 DOI: 10.1186/s13062-021-00313-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of mitotic catastrophe was first described more than 80 years ago, only recently has this term been used to explain a mechanism of cell death linked to delayed mitosis. Several mechanisms have been suggested for mitotic catastrophe development and cell fate. Depending on molecular perturbations, mitotic catastrophe can end in three types of cell death, namely apoptosis, necrosis, or autophagy. Moreover, mitotic catastrophe can be associated with different types of cell aging, the development of which negatively affects tumor elimination and, consequently, reduces the therapeutic effect. The effective triggering of mitotic catastrophe in clinical practice requires induction of DNA damage as well as inhibition of the molecular pathways that regulate cell cycle arrest and DNA repair. Here we discuss various methods to detect mitotic catastrophe, the mechanisms of its development, and the attempts to use this phenomenon in cancer treatment.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Svetlana V Petrichuk
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia, 119296
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
24
|
Wang N, Hao F, Shi Y, Wang J. The Controversial Role of Polyploidy in Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:5335-5344. [PMID: 34866913 PMCID: PMC8636953 DOI: 10.2147/ott.s340435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Polyploidy, a physiological phenomenon in which cells contain more than two sets of homologous chromosomes, commonly exists in plants, fish, and amphibians but is rare in mammals. In humans, polyploid cells are detected commonly in specific organs or tissues including the heart, marrow, and liver. As the largest solid organ in the body, the liver is responsible for a myriad of functions, most of which are closely related to polyploid hepatocytes. It has been confirmed that polyploid hepatocytes are related to liver regeneration, homeostasis, terminal differentiation, and aging. Polyploid hepatocytes accumulate during the aging process as well as in chronically injured livers. The relationship between polyploid hepatocytes and hepatocellular carcinoma, the endpoint of most chronic liver diseases, is not yet fully understood. Recently, accumulated evidence has revealed that polyploid involves in the process of tumorigenesis and development. The study of the correlation and relationship between polyploidy hepatocytes and the development of hepatocellular carcinoma can potentially promote the prevention, early diagnosis, and treatment of hepatocellular carcinoma. In this review, we conclude the potential mechanisms of polyploid hepatocytes formation, focusing on the specific biological significance of polyploid hepatocytes. In addition, we examine recent discoveries that have begun to clarify the relevance between polyploid hepatocytes and hepatocellular carcinoma and discuss recent excellent findings that reveal the role of polyploid hepatocytes as resisters of hepatocellular carcinoma or as promoters of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Sladky VC, Eichin F, Reiberger T, Villunger A. Polyploidy control in hepatic health and disease. J Hepatol 2021; 75:1177-1191. [PMID: 34228992 DOI: 10.1016/j.jhep.2021.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
A balanced increase in DNA content (ploidy) is observed in some human cell types, including bone-resorbing osteoclasts, platelet-producing megakaryocytes, cardiomyocytes or hepatocytes. The impact of increased hepatocyte ploidy on normal physiology and diverse liver pathologies is still poorly understood. Recent findings suggest swift genetic adaptation to hepatotoxic stress and the protection from malignant transformation as beneficial effects. Herein, we discuss the molecular mechanisms regulating hepatocyte polyploidisation and its implication for different liver diseases and hepatocellular carcinoma. We report on centrosomes' role in limiting polyploidy by activating the p53 signalling network (via the PIDDosome multiprotein complex) and we discuss the role of this pathway in liver disease. Increased hepatocyte ploidy is a hallmark of hepatic inflammation and may play a protective role against liver cancer. Our evolving understanding of hepatocyte ploidy is discussed from the perspective of its potential clinical application for risk stratification, prognosis, and novel therapeutic strategies in liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Donne R, Sangouard F, Celton-Morizur S, Desdouets C. Hepatocyte Polyploidy: Driver or Gatekeeper of Chronic Liver Diseases. Cancers (Basel) 2021; 13:cancers13205151. [PMID: 34680300 PMCID: PMC8534039 DOI: 10.3390/cancers13205151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Polyploidy, also known as whole-genome amplification, is a condition in which the organism has more than two basic sets of chromosomes. Polyploidy frequently arises during tissue development and repair, and in age-associated diseases, such as cancer. Its consequences are diverse and clearly different between systems. The liver is a particularly fascinating organ in that it can adapt its ploidy to the physiological and pathological context. Polyploid hepatocytes are characterized in terms of the number of nuclei per cell (cellular ploidy; mononucleate/binucleate hepatocytes) and the number of chromosome sets in each nucleus (nuclear ploidy; diploid, tetraploid, octoploid). The advantages and disadvantages of polyploidy in mammals are not fully understood. About 30% of the hepatocytes in the human liver are polyploid. In this review, we explore the mechanisms underlying the development of polyploid cells, our current understanding of the regulation of polyploidization during development and pathophysiology and its consequences for liver function. We will also provide data shedding light on the ways in which polyploid hepatocytes cope with centrosome amplification. Finally, we discuss recent discoveries highlighting the possible roles of liver polyploidy in protecting against tumor formation, or, conversely, contributing to liver tumorigenesis.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Flora Sangouard
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Séverine Celton-Morizur
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| |
Collapse
|
27
|
Rizzotto D, Englmaier L, Villunger A. At a Crossroads to Cancer: How p53-Induced Cell Fate Decisions Secure Genome Integrity. Int J Mol Sci 2021; 22:ijms221910883. [PMID: 34639222 PMCID: PMC8509445 DOI: 10.3390/ijms221910883] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
28
|
Bailey EC, Kobielski S, Park J, Losick VP. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2021; 13:a040881. [PMID: 34187807 PMCID: PMC8485745 DOI: 10.1101/cshperspect.a040881] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.
Collapse
Affiliation(s)
- Erin C Bailey
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sara Kobielski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - John Park
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Vicki P Losick
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
29
|
Shah RB, Kernan JL, van Hoogstraten A, Ando K, Li Y, Belcher AL, Mininger I, Bussenault AM, Raman R, Ramanagoudr-Bhojappa R, Huang TT, D'Andrea AD, Chandrasekharappa SC, Aggarwal AK, Thompson R, Sidi S. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev Cell 2021; 56:2207-2222.e7. [PMID: 34256011 DOI: 10.1016/j.devcel.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.
Collapse
Affiliation(s)
- Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer L Kernan
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anya van Hoogstraten
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyohiro Ando
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alicia L Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivy Mininger
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrei M Bussenault
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Renuka Raman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Settara C Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth Thompson
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncology & Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
The p53-caspase-2 axis in the cell cycle and DNA damage response. Exp Mol Med 2021; 53:517-527. [PMID: 33854186 PMCID: PMC8102494 DOI: 10.1038/s12276-021-00590-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
Caspase-2 was discovered almost three decades ago. It was one of the first two mammalian homologs of CED-3, the other being interleukin 1β-converting enzyme (ICE/caspase-1). Despite high similarity with CED-3 and its fly and mammalian counterparts (DRONC and caspase-9, respectively), the function of caspase-2 in apoptosis has remained enigmatic. A number of recent studies suggest that caspase-2 plays an important role in the regulation of p53 in response to cellular stress and DNA damage to prevent the proliferation and accumulation of damaged or aberrant cells. Here, we review these recent observations and their implications in caspase-2-mediated cellular death, senescence, and tumor suppression.
Collapse
|
31
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 DOI: 10.1101/2020.05.29.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
32
|
Kopeina GS, Zhivotovsky B. Caspase-2 as a master regulator of genomic stability. Trends Cell Biol 2021; 31:712-720. [PMID: 33752921 DOI: 10.1016/j.tcb.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Genomic instability underlies genesis and the development of various types of cancer. During tumorigenesis, cancer initiating cells assume a set of features, which allow them to survive and proliferate. Different mutations and chromosomal alterations promote a selection of the most aggressive cancer clones that worsen the prognosis of the disease. Despite that caspase-2 was described as a protease fulfilling an initiator and an effector function in apoptosis, it has recently been discovered to play an important role in the maintenance of genomic integrity and normal chromosome configuration. This protein is able to stabilize p53 and affect the level of transcription factors, which activates cell response to oxidative stress. Here we focus on the discussion on the mechanism(s) of how caspase-2 regulates genomic stability and decreases tumorigenesis.
Collapse
Affiliation(s)
- Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
33
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 PMCID: PMC8015853 DOI: 10.1101/gr.267013.120] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
34
|
Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J, Holland AJ. ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J 2021; 40:e105106. [PMID: 33350495 PMCID: PMC7883295 DOI: 10.15252/embj.2020105106] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Centriole copy number is tightly maintained by the once-per-cycle duplication of these organelles. Centrioles constitute the core of centrosomes, which organize the microtubule cytoskeleton and form the poles of the mitotic spindle. Centrosome amplification is frequently observed in tumors, where it promotes aneuploidy and contributes to invasive phenotypes. In non-transformed cells, centrosome amplification triggers PIDDosome activation as a protective response to inhibit cell proliferation, but how extra centrosomes activate the PIDDosome remains unclear. Using a genome-wide screen, we identify centriole distal appendages as critical for PIDDosome activation in cells with extra centrosomes. The distal appendage protein ANKRD26 is found to interact with and recruit the PIDDosome component PIDD1 to centriole distal appendages, and this interaction is required for PIDDosome activation following centrosome amplification. Furthermore, a recurrent ANKRD26 mutation found in human tumors disrupts PIDD1 localization and PIDDosome activation in cells with extra centrosomes. Our data support a model in which ANKRD26 initiates a centriole-derived signal to limit cell proliferation in response to centrosome amplification.
Collapse
Affiliation(s)
- Lauren T Evans
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Taylor Anglen
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Phillip Scott
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Andrew J Holland
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
35
|
Burigotto M, Mattivi A, Migliorati D, Magnani G, Valentini C, Roccuzzo M, Offterdinger M, Pizzato M, Schmidt A, Villunger A, Maffini S, Fava LL. Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26. EMBO J 2021; 40:e104844. [PMID: 33350486 PMCID: PMC7883297 DOI: 10.15252/embj.2020104844] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Centrosome amplification results into genetic instability and predisposes cells to neoplastic transformation. Supernumerary centrosomes trigger p53 stabilization dependent on the PIDDosome (a multiprotein complex composed by PIDD1, RAIDD and Caspase-2), whose activation results in cleavage of p53's key inhibitor, MDM2. Here, we demonstrate that PIDD1 is recruited to mature centrosomes by the centriolar distal appendage protein ANKRD26. PIDDosome-dependent Caspase-2 activation requires not only PIDD1 centrosomal localization, but also its autoproteolysis. Following cytokinesis failure, supernumerary centrosomes form clusters, which appear to be necessary for PIDDosome activation. In addition, in the context of DNA damage, activation of the complex results from a p53-dependent elevation of PIDD1 levels independently of centrosome amplification. We propose that PIDDosome activation can in both cases be promoted by an ANKRD26-dependent local increase in PIDD1 concentration close to the centrosome. Collectively, these findings provide a paradigm for how centrosomes can contribute to cell fate determination by igniting a signalling cascade.
Collapse
Affiliation(s)
- Matteo Burigotto
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Alessia Mattivi
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Daniele Migliorati
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Giovanni Magnani
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Chiara Valentini
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Michela Roccuzzo
- Advanced Imaging Core FacilityDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Martin Offterdinger
- Division of NeurobiochemistryBioopticsBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Massimo Pizzato
- Laboratory of Virus‐Cell InteractionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Alexander Schmidt
- Proteomics Core FacilityBiozentrumUniversity of BaselBaselSwitzerland
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Stefano Maffini
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
36
|
Wilkinson PD, Duncan AW. Differential Roles for Diploid and Polyploid Hepatocytes in Acute and Chronic Liver Injury. Semin Liver Dis 2021; 41:42-49. [PMID: 33764484 PMCID: PMC8056861 DOI: 10.1055/s-0040-1719175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocytes are the primary functional cells of the liver that perform essential roles in homeostasis, regeneration, and injury. Most mammalian somatic cells are diploid and contain pairs of each chromosome, but there are also polyploid cells containing additional sets of chromosomes. Hepatocytes are among the best described polyploid cells, with polyploids comprising more than 25 and 90% of the hepatocyte population in humans and mice, respectively. Cellular and molecular mechanisms that regulate hepatic polyploidy have been uncovered, and in recent years, diploid and polyploid hepatocytes have been shown to perform specialized functions. Diploid hepatocytes accelerate liver regeneration induced by resection and may accelerate compensatory regeneration after acute injury. Polyploid hepatocytes protect the liver from tumor initiation in hepatocellular carcinoma and promote adaptation to tyrosinemia-induced chronic injury. This review describes how ploidy variations influence cellular activity and presents a model for context-specific functions for diploid and polyploid hepatocytes.
Collapse
Affiliation(s)
- Patrick D Wilkinson
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Brown-Suedel AN, Bouchier-Hayes L. Caspase-2 Substrates: To Apoptosis, Cell Cycle Control, and Beyond. Front Cell Dev Biol 2020; 8:610022. [PMID: 33425918 PMCID: PMC7785872 DOI: 10.3389/fcell.2020.610022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Caspase-2 belongs to the caspase family of proteins responsible for essential cellular functions including apoptosis and inflammation. Uniquely, caspase-2 has been identified as a tumor suppressor, but how it regulates this function is still unknown. For many years, caspase-2 has been considered an “orphan” caspase because, although it is able to induce apoptosis, there is an abundance of conflicting evidence that questions its necessity for apoptosis. Recent evidence supports that caspase-2 has non-apoptotic functions in the cell cycle and protection from genomic instability. It is unclear how caspase-2 regulates these opposing functions, which has made the mechanism of tumor suppression by caspase-2 difficult to determine. As a protease, caspase-2 likely exerts its functions by proteolytic cleavage of cellular substrates. This review highlights the known substrates of caspase-2 with a special focus on their functional relevance to caspase-2’s role as a tumor suppressor.
Collapse
Affiliation(s)
- Alexandra N Brown-Suedel
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - Lisa Bouchier-Hayes
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
38
|
Sladky VC, Knapp K, Szabo TG, Braun VZ, Bongiovanni L, van den Bos H, Spierings DCJ, Westendorp B, Curinha A, Stojakovic T, Scharnagl H, Timelthaler G, Tsuchia K, Pinter M, Semmler G, Foijer F, de Bruin A, Reiberger T, Rohr‐Udilova N, Villunger A. PIDDosome-induced p53-dependent ploidy restriction facilitates hepatocarcinogenesis. EMBO Rep 2020; 21:e50893. [PMID: 33225610 PMCID: PMC7726793 DOI: 10.15252/embr.202050893] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.
Collapse
Affiliation(s)
- Valentina C Sladky
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Katja Knapp
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Tamas G Szabo
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vincent Z Braun
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Laura Bongiovanni
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Ana Curinha
- Institute of PathophysiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Gerald Timelthaler
- Institute for Cancer ResearchInternal Medicine IMedical University of ViennaViennaAustria
| | - Kaoru Tsuchia
- Department of Gastroenterology & HepatologyMusashino Red Cross HospitalTokyoJapan
| | - Matthias Pinter
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Floris Foijer
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department PediatricsUniversity Medical Center GroningenUniversity GroningenGroningenThe Netherlands
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Nataliya Rohr‐Udilova
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Andreas Villunger
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
39
|
Duncan AW. Hepatocyte ploidy modulation in liver cancer. EMBO Rep 2020; 21:e51922. [PMID: 33237586 DOI: 10.15252/embr.202051922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
Polyploidy, a balanced amplification of the genome, is common in the liver. The function of hepatic polyploidy is not entirely clear, but growing evidence shows that polyploidy can protect the liver from tumor formation. In this issue of EMBO Reports, Sladky and colleagues identify the PIDDosome as a polyploidy sensor that regulates liver cancer (Sladky et al, 2020b).
Collapse
Affiliation(s)
- Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Tsabar M, Mock CS, Venkatachalam V, Reyes J, Karhohs KW, Oliver TG, Regev A, Jambhekar A, Lahav G. A Switch in p53 Dynamics Marks Cells That Escape from DSB-Induced Cell Cycle Arrest. Cell Rep 2020; 32:107995. [PMID: 32755587 PMCID: PMC7521664 DOI: 10.1016/j.celrep.2020.107995] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular responses to stimuli can evolve over time, resulting in distinct early and late phases in response to a single signal. DNA damage induces a complex response that is largely orchestrated by the transcription factor p53, whose dynamics influence whether a damaged cell will arrest and repair the damage or will initiate cell death. How p53 responses and cellular outcomes evolve in the presence of continuous DNA damage remains unknown. Here, we have found that a subset of cells switches from oscillating to sustained p53 dynamics several days after undergoing damage. The switch results from cell cycle progression in the presence of damaged DNA, which activates the caspase-2-PIDDosome, a complex that stabilizes p53 by inactivating its negative regulator MDM2. This work defines a molecular pathway that is activated if the canonical checkpoints fail to halt mitosis in the presence of damaged DNA.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Caroline S Mock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Veena Venkatachalam
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Reyes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle W Karhohs
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Trudy G Oliver
- Huntsman Cancer Institute at University of Utah, Salt Lake City, UT 84112, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020; 27:2037-2047. [PMID: 32415279 PMCID: PMC7308375 DOI: 10.1038/s41418-020-0556-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The PIDDosome is a multiprotein complex that drives activation of caspase-2, an endopeptidase originally implicated in apoptosis. Yet, unlike other caspases involved in cell death and inflammation, caspase-2 seems to exert additional versatile functions unrelated to cell death. These emerging roles range from control of transcription factor activity to ploidy surveillance. Thus, caspase-2 and the PIDDosome act as a critical regulatory unit controlling cellular differentiation processes during organogenesis and regeneration. These newly established functions of the PIDDosome and its downstream effector render its components attractive targets for drug-development aiming to prevent fatty liver diseases, neurodegenerative disorders or osteoporosis. ![]()
Collapse
Affiliation(s)
- Valentina C Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|