1
|
Gibieža P, Petrikaitė V. The Complex Regulation of Cytokinesis upon Abscission Checkpoint Activation. Mol Cancer Res 2024; 22:909-919. [PMID: 39133919 DOI: 10.1158/1541-7786.mcr-24-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 10/03/2024]
Abstract
Cytokinetic abscission is a crucial process that guides the separation of daughter cells at the end of each cell division. This process involves the cleavage of the intercellular bridge, which connects the newly formed daughter cells. Over the years, researchers have identified several cellular contributors and intracellular processes that influence the spatial and temporal distribution of the cytoskeleton during cytokinetic abscission. This review presents the most important scientific discoveries that allow activation of the abscission checkpoint, ensuring a smooth and successful separation of a single cell into two cells during cell division. Here, we describe different factors, such as abscission checkpoint, ICB tension, nuclear pore defects, DNA replication stress, chromosomal stability, and midbody proteins, which play a role in the regulation and correct timing of cytokinetic abscission. Furthermore, we explore the downsides associated with the dysregulation of abscission, including its negative impact on cells and the potential to induce tumor formation in humans. Finally, we propose a novel factor for improving cancer therapy and give future perspectives in this research field.
Collapse
Affiliation(s)
- Paulius Gibieža
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| |
Collapse
|
2
|
Nanavati BN, Noordstra I, Lwin AKO, Brooks JW, Rae J, Parton RG, Verma S, Duszyc K, Green KJ, Yap AS. The desmosome-intermediate filament system facilitates mechanotransduction at adherens junctions for epithelial homeostasis. Curr Biol 2024; 34:4081-4090.e5. [PMID: 39153481 PMCID: PMC11387132 DOI: 10.1016/j.cub.2024.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/04/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Angela K O Lwin
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - John W Brooks
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - James Rae
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert G Parton
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 06011, USA
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Gan WJ, Giri R, Begun J, Abud HE, Hardeman EC, Gunning PW, Yap AS, Noordstra I. A truncation mutant of adenomatous polyposis coli impairs apical cell extrusion through elevated epithelial tissue tension. Cytoskeleton (Hoboken) 2024. [PMID: 38984538 DOI: 10.1002/cm.21893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Tissue tension encompasses the mechanical forces exerted on solid tissues within animal bodies, originating from various sources such as cellular contractility, interactions with neighboring cells and the extracellular matrix. Emerging evidence indicates that an imbalance in such forces can influence structural organization, homeostasis, and potentially contribute to disease. For instance, heightened tissue tension can impede apical cell extrusion, leading to the retention of apoptotic or transformed cells. In this study, we investigate the potential role of adenomatous polyposis coli (APC) in modulating tissue tension. Our findings reveal that expression of an APC truncation mutant elevates epithelial tension via the RhoA/ROCK pathway. This elevation induces morphological alterations and hampers apoptotic cell extrusion in cultured epithelial cells and organoids, both of which could be mitigated by pharmacologically restoring the tissue tension. This raises the possibility that APC mutations may exert pathogenetic effects by altering tissue mechanics.
Collapse
Affiliation(s)
- Wan J Gan
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Rabina Giri
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jakob Begun
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Edna C Hardeman
- Faculty of Medicine and Health, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter W Gunning
- Faculty of Medicine and Health, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Lundmark R, Larsson E, Pulkkinen LIA. The adaptable caveola coat generates a plasma membrane sensory system. Curr Opin Cell Biol 2024; 88:102371. [PMID: 38788266 DOI: 10.1016/j.ceb.2024.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Caveolae are atypical plasma membrane invaginations that take part in lipid sorting and regulation of oxidative and mechanical plasma membrane stress. Caveola formation requires caveolin, cavin, and specific lipid types. The recent advances in understanding the structure and assembly of caveolin and cavin complexes within the membrane context have clarified the fundamental processes underlying caveola biogenesis. In addition, the curvature of the caveola membrane is controlled by the regulatory proteins EHD2, pacsin2, and dynamin2, which also function to restrain the scission of caveolae from the plasma membrane (PM). Here, this is integrated with novel insights on caveolae as lipid and mechanosensing complexes that can dynamically flatten or disassemble to counteract mechanical, and oxidative stress.
Collapse
Affiliation(s)
- Richard Lundmark
- Medical and Translational Biology, Umeå University, 901 87, Umeå, Sweden.
| | - Elin Larsson
- Medical and Translational Biology, Umeå University, 901 87, Umeå, Sweden
| | | |
Collapse
|
5
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Mann Z, Lim F, Verma S, Nanavati BN, Davies JM, Begun J, Hardeman EC, Gunning PW, Subramanyam D, Yap AS, Duszyc K. Preexisting tissue mechanical hypertension at adherens junctions disrupts apoptotic extrusion in epithelia. Mol Biol Cell 2024; 35:br3. [PMID: 37903230 PMCID: PMC10881161 DOI: 10.1091/mbc.e23-08-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
Apical extrusion is a tissue-intrinsic process that allows epithelia to eliminate unfit or surplus cells. This is exemplified by the early extrusion of apoptotic cells, which is critical to maintain the epithelial barrier and prevent inflammation. Apoptotic extrusion is an active mechanical process, which involves mechanotransduction between apoptotic cells and their neighbors, as well as local changes in tissue mechanics. Here we report that the preexisting mechanical tension at adherens junctions (AJs) conditions the efficacy of apoptotic extrusion. Specifically, increasing baseline mechanical tension by overexpression of a phosphomimetic Myosin II regulatory light chain (MRLC) compromises apoptotic extrusion. This occurs when tension is increased in either the apoptotic cell or its surrounding epithelium. Further, we find that the proinflammatory cytokine, TNFα, stimulates Myosin II and increases baseline AJ tension to disrupt apical extrusion, causing apoptotic cells to be retained in monolayers. Importantly, reversal of mechanical tension with an inhibitory MRLC mutant or tropomyosin inhibitors is sufficient to restore apoptotic extrusion in TNFα-treated monolayers. Together, these findings demonstrate that baseline levels of tissue tension are important determinants of apoptotic extrusion, which can potentially be coopted by pathogenetic factors to disrupt the homeostatic response of epithelia to apoptosis.
Collapse
Affiliation(s)
- Zoya Mann
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| | - Fayth Lim
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| | - Bageshri N. Nanavati
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| | - Julie M. Davies
- Mater Research – The University of Queensland, Woolloongabba, Queensland, Australia 4102
| | - Jakob Begun
- Mater Research – The University of Queensland, Woolloongabba, Queensland, Australia 4102
- Department of Gastroenterology, Mater Hospital Brisbane, South Brisbane, Australia 4101
| | - Edna C. Hardeman
- School of Biomedical Sciences, Faculty of Medicine and Health, Univeristy of New South Wales Sydney, New South Wales, Australia 2052
| | - Peter W. Gunning
- School of Biomedical Sciences, Faculty of Medicine and Health, Univeristy of New South Wales Sydney, New South Wales, Australia 2052
| | - Deepa Subramanyam
- National Centre for Cell Science, Savitribai Phule Pune University, Pune 411007, India
| | - Alpha S. Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| | - Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| |
Collapse
|
7
|
Duszyc K, von Pein JB, Ramnath D, Currin-Ross D, Verma S, Lim F, Sweet MJ, Schroder K, Yap AS. Apical extrusion prevents apoptosis from activating an acute inflammatory program in epithelia. Dev Cell 2023; 58:2235-2248.e6. [PMID: 37647898 DOI: 10.1016/j.devcel.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis. We found that an acute inflammatory response led by neutrophils occurs in zebrafish and cell culture when apoptotic epithelial cells cannot be expelled from the monolayer by apical extrusion. This reflects an intrinsic circuit where ATP released from apoptotic cells stimulates epithelial cells in the immediate vicinity to produce interleukin-8 (IL-8). Apical extrusion therefore prevents inappropriate epithelial inflammation by physically eliminating apoptotic cells before they can activate this pro-inflammatory circuit. This carries the implication that epithelia may be predisposed to inflammation, elicited by sporadic or induced apoptosis, if apical extrusion is compromised.
Collapse
Affiliation(s)
- Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Jessica B von Pein
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Divya Ramnath
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Denni Currin-Ross
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Fayth Lim
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Matthew J Sweet
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
8
|
Brooks JW, Tillu V, Eckert J, Verma S, Collins BM, Parton RG, Yap AS. Caveola mechanotransduction reinforces the cortical cytoskeleton to promote epithelial resilience. Mol Biol Cell 2023; 34:ar120. [PMID: 37672337 PMCID: PMC10846620 DOI: 10.1091/mbc.e23-05-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
As physical barriers, epithelia must preserve their integrity when challenged by mechanical stresses. Cell-cell junctions linked to the cortical cytoskeleton play key roles in this process, often with mechanotransduction mechanisms that reinforce tissues. Caveolae are mechanosensitive organelles that buffer tension via disassembly. Loss of caveolae, through caveolin-1 or cavin1 depletion, causes activation of PtdIns(4, 5)P2 signaling, recruitment of FMNL2 formin, and enhanced-cortical actin assembly. How this equates to physiological responses in epithelial cells containing endogenous caveolae is unknown. Here we examined the effect of mechanically inducing acute disassembly of caveolae in epithelia. We show that perturbation of caveolae, through direct mechanical stress, reinforces the actin cortex at adherens junctions. Increasing interactions with membrane lipids by introducing multiple phosphatidylserine-binding undecad cavin1 (UC1) repeat domains into cavin1 rendered caveolae more stable to mechanical stimuli. This molecular stabilization blocked cortical reinforcement in response to mechanical stress. Cortical reinforcement elicited by the mechanically induced disassembly of caveolae increased epithelial resilience against tensile stresses. These findings identify the actin cortex as a target of caveola mechanotransduction that contributes to epithelial integrity.
Collapse
Affiliation(s)
- John W. Brooks
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Vikas Tillu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Julia Eckert
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Suzie Verma
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
9
|
Kenworthy AK, Han B, Ariotti N, Parton RG. The Role of Membrane Lipids in the Formation and Function of Caveolae. Cold Spring Harb Perspect Biol 2023; 15:a041413. [PMID: 37277189 PMCID: PMC10513159 DOI: 10.1101/cshperspect.a041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Caveolae are plasma membrane invaginations with a distinct lipid composition. Membrane lipids cooperate with the structural components of caveolae to generate a metastable surface domain. Recent studies have provided insights into the structure of essential caveolar components and how lipids are crucial for the formation, dynamics, and disassembly of caveolae. They also suggest new models for how caveolins, major structural components of caveolae, insert into membranes and interact with lipids.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
10
|
Yu J, Zhang Y, Zhu H. Pleiotropic effects of cell competition between normal and transformed cells in mammalian cancers. J Cancer Res Clin Oncol 2023; 149:1607-1619. [PMID: 35796779 PMCID: PMC9261164 DOI: 10.1007/s00432-022-04143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE In the course of tumor progression, cancer clones interact with host normal cells, and these interactions make them under selection pressure all the time. Cell competition, which can eliminate suboptimal cells and optimize organ development via comparison of cell fitness information, is found to take place between host cells and transformed cells in mammals and play important roles in different phases of tumor progression. The aim of this study is to summarize the current knowledge about the roles and corresponding mechanisms of different cell competition interactions between host normal cells and transformed cells involved in mammalian tumor development. METHODS We reviewed the published relevant articles in the Pubmed. RESULTS So far, the role of several cell competition interactions have been well described in the different phases of mammalian tumor genesis and development. While cell competitions for trophic factors and epithelial defense against cancer (EDAC) prevent the emergence of transformed cells and suppress carcinogenesis, fitness-fingerprints-comparison system and Myc supercompetitors promote the local expansion of transformed cells after the early tumor lesion is formatted. In addition, various preclinical tumor-suppression models which based on the molecular mechanisms of these competition interactions show potential clinical value of boosting the fitness of host normal cells. CONCLUSION Cell competition between host and transformed cells has pleiotropic effects in mammalian tumor genesis and development. The clarification of specific molecular mechanisms shed light on novel ideas for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Jing Yu
- Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yamin Zhang
- Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Sotodosos-Alonso L, Pulgarín-Alfaro M, Del Pozo MA. Caveolae Mechanotransduction at the Interface between Cytoskeleton and Extracellular Matrix. Cells 2023; 12:cells12060942. [PMID: 36980283 PMCID: PMC10047380 DOI: 10.3390/cells12060942] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt and respond to them. PM invaginations named caveolae, with a specific protein and lipid composition, play a crucial role in this mechanosensing and mechanotransduction process. They respond to PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical tension, while novel structures termed dolines, sharing Caveolin1 as the main component, gradually respond to low and medium forces. Caveolae are associated with different types of cytoskeletal filaments, which regulate membrane tension and also initiate multiple mechanotransduction pathways. Caveolar components sense the mechanical properties of the substrate and orchestrate responses that modify the extracellular matrix (ECM) according to these stimuli. They perform this function through both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemical alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.
Collapse
Affiliation(s)
- Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Marta Pulgarín-Alfaro
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
12
|
Nanavati BN, Noordstra I, Verma S, Duszyc K, Green KJ, Yap AS. Desmosome-anchored intermediate filaments facilitate tension-sensitive RhoA signaling for epithelial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529786. [PMID: 36865131 PMCID: PMC9980054 DOI: 10.1101/2023.02.23.529786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kathleen J. Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL 06011 USA
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| |
Collapse
|
13
|
Noordstra I, Morris RG, Yap AS. Cadherins and the cortex: A matter of time? Curr Opin Cell Biol 2023; 80:102154. [PMID: 36822056 DOI: 10.1016/j.ceb.2023.102154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023]
Abstract
Cell adhesion systems commonly operate in close partnership with the cytoskeleton. Adhesion receptors bind to the cortex and regulate its dynamics, organization and mechanics; conversely, the cytoskeleton influences aspects of adhesion, including strength, stability and ductility. In this review we consider recent advances in elucidating such cooperation, focusing on interactions between classical cadherins and actomyosin. The evidence presents an apparent paradox. Molecular mechanisms of mechanosensation by the cadherin-actin apparatus imply that adhesion strengthens under tension. However, this does not always translate to the broader setting of confluent tissues, where increases in fluctuations of tension can promote intercalation due to the shrinkage of adherens junctions. Emerging evidence suggests that understanding of timescales may be important in resolving this issue, but that further work is needed to understand the role of adhesive strengthening across scales.
Collapse
Affiliation(s)
- Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia
| | - Richard G Morris
- School of Physics, Sydney, NSW 2052, Australia; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia.
| |
Collapse
|
14
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
15
|
Andrade V, Echard A. Mechanics and regulation of cytokinetic abscission. Front Cell Dev Biol 2022; 10:1046617. [PMID: 36506096 PMCID: PMC9730121 DOI: 10.3389/fcell.2022.1046617] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokinetic abscission leads to the physical cut of the intercellular bridge (ICB) connecting the daughter cells and concludes cell division. In different animal cells, it is well established that the ESCRT-III machinery is responsible for the constriction and scission of the ICB. Here, we review the mechanical context of abscission. We first summarize the evidence that the ICB is initially under high tension and explain why, paradoxically, this can inhibit abscission in epithelial cells by impacting on ESCRT-III assembly. We next detail the different mechanisms that have been recently identified to release ICB tension and trigger abscission. Finally, we discuss whether traction-induced mechanical cell rupture could represent an ancient alternative mechanism of abscission and suggest future research avenues to further understand the role of mechanics in regulating abscission.
Collapse
Affiliation(s)
- Virginia Andrade
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,Collège Doctoral, Sorbonne Université, Paris, France
| | - Arnaud Echard
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Arnaud Echard,
| |
Collapse
|
16
|
Non-degradable autophagic vacuoles are indispensable for cell competition. Cell Rep 2022; 40:111292. [PMID: 36044857 DOI: 10.1016/j.celrep.2022.111292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 12/25/2022] Open
Abstract
Cell competition is a process by which unwanted cells are eliminated from tissues. Apical extrusion is one mode whereby normal epithelial cells remove transformed cells, but it remains unclear how this process is mechanically effected. In this study, we show that autophagic and endocytic fluxes are attenuated in RasV12-transformed cells surrounded by normal cells due to lysosomal dysfunction, and that chemical manipulation of lysosomal activity compromises apical extrusion. We further find that RasV12 cells deficient in autophagy initiation machinery are resistant to elimination pressure exerted by normal cells, suggesting that non-degradable autophagic vacuoles are required for cell competition. Moreover, in vivo analysis revealed that autophagy-ablated RasV12 cells are less readily eliminated by cell competition, and remaining transformed cells destroy ductal integrity, leading to chronic pancreatitis. Collectively, our findings illuminate a positive role for autophagy in cell competition and reveal a homeostasis-preserving function of autophagy upon emergence of transformed cells.
Collapse
|
17
|
Kajiwara K, Chen PK, Abe Y, Okuda S, Kon S, Adachi J, Tomonaga T, Fujita Y, Okada M. Src activation in lipid rafts confers epithelial cells with invasive potential to escape from apical extrusion during cell competition. Curr Biol 2022; 32:3460-3476.e6. [PMID: 35809567 DOI: 10.1016/j.cub.2022.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Abnormal/cancerous cells within healthy epithelial tissues undergo apical extrusion to protect against carcinogenesis, although they acquire invasive capacity once carcinogenesis progresses. However, the molecular mechanisms by which cancer cells escape from apical extrusion and invade surrounding tissues remain elusive. In this study, we demonstrate a molecular mechanism for cell fate switching during epithelial cell competition. We found that during competition within epithelial cell layers, Src transformation promotes maturation of focal adhesions and degradation of extracellular matrix. Src-transformed cells underwent basal delamination by Src activation within sphingolipid/cholesterol-enriched membrane microdomains/lipid rafts, whereas they were apically extruded when Src was outside of lipid rafts. A comparative analysis of contrasting phenotypes revealed that activation of the Src-STAT3-MMP axis through lipid rafts was required for basal delamination. CUB-domain-containing protein 1 (CDCP1) was identified as an Src-activating scaffold and as a Met regulator in lipid rafts, and its overexpression induced basal delamination. In renal cancer models, CDCP1 promoted epithelial-mesenchymal transition-mediated invasive behavior by activating the Src-STAT3-MMP axis through Met activation. Overall, these results suggest that spatial activation of Src signaling in lipid rafts confers resistance to apical extrusion and invasive potential on epithelial cells to promote carcinogenesis.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Ping-Kuan Chen
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Division of Molecular Diagnosis, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
| | - Satoru Okuda
- World Premier International Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shunsuke Kon
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Andrade V, Bai J, Gupta-Rossi N, Jimenez AJ, Delevoye C, Lamaze C, Echard A. Caveolae promote successful abscission by controlling intercellular bridge tension during cytokinesis. SCIENCE ADVANCES 2022; 8:eabm5095. [PMID: 35417244 PMCID: PMC9007517 DOI: 10.1126/sciadv.abm5095] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
During cytokinesis, the intercellular bridge (ICB) connecting the daughter cells experiences pulling forces, which delay abscission by preventing the assembly of the ESCRT scission machinery. Abscission is thus triggered by tension release, but how ICB tension is controlled is unknown. Here, we report that caveolae, which are known to regulate membrane tension upon mechanical stress in interphase cells, are located at the midbody, at the abscission site, and at the ICB/cell interface in dividing cells. Functionally, the loss of caveolae delays ESCRT-III recruitment during cytokinesis and impairs abscission. This is the consequence of a twofold increase of ICB tension measured by laser ablation, associated with a local increase in myosin II activity at the ICB/cell interface. We thus propose that caveolae buffer membrane tension and limit contractibility at the ICB to promote ESCRT-III assembly and cytokinetic abscission. Together, this work reveals an unexpected connection between caveolae and the ESCRT machinery and the first role of caveolae in cell division.
Collapse
Affiliation(s)
- Virginia Andrade
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Jian Bai
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Neetu Gupta-Rossi
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Ana Joaquina Jimenez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR 3666, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, 26 rue d’Ulm, 75005 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
- Corresponding author.
| |
Collapse
|
19
|
Schiano Lomoriello I, Sigismund S, Day KJ. Biophysics of endocytic vesicle formation: A focus on liquid–liquid phase separation. Curr Opin Cell Biol 2022; 75:102068. [DOI: 10.1016/j.ceb.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
|
20
|
Bonfim-Melo A, Noordstra I, Gupta S, Chan AH, Jones MJK, Schroder K, Yap AS. Rapid lamellipodial responses by neighbor cells drive epithelial sealing in response to pyroptotic cell death. Cell Rep 2022; 38:110316. [PMID: 35108534 DOI: 10.1016/j.celrep.2022.110316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022] Open
Abstract
Cell injury poses a substantial challenge for epithelia homeostasis. Several cellular processes preserve epithelial barriers in response to apoptosis, but less is known about other forms of cell death, such as pyroptosis. Here we use an inducible caspase-1 system to analyze how colon epithelial monolayers respond to pyroptosis. We confirm that sporadic pyroptotic cells are physically eliminated from confluent monolayers by apical extrusion. This is accompanied by a transient defect in barrier function at the site of the pyroptotic cells. By visualizing cell shape changes and traction patterns in combination with cytoskeletal inhibitors, we show that rapid lamellipodial responses in the neighbor cells are responsible for correcting the leakage and resealing the barrier. Cell contractility is not required for this resealing response, in contrast to the response to apoptosis. Therefore, pyroptosis elicits a distinct homeostatic response from the epithelium that is driven by the stimulation of lamellipodia in neighbor cells.
Collapse
Affiliation(s)
- Alexis Bonfim-Melo
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Shafali Gupta
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Amy H Chan
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mathew J K Jones
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
21
|
Pothapragada SP, Gupta P, Mukherjee S, Das T. Matrix mechanics regulates epithelial defence against cancer by tuning dynamic localization of filamin. Nat Commun 2022; 13:218. [PMID: 35017535 PMCID: PMC8752856 DOI: 10.1038/s41467-021-27896-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
In epithelia, normal cells recognize and extrude out newly emerged transformed cells by competition. This process is the most fundamental epithelial defence against cancer, whose occasional failure promotes oncogenesis. However, little is known about what factors determine the success or failure of this defence. Here we report that mechanical stiffening of extracellular matrix attenuates the epithelial defence against HRasV12-transformed cells. Using photoconversion labelling, protein tracking, and loss-of-function mutations, we attribute this attenuation to stiffening-induced perinuclear sequestration of a cytoskeletal protein, filamin. On soft matrix mimicking healthy epithelium, filamin exists as a dynamically single population, which moves to the normal cell-transformed cell interface to initiate the extrusion of transformed cells. However, on stiff matrix mimicking fibrotic epithelium, filamin redistributes into two dynamically distinct populations, including a new perinuclear pool that cannot move to the cell-cell interface. A matrix stiffness-dependent differential between filamin-Cdc42 and filamin-perinuclear cytoskeleton interaction controls this distinctive filamin localization and hence, determines the success or failure of epithelial defence on soft versus stiff matrix. Together, our study reveals how pathological matrix stiffening leads to a failed epithelial defence at the initial stage of oncogenesis. Epithelial cells have the ability to competitively remove potentially cancerous cells from the tissue. Here the authors discover that pathological stiffening of extracellular matrix leads to the loss of this basic epithelial defence against cancer.
Collapse
Affiliation(s)
- Shilpa P Pothapragada
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Praver Gupta
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India
| | - Soumi Mukherjee
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India.,Department of Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Tamal Das
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad, 500 046, India.
| |
Collapse
|
22
|
Shi X, Tang D, Xing Y, Zhao S, Fan C, Zhong J, Cui Y, Shi K, Jiu Y. Actin nucleator formins regulate the tension-buffering function of caveolin-1. J Mol Cell Biol 2021; 13:876-888. [PMID: 34718633 PMCID: PMC8800513 DOI: 10.1093/jmcb/mjab070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Both the mechanosensitive actin cytoskeleton and caveolae contribute to active processes such as cell migration, morphogenesis, and vesicular trafficking. Although distinct actin components are well studied, how they contribute to cytoplasmic caveolae, especially in the context of mechano-stress, has remained elusive. Here, we identify two actin-associated mobility stereotypes of caveolin-1 (CAV-1)-marked intracellular vesicles, which are characterized as ‘dwelling’ and ‘go and dwelling’. In order to exploit the reason for their distinct dynamics, elongated actin-associated formin functions are perturbed. We find drastically decreased density, increased clustering, and compromised motility of cytoplasmic CAV-1 vesicles resulting from lacking actin nucleator formins by both chemical treatment and RNA silencing of formin genes. Furthermore, hypo-osmosis-stimulated diminishing of CAV-1 is dramatically intensified upon blocking formins. The clustering of CAV-1 vesicles when cells are cultured on soft substrate is also aggravated under formin inhibition condition. Together, we reveal that actin-associated formins are essential for maintaining the dynamic organization of cytoplasmic CAV-1 and importantly its sensitivity upon mechanical challenge. We conclude that tension-controlled actin formins act as a safety valve dampening excessive tension on CAV-1 and safeguarding CAV-1 against mechanical damage.
Collapse
Affiliation(s)
- Xuemeng Shi
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Daijiao Tang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yifan Xing
- University of Chinese Academy of Sciences, Beijing, 100049 China.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shuangshuang Zhao
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Changyuan Fan
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jin Zhong
- University of Chinese Academy of Sciences, Beijing, 100049 China.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Kun Shi
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, a. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 and b. Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
23
|
Nyga A, Muñoz JJ, Dercksen S, Fornabaio G, Uroz M, Trepat X, Baum B, Matthews HK, Conte V. Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics. SCIENCE ADVANCES 2021; 7:eabg6467. [PMID: 34644109 PMCID: PMC8514103 DOI: 10.1126/sciadv.abg6467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/22/2021] [Indexed: 05/05/2023]
Abstract
The loss of epithelial homeostasis and the disruption of normal tissue morphology are hallmarks of tumor development. Here, we ask how the uniform activation oncogene RAS affects the morphology and tissue mechanics in a normal epithelium. We found that inducible induction of HRAS in confined epithelial monolayers on soft substrates drives a morphological transformation of a 2D monolayer into a compact 3D cell aggregate. This transformation was initiated by the loss of monolayer integrity and formation of two distinct cell layers with differential cell-cell junctions, cell-substrate adhesion, and tensional states. Computational modeling revealed how adhesion and active peripheral tension induces inherent mechanical instability in the system, which drives the 2D-to-3D morphological transformation. Consistent with this, removal of epithelial tension through the inhibition of actomyosin contractility halted the process. These findings reveal the mechanisms by which oncogene activation within an epithelium can induce mechanical instability to drive morphological tissue transformation.
Collapse
Affiliation(s)
- Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jose J. Muñoz
- Department of Mathematics, Polytechnic University of Catalonia (UPC), Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona, Spain
- Institut de Matemàtiques de la UPC - BarcelonaTech (IMTECH), Barcelona, Spain
| | - Suze Dercksen
- Department of Biomedical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
| | - Giulia Fornabaio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Physics, University of Barcelona (UB), Barcelona, Spain
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Department of Biomedicine, University of Barcelona (UB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Cell Biology, University College London (UCL), London, UK
| | - Helen K. Matthews
- MRC Laboratory of Molecular Cell Biology, University College London (UCL), London, UK
| | - Vito Conte
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Eindhoven, Netherlands
| |
Collapse
|
24
|
Maruyama T, Fujita Y. Cell competition in vertebrates - a key machinery for tissue homeostasis. Curr Opin Genet Dev 2021; 72:15-21. [PMID: 34634592 DOI: 10.1016/j.gde.2021.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Cell competition is a process by which cells with different properties compete with each other for survival and space, and consequently suboptimal/abnormal cells are often eliminated from, in particular, epithelial tissues. In the last few years, cell competition studies have been developing at an explosive speed, and the molecular mechanisms of cell competition have been considerably revealed. For instance, upon cell competition, loser cells are eliminated from tissues via a variety of loser phenotypes, including apoptosis, cell differentiation, and cell death-independent extrusion. In addition, upstream regulatory mechanisms for the induction of these phenotypes have been elucidated. Furthermore, it has become evident that cell competition is involved in various physiological and pathological processes and thus is a crucial and indispensable homeostatic machinery that is required for embryonic development and prevention of diseases and ageing. Moreover, cell competition now has a profound impact on other research fields such as regenerative medicine. In this review, we will summarize the development of these recent studies, especially focusing on cell competition in vertebrates.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Waseda Institute for Advanced Study, Waseda University, Tokyo 162-8480, Japan.
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
25
|
Villars A, Levayer R. Collective effects in epithelial cell death and cell extrusion. Curr Opin Genet Dev 2021; 72:8-14. [PMID: 34626896 DOI: 10.1016/j.gde.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Programmed cell death, notably apoptosis, is an essential guardian of tissue homeostasis and an active contributor of organ shaping. While the regulation of apoptosis has been mostly analysed in the framework of a cell autonomous process, recent works highlighted important collective effects which can tune cell elimination. This is particularly relevant for epithelial cell death, which requires fine coordination with the neighbours in order to maintain tissue sealing during cell expulsion. In this review, we will focus on the recent advances which outline the complex multicellular communications at play during epithelial cell death and cell extrusion. We will first focus on the new unanticipated functions of neighbouring cells during extrusion, discuss the contribution of distant neighbours, and finally highlight the complex feedbacks generated by cell elimination on neighbouring cell death.
Collapse
Affiliation(s)
- Alexis Villars
- Institut Pasteur, Université de Paris, CNRS UMR3738, Department of Developmental and Stem Cell Biology, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Romain Levayer
- Institut Pasteur, Université de Paris, CNRS UMR3738, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.
| |
Collapse
|
26
|
Zulueta-Coarasa T, Rosenblatt J. The role of tissue maturity and mechanical state in controlling cell extrusion. Curr Opin Genet Dev 2021; 72:1-7. [PMID: 34560388 PMCID: PMC8860846 DOI: 10.1016/j.gde.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/03/2022]
Abstract
Epithelia remove dying or excess cells by extrusion, a process that seamlessly squeezes cells out of the layer without disrupting their barrier function. New studies shed light into the intricate relationship between extrusion, tissue mechanics, and development. They emphasize the importance of whole tissue-mechanics, rather than single cell-mechanics in controlling extrusion. Tissue compaction, stiffness, and cell-cell adhesion can impact the efficiency of cell extrusion and mechanisms that drive it, to adapt to different conditions during development or disease.
Collapse
Affiliation(s)
- Teresa Zulueta-Coarasa
- The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| |
Collapse
|
27
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
28
|
Zhou Y, Ariotti N, Rae J, Liang H, Tillu V, Tee S, Bastiani M, Bademosi AT, Collins BM, Meunier FA, Hancock JF, Parton RG. Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J Cell Biol 2021; 220:211716. [PMID: 33496726 PMCID: PMC7844427 DOI: 10.1083/jcb.202005138] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in selectively sorting lipids have not been defined. Here, we used quantitative nanoscale lipid mapping together with molecular dynamic simulations to define the caveolar lipid profile. We show that caveolin-1 (CAV1) and cavin1 individually sort distinct plasma membrane lipids. Intact caveolar structures composed of both CAV1 and cavin1 further generate a unique lipid nano-environment. The caveolar lipid sorting capability includes selectivities for lipid headgroups and acyl chains. Because lipid headgroup metabolism and acyl chain remodeling are tightly regulated, this selective lipid sorting may allow caveolae to act as transit hubs to direct communications among lipid metabolism, vesicular trafficking, and signaling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX
| | - Nicholas Ariotti
- University of New South Wales Sydney, Mark Wainwright Analytical Center, Sydney, New South Wales, Australia.,University of New South Wales Sydney, Department of Pathology, School of Medical Sciences, Kensington, Sydney, New South Wales, Australia
| | - James Rae
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX
| | - Vikas Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Shern Tee
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Michele Bastiani
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Adekunle T Bademosi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Brett M Collins
- University of New South Wales Sydney, Department of Pathology, School of Medical Sciences, Kensington, Sydney, New South Wales, Australia
| | - Frederic A Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX.,Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia.,The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Yang L, Wu H, Zhu Y, Chen X, Chen Y. Plasma exosomal caveolin-1 predicts Poor Prognosis in Ovarian Cancer. J Cancer 2021; 12:5005-5012. [PMID: 34234869 PMCID: PMC8247381 DOI: 10.7150/jca.58762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: In this study, we aimed to evaluate the levels of plasma exosomal caveolin-1(CAV1) and determine its prognostic value in ovarian cancer patients. Patients and Methods: Exosome-rich fractions were isolated from the plasma of 155 patients with ovarian cancer. TEM, NTA and western blot analysis were used to confirm the exosome integrity and purification. Results: Compared with healthy controls, plasma exosomal CAV1 levels in ovarian cancer patient were significantly down-regulated (P < 0.001). The low plasma levels of exosomal CAV1 in ovarian cancer patient plasma were related to FIGO stages, grades and lymph node metastasis (all P < 0.01). Among all ovarian cancer patients, DFS was worse in patients who had low plasma exosomal CAV1 levels compared with that in patients with high plasma exosomal CAV1 levels (P < 0.001). The OS of patients with low plasma exosomal CAV1 levels was shorter than that in patients with high plasma exosomal CAV1 levels (P < 0.001). The AUROC of plasma exosomal CAV1 was 0.76 (95% CI: 0.68-0.82) for DFS prediction in ovarian cancer patients, with a sensitivity 52.9 (95% CI: 42.8-62.9) and a specificity 88.7 (95% CI: 77.0-95.7). For OS prediction in ovarian cancer patients, the AUROC of plasma exosomal CAV1 was 0.78 (95% CI: 0.70-0.84), with a sensitivity 65.1 (95% CI: 49.1-79.0) and a specificity 81.2 (95% CI: 72.8-88.0). Conclusions: Low exosomal CAV1 levels were closely related to the FIGO stages I/II, low grade, lymph node metastasis and prognosis of ovarian cancer patients. Plasma exosomal CAV1 may be a potential biomarker for the prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Lijuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P.R. China.,Department of Obstetrics and Gynecology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Haohao Wu
- Department of Radiotherapy, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Yan Zhu
- Department of Obstetrics and Gynecology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Xiaoping Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R. China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P.R. China
| |
Collapse
|
30
|
Cell competition-induced apical elimination of transformed cells, EDAC, orchestrates the cellular homeostasis. Dev Biol 2021; 476:112-116. [PMID: 33774012 DOI: 10.1016/j.ydbio.2021.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Newly emerging transformed cells are often eliminated from the epithelium via cell competition with the surrounding normal cells. A number of recent studies using mammalian cell competition systems have demonstrated that cells with various types of oncogenic insults are extruded from the tissue in a cell death-dependent or -independent manner. Cell competition-mediated elimination of transformed cells, called EDAC (epithelial defense against cancer), represents an intrinsic anti-tumor activity within the epithelial cell society to reduce the risk of oncogenesis. Here we delineate roles and molecular mechanisms of this homeostatic process, especially focusing on mammalian models.
Collapse
|
31
|
Parton RG, Tillu V, McMahon KA, Collins BM. Key phases in the formation of caveolae. Curr Opin Cell Biol 2021; 71:7-14. [PMID: 33677149 DOI: 10.1016/j.ceb.2021.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Caveolae are abundant plasma membrane pits formed by the coordinated action of peripheral and integral membrane proteins and membrane lipids. Here, we discuss recent studies that are starting to provide a glimpse of how filamentous cavin proteins, membrane-embedded caveolin proteins, and specific plasma membrane lipids are brought together to make the unique caveola surface domain. Protein assembly involves multiple low-affinity interactions that are dependent on 'fuzzy' charge-dependent interactions mediated in part by disordered cavin and caveolin domains. We propose that cavins help generate a lipid domain conducive to full insertion of caveolin into the bilayer to promote caveola formation. The synergistic assembly of these dynamic protein complexes supports the formation of a metastable membrane domain that can be readily disassembled both in response to cellular stress and during endocytic trafficking. We present a mechanistic model for generation of caveolae based on these new insights.
Collapse
Affiliation(s)
- Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia; The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland, 4072, Australia.
| | - Vikas Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Kerrie-Ann McMahon
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
32
|
Atieh Y, Wyatt T, Zaske AM, Eisenhoffer GT. Pulsatile contractions promote apoptotic cell extrusion in epithelial tissues. Curr Biol 2021; 31:1129-1140.e4. [PMID: 33400921 DOI: 10.1016/j.cub.2020.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Extrusion is a mechanism used to eliminate unfit, excess, or dying cells from epithelial tissues. The initial events guiding which cells will be selectively extruded from the epithelium are not well understood. Here, we induced damage in a subset of epithelial cells in the developing zebrafish and used time-lapse imaging to examine cell and cytoskeletal dynamics leading to extrusion. We show that cell extrusion is preceded by actomyosin contractions that are pulsatile. Our data show that pulsatile contractions are induced by a junctional to medial re-localization of myosin. Analysis of cell area during contractions revealed that cells pulsing with the longest duration and highest amplitude undergo progressive area loss and extrude. Although pulses were driven by local increases in tension, damage to many cells promoted an overall decrease in the tensile state of the epithelium. We demonstrate that caspase activation leads to sphingosine-1-phosphate enrichment that controls both tissue tension and pulses to dictate areas of extrusion. These data suggest that the kinetics of pulsatile contractions define a key behavioral difference between extruding and non-extruding cells and are predictive of extrusion. Altogether, our study provides mechanistic insight into how localized changes in physical forces are coordinated to remove defective cells for homeostatic maintenance of living epithelial tissues.
Collapse
Affiliation(s)
- Youmna Atieh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Wyatt
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Ana Maria Zaske
- Atomic Force Microscopy Service Center, The University of Texas Health Science Center, Houston, TX, USA
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
33
|
Cavanaugh KE, Chmiel TA, Gardel ML. Caveolae Spelunking: Exploring a New Modality in Tensional Homeostasis. Dev Cell 2020; 54:3-5. [PMID: 32634397 DOI: 10.1016/j.devcel.2020.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Developmental Cell, Teo et al. (2020) uncover how caveolae control a PIP2-FMNL2 pathway that regulates tensional homeostasis at cell-cell junctions. They further examine caveolae-mediated tensional dysregulation and its functional consequences in oncogenic cell extrusion.
Collapse
Affiliation(s)
- Kate E Cavanaugh
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Theresa A Chmiel
- James Franck Institute, Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; James Franck Institute, Department of Physics, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Del Pozo MA, Lolo FN, Echarri A. Caveolae: Mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr Opin Cell Biol 2020; 68:113-123. [PMID: 33188985 DOI: 10.1016/j.ceb.2020.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Mechanical forces (extracellular matrix stiffness, vascular shear stress, and muscle stretching) reaching the plasma membrane (PM) determine cell behavior. Caveolae are PM-invaginated nanodomains with specific lipid and protein composition. Being highly abundant in mechanically challenged tissues (muscles, lungs, vessels, and adipose tissues), they protect cells from mechanical stress damage. Caveolae flatten upon increased PM tension, enabling both force sensing and accommodation, critical for cell mechanoprotection and homeostasis. Thus, caveolae are highly plastic, ranging in complexity from flattened membranes to vacuolar invaginations surrounded by caveolae-rosettes-which also contribute to mechanoprotection. Caveolar components crosstalk with mechanotransduction pathways and recent studies show that they translocate from the PM to the nucleus to convey stress information. Furthermore, caveolae components can regulate membrane traffic from/to the PM to adapt to environmental mechanical forces. The interdependence between lipids and caveolae starts to be understood, and the relevance of caveolae-dependent membrane trafficking linked to mechanoadaption to different physiopathological processes is emerging.
Collapse
Affiliation(s)
- Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
35
|
Teo JL, Tomatis VM, Coburn L, Lagendijk AK, Schouwenaar IM, Budnar S, Hall TE, Verma S, McLachlan RW, Hogan BM, Parton RG, Yap AS, Gomez GA. Src kinases relax adherens junctions between the neighbors of apoptotic cells to permit apical extrusion. Mol Biol Cell 2020; 31:2557-2569. [PMID: 32903148 PMCID: PMC7851871 DOI: 10.1091/mbc.e20-01-0084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Epithelia can eliminate apoptotic cells by apical extrusion. This is a complex morphogenetic event where expulsion of the apoptotic cell is accompanied by rearrangement of its immediate neighbors to form a rosette. A key mechanism for extrusion is constriction of an actomyosin network that neighbor cells form at their interface with the apoptotic cell. Here we report a complementary process of cytoskeletal relaxation that occurs when cortical contractility is down-regulated at the junctions between those neighbor cells themselves. This reflects a mechanosensitive Src family kinase (SFK) signaling pathway that is activated in neighbor cells when the apoptotic cell relaxes shortly after injury. Inhibiting SFK signaling blocks both the expulsion of apoptotic cells and the rosette formation among their neighbor cells. This reveals the complex pattern of spatially distinct contraction and relaxation that must be established in the neighboring epithelium for apoptotic cells to be extruded.
Collapse
Affiliation(s)
- Jessica L. Teo
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Vanesa M. Tomatis
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Luke Coburn
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom, AB24 3UE
| | - Anne K. Lagendijk
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Irin-Maya Schouwenaar
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Srikanth Budnar
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Thomas E. Hall
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Suzie Verma
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Robert W. McLachlan
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Benjamin M. Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Robert G. Parton
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Alpha S. Yap
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
| | - Guillermo A. Gomez
- Division of Cell and Developmental Biology, The University of Queensland, St Lucia, Queensland, Australia, 4072
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia, 5000
| |
Collapse
|
36
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
37
|
A Biologist's Guide to Traction Force Microscopy Using Polydimethylsiloxane Substrate for Two-Dimensional Cell Cultures. STAR Protoc 2020; 1:100098. [PMID: 33111126 PMCID: PMC7580222 DOI: 10.1016/j.xpro.2020.100098] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular traction forces influence epithelial behavior, including wound healing and cell extrusion. Here, we describe a simple in vitro traction force microscopy (TFM) protocol using ECM protein-coated polydimethylsiloxane substrate and widefield fluorescence microscopy. We include detailed steps for analysis so readers can obtain traction forces to study the mechanobiology of epithelial cells. We also provide guidelines on when to adopt another common class of TFM protocols based on polyacrylamide hydrogels. For complete details on the use and execution of this protocol, please refer to Saw et al. (2017) and Teo et al. (2020).
Collapse
|
38
|
Morris RG, Husain KB, Budnar S, Yap AS. Anillin: The First Proofreading-like Scaffold? Bioessays 2020; 42:e2000055. [PMID: 32735042 DOI: 10.1002/bies.202000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/15/2020] [Indexed: 01/17/2023]
Abstract
Scaffolds are fundamental to many cellular signaling pathways. In this essay, a novel class of scaffolds are proposed, whose action bears striking resemblance to kinetic proofreading. Commonly, scaffold proteins are thought to work as tethers, bringing different components of a pathway together to improve the likelihood of their interaction. However, recent studies show that the cytoskeletal scaffold, anillin, supports contractile signaling by a novel, non-tethering mechanism that controls the membrane dissociation kinetics of RhoA. More generally, such proof-reading-like scaffolds are distinguished from tethers by a rare type of cooperativity, manifest as a super-linear relationship between scaffold concentration and signaling efficiency. The evidence for this hypothesis is reviewed, its conceptual ramifications are considered, and research questions for the future are discussed.
Collapse
Affiliation(s)
- Richard G Morris
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kabir B Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA
| | - Srikanth Budnar
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Alpha S Yap
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|