1
|
Aparicio-Yuste R, Hundsdorfer L, Bastounis EE, Gomez-Benito MJ. Hybrid model to simulate host cell biomechanics and infection spread during intracellular infection of epithelial monolayers. Comput Biol Med 2024; 185:109506. [PMID: 39662314 DOI: 10.1016/j.compbiomed.2024.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Mechanical signals are crucial in regulating the response of cells in a monolayer to both physiological and pathological stressors, including intracellular bacterial infections. In particular, during intracellular infection of epithelial cells in monolayer with the food-borne bacterial pathogen Listeria monocytogenes, cellular biomechanics dictates the degree of bacterial dissemination across the monolayer. This occurs through a process whereby surrounder uninfected cells mechanically compete and eventually extrude infected cells. However, the plethora of physical mechanisms involved and their temporal dynamics are still not fully uncovered, which could inform whether they benefit or harm the host. To further investigate these mechanisms, we propose a two-dimensional hybrid computational model that combines an agent-based model with a finite element method to simulate the kinematics and dynamics of epithelial cell monolayers in the absence or presence of infection. The model accurately replicated the impact of cell density on the mechanical behaviour of uninfected monolayers, showing that increased cell density reduces cell motility and coordination of motion, cell fluidity and monolayer stresses. Moreover, when simulating the intercellular spread of infection, the model successfully reproduced the mechanical competition between uninfected and infected cells. Infected cells showed a reduction in cell area, while the surrounder cells migrated towards the infection site, exerting increased monolayer stresses, consistent with our in vitro observations. This model offers a powerful tool for studying epithelial monolayers in health and disease, by providing in silico predictions of cell shapes, kinematics and dynamics that can then be tested experimentally.
Collapse
Affiliation(s)
- Raul Aparicio-Yuste
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain; Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany.
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain.
| |
Collapse
|
2
|
Khandekar A, Ellis SJ. An expanded view of cell competition. Development 2024; 151:dev204212. [PMID: 39560103 DOI: 10.1242/dev.204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Cell competition arises in heterogeneous tissues when neighbouring cells sense their relative fitness and undergo selection. It has been a challenge to define contexts in which cell competition is a physiologically relevant phenomenon and to understand the cellular features that underlie fitness and fitness sensing. Drawing on examples across a range of contexts and length scales, we illuminate molecular and cellular features that could underlie fitness in diverse tissue types and processes to promote and reinforce long-term maintenance of tissue function. We propose that by broadening the scope of how fitness is defined and the circumstances in which cell competition can occur, the field can unlock the potential of cell competition as a lens through which heterogeneity and its role in the fundamental principles of complex tissue organisation can be understood.
Collapse
Affiliation(s)
- Ameya Khandekar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| |
Collapse
|
3
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
4
|
An L, Han Y, Jiao S, Zhou Z. Road of no return - loss of TP53 paves a defined evolution path from gastric preneoplasia-to-cancer. Cancer Biol Med 2024; 20:j.issn.2095-3941.2023.0435. [PMID: 38318814 PMCID: PMC10845934 DOI: 10.20892/j.issn.2095-3941.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Liwei An
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Stomatology, Shanghai Tenth People’s Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People’s Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Ayukawa S, Kamoshita N, Maruyama T. Epithelial recognition and elimination against aberrant cells. Semin Immunopathol 2024; 45:521-532. [PMID: 38411739 DOI: 10.1007/s00281-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
Epithelial cells, which are non-immune cells, not only function as a physical defence barrier but also continuously monitor and eliminate aberrant epithelial cells in their vicinity. In other words, it has become evident that epithelial cells possess immune cell-like functions. In fact, recent research has revealed that epithelial cells recognise the Major Histocompatibility Complex I (MHC-I) of aberrant cells as a mechanism for surveillance. This cellular defence mechanism of epithelial cells probably detects aberrant cells more promptly than the conventional immune response, making it a novel and primary biological defence. Furthermore, there is the potential for this new immune-like biological defence mechanism to establish innovative treatment for disease prevention, leading to increasing anticipation for its future medical applications. In this review, we aim to summarise the recognition and attack mechanisms of aberrant cells by epithelial cells in mammals, with a particular focus on the field of cancer. Additionally, we discuss the potential therapeutic applications of epithelial cell-based defence against cancer, including novel prophylactic treatment methods based on molecular mechanisms.
Collapse
Affiliation(s)
- Shiyu Ayukawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Medical Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Nagisa Kamoshita
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Takeshi Maruyama
- Department of Medical Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Tokyo, Japan.
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan.
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan.
| |
Collapse
|
6
|
Feng Y, Wang S, Liu X, Han Y, Xu H, Duan X, Xie W, Tian Z, Yuan Z, Wan Z, Xu L, Qin S, He K, Huang J. Geometric constraint-triggered collagen expression mediates bacterial-host adhesion. Nat Commun 2023; 14:8165. [PMID: 38071397 PMCID: PMC10710423 DOI: 10.1038/s41467-023-43827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cells living in geometrically confined microenvironments are ubiquitous in various physiological processes, e.g., wound closure. However, it remains unclear whether and how spatially geometric constraints on host cells regulate bacteria-host interactions. Here, we reveal that interactions between bacteria and spatially constrained cell monolayers exhibit strong spatial heterogeneity, and that bacteria tend to adhere to these cells near the outer edges of confined monolayers. The bacterial adhesion force near the edges of the micropatterned monolayers is up to 75 nN, which is ~3 times higher than that at the centers, depending on the underlying substrate rigidities. Single-cell RNA sequencing experiments indicate that spatially heterogeneous expression of collagen IV with significant edge effects is responsible for the location-dependent bacterial adhesion. Finally, we show that collagen IV inhibitors can potentially be utilized as adjuvants to reduce bacterial adhesion and thus markedly enhance the efficacy of antibiotics, as demonstrated in animal experiments.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Shuyi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, 102206, Beijing, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Wenyue Xie
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Zhuoling Tian
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Siying Qin
- School of Life Sciences, Peking University, 100871, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Constantinou I, Bastounis EE. Cell-stretching devices: advances and challenges in biomedical research and live-cell imaging. Trends Biotechnol 2023; 41:939-950. [PMID: 36604290 DOI: 10.1016/j.tibtech.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Basic human functions such as breathing and digestion require mechanical stretching of cells and tissues. However, when it comes to laboratory experiments, the mechanical stretching that cells experience in the body is not often replicated, limiting the biomimetic nature of the studies and the relevance of results. Herein, we establish the importance of mechanical stretching during in vitro investigations by reviewing seminal works performed using cell-stretching platforms, highlighting important outcomes of these works as well as the engineering characteristics of the platforms used. Emphasis is placed on the compatibility of cell-stretching devices (CSDs) with live-cell imaging as well as their limitations and on the research advancements that could arise from live-cell imaging performed during cell stretching.
Collapse
Affiliation(s)
- Iordania Constantinou
- Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Effie E Bastounis
- Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" EXC 2124, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Bastounis E, Buttery S. Publishing protocols as a new PI. STAR Protoc 2023; 4:102173. [PMID: 37200195 DOI: 10.1016/j.xpro.2023.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Effie Bastounis recently started a lab at the University of Tübingen that studies how physical forces guide the interactions of host cells with bacterial pathogens. Former STAR Protocols Lead editor Shawnna Buttery discussed with Effie her experience publishing research at Cell Press journals and how that led to her publishing in STAR Protocols. Effie also shared her thoughts on the usefulness of protocols journals and the importance of protocols to a new PI. For more information on the protocols related to this backstory, please refer to Muenkel et al.1 and Bastounis et al.2.
Collapse
Affiliation(s)
- Effie Bastounis
- Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University of Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" EXC 2124, Eberhard Karls University of Tübingen, Germany
| | | |
Collapse
|
9
|
Fu L, Lu K, Jiao Q, Chen X, Jia F. The Regulation and Double-Edged Roles of the Deubiquitinase OTUD5. Cells 2023; 12:cells12081161. [PMID: 37190070 DOI: 10.3390/cells12081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.
Collapse
Affiliation(s)
- Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Qian Jiao
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Xi Chen
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Fengju Jia
- School of Nursing, Qingdao University, Qingdao 266072, China
| |
Collapse
|
10
|
Moshiri J, Craven AR, Mixon SB, Amieva MR, Kirkegaard K. Mechanosensitive extrusion of Enterovirus A71-infected cells from colonic organoids. Nat Microbiol 2023; 8:629-639. [PMID: 36914754 PMCID: PMC10066035 DOI: 10.1038/s41564-023-01339-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Enterovirus A71 causes severe disease upon systemic infection, sometimes leading to life-threatening neurological dysfunction. However, in most cases infection is asymptomatic and limited to the gastrointestinal tract, where virus is amplified for transmission. Picornaviruses have previously been shown to exit infected cells via either cell lysis or secretion of vesicles. Here we report that entire Enterovirus A71-infected cells are specifically extruded from the apical surface of differentiated human colon organoids, as observed by confocal microscopy. Differential sensitivity to chemical and peptide inhibitors demonstrated that extrusion of virus-infected cells is dependent on force sensing via mechanosensitive ion channels rather than apoptotic cell death. When isolated and used as inoculum, intact virus-containing extruded cells can initiate new infections. In contrast, when mechanical force sensing is inhibited, large amounts of free virus are released. Thus, extrusion of live, virus-infected cells from intact epithelial tissue is likely to benefit both the integrity of host tissues and the protected spread of this faecal-oral pathogen within and between hosts.
Collapse
Affiliation(s)
- Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Ailsa R Craven
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Sara B Mixon
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Giron-Ceron D, Jaumouillé V. The mechanosensor Piezo1 rings the alarm on epithelial intruders. Trends Biochem Sci 2023; 48:500-502. [PMID: 36959017 DOI: 10.1016/j.tibs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Recognition of invasive pathogens by the epithelium that is constantly exposed to microbial products remains incompletely understood. In a recent study, Tadala et al. demonstrated that the entry process of intracellular bacteria is itself a mechanical signal that is detected by the stretch-activated channel Piezo1, which triggers innate immune signaling.
Collapse
Affiliation(s)
- Diana Giron-Ceron
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Valentin Jaumouillé
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
12
|
Muenkel M, Aparicio-Yuste R, Tal MC, Kraiczy P, Bastounis EE. Spatiotemporal characterization of endothelial cell motility and physical forces during exposure to Borrelia burgdorferi. STAR Protoc 2022; 3:101832. [DOI: 10.1016/j.xpro.2022.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Hartland EL, Ghosal D, Giogha C. Manipulation of epithelial cell architecture by the bacterial pathogens Listeria and Shigella. Curr Opin Cell Biol 2022; 79:102131. [PMID: 36215855 DOI: 10.1016/j.ceb.2022.102131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Subversion of the host cell cytoskeleton is a virulence attribute common to many bacterial pathogens. On mucosal surfaces, bacteria have evolved distinct ways of interacting with the polarised epithelium and manipulating host cell structure to propagate infection. For example, Shigella and Listeria induce cytoskeletal changes to induce their own uptake into enterocytes in order to replicate within an intracellular environment and then spread from cell-to-cell by harnessing the host actin cytoskeleton. In this review, we highlight some recent studies that advance our understanding of the role of the host cell cytoskeleton in the mechanical and molecular processes of pathogen invasion, cell-to-cell spread and the impact of infection on epithelial intercellular tension and innate mucosal defence.
Collapse
Affiliation(s)
- Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Ceragenin CSA-13 displays high antibacterial efficiency in a mouse model of urinary tract infection. Sci Rep 2022; 12:19164. [PMID: 36357517 PMCID: PMC9649698 DOI: 10.1038/s41598-022-23281-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Ceragenins (CSAs) are synthetic, lipid-based molecules that display activities of natural antimicrobial peptides. Previous studies demonstrated their high in vitro activity against pathogens causing urinary tract infections (UTIs), but their efficiency in vivo was not explored to date. In this study, we aimed to investigate the bactericidal efficiency of ceragenins against E. coli (Xen14 and clinical UPEC strains) isolates both in vitro and in vivo, as well to explore CSA-13 biodistribution and ability to modulate nanomechanical alterations of infected tissues using animal model of UTI. CSA-44, CSA-131 and particularly CSA-13 displayed potent bactericidal effect against tested E. coli strains, and this effect was mediated by induction of oxidative stress. Biodistribution studies indicated that CSA-13 accumulates in kidneys and liver and is eliminated with urine and bile acid. We also observed that ceragenin CSA-13 reverses infection-induced alterations in mechanical properties of mouse bladders tissue, which confirms the preventive role of CSA-13 against bacteria-induced tissue damage and potentially promote the restoration of microenvironment with biophysical features unfavorable for bacterial growth and spreading. These data justify the further work on employment of CSA-13 in the treatment of urinary tract infections.
Collapse
|
15
|
Yuste RA, Muenkel M, Axarlis K, Gómez Benito MJ, Reuss A, Blacker G, Tal MC, Kraiczy P, Bastounis EE. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience 2022; 25:104793. [PMID: 35992087 PMCID: PMC9389243 DOI: 10.1016/j.isci.2022.104793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Borrelia burgdorferi (Bb), a vector-borne bacterial pathogen and the causative agent of Lyme disease, can spread to distant tissues in the human host by traveling in and through monolayers of endothelial cells (ECs) lining the vasculature. To examine whether Bb alters the physical forces of ECs to promote its dissemination, we exposed ECs to Bb and observed a sharp and transient increase in EC traction and intercellular forces, followed by a prolonged decrease in EC motility and physical forces. All variables returned to baseline at 24 h after exposure. RNA sequencing analysis revealed an upregulation of innate immune signaling pathways during early but not late Bb exposure. Exposure of ECs to heat-inactivated Bb recapitulated only the early weakening of EC mechanotransduction. The differential responses to live versus heat-inactivated Bb indicate a tight interplay between innate immune signaling and physical forces in host ECs and suggest their active modulation by Bb. Early exposure to Borrelia decreases endothelial cell motility and physical forces Early exposure to Borrelia also upregulates the host’s innate immune signaling pathways Host cell mechanics and signaling return to steady state at late exposure times Exposure to dead bacteria steadily reduces motility and physical forces of host cells
Collapse
|
16
|
Aparicio-Yuste R, Muenkel M, Clark AG, Gómez-Benito MJ, Bastounis EE. A Stiff Extracellular Matrix Favors the Mechanical Cell Competition that Leads to Extrusion of Bacterially-Infected Epithelial Cells. Front Cell Dev Biol 2022; 10:912318. [PMID: 35813215 PMCID: PMC9257086 DOI: 10.3389/fcell.2022.912318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cell competition refers to the mechanism whereby less fit cells (“losers”) are sensed and eliminated by more fit neighboring cells (“winners”) and arises during many processes including intracellular bacterial infection. Extracellular matrix (ECM) stiffness can regulate important cellular functions, such as motility, by modulating the physical forces that cells transduce and could thus modulate the output of cellular competitions. Herein, we employ a computational model to investigate the previously overlooked role of ECM stiffness in modulating the forceful extrusion of infected “loser” cells by uninfected “winner” cells. We find that increasing ECM stiffness promotes the collective squeezing and subsequent extrusion of infected cells due to differential cell displacements and cellular force generation. Moreover, we discover that an increase in the ratio of uninfected to infected cell stiffness as well as a smaller infection focus size, independently promote squeezing of infected cells, and this phenomenon is more prominent on stiffer compared to softer matrices. Our experimental findings validate the computational predictions by demonstrating increased collective cell extrusion on stiff matrices and glass as opposed to softer matrices, which is associated with decreased bacterial spread in the basal cell monolayer in vitro. Collectively, our results suggest that ECM stiffness plays a major role in modulating the competition between infected and uninfected cells, with stiffer matrices promoting this battle through differential modulation of cell mechanics between the two cell populations.
Collapse
Affiliation(s)
- Raúl Aparicio-Yuste
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Marie Muenkel
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology/Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - María J. Gómez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| | - Effie E. Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| |
Collapse
|
17
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
18
|
Mori Y, Shiratsuchi N, Sato N, Chaya A, Tanimura N, Ishikawa S, Kato M, Kameda I, Kon S, Haraoka Y, Ishitani T, Fujita Y. Extracellular ATP facilitates cell extrusion from epithelial layers mediated by cell competition or apoptosis. Curr Biol 2022; 32:2144-2159.e5. [PMID: 35417667 DOI: 10.1016/j.cub.2022.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
For the maintenance of epithelial homeostasis, various aberrant or dysfunctional cells are actively eliminated from epithelial layers. This cell extrusion process mainly falls into two modes: cell-competition-mediated extrusion and apoptotic extrusion. However, it is not clearly understood whether and how these processes are governed by common molecular mechanisms. In this study, we demonstrate that the reactive oxygen species (ROS) levels are elevated within a wide range of epithelial layers around extruding transformed or apoptotic cells. The downregulation of ROS suppresses the extrusion process. Furthermore, ATP is extracellularly secreted from extruding cells, which promotes the ROS level and cell extrusion. Moreover, the extracellular ATP and ROS pathways positively regulate the polarized movements of surrounding cells toward extruding cells in both cell-competition-mediated and apoptotic extrusion. Hence, extracellular ATP acts as an "extrude me" signal and plays a prevalent role in cell extrusion, thereby sustaining epithelial homeostasis and preventing pathological conditions or disorders.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Naoka Shiratsuchi
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan
| | - Nanami Sato
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Azusa Chaya
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan
| | - Nobuyuki Tanimura
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Susumu Ishikawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Mugihiko Kato
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Ikumi Kameda
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Yukinari Haraoka
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan.
| |
Collapse
|
19
|
Yeh YT, Skinner DE, Criado-Hidalgo E, Chen NS, Garcia-De Herreros A, El-Sakkary N, Liu L, Zhang S, Kandasamy A, Chien S, Lasheras JC, del Álamo JC, Caffrey CR. Biomechanical interactions of Schistosoma mansoni eggs with vascular endothelial cells facilitate egg extravasation. PLoS Pathog 2022; 18:e1010309. [PMID: 35316298 PMCID: PMC8939816 DOI: 10.1371/journal.ppat.1010309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/26/2022] [Indexed: 12/03/2022] Open
Abstract
The eggs of the parasitic blood fluke, Schistosoma, are the main drivers of the chronic pathologies associated with schistosomiasis, a disease of poverty afflicting approximately 220 million people worldwide. Eggs laid by Schistosoma mansoni in the bloodstream of the host are encapsulated by vascular endothelial cells (VECs), the first step in the migration of the egg from the blood stream into the lumen of the gut and eventual exit from the body. The biomechanics associated with encapsulation and extravasation of the egg are poorly understood. We demonstrate that S. mansoni eggs induce VECs to form two types of membrane extensions during encapsulation; filopodia that probe eggshell surfaces and intercellular nanotubes that presumably facilitate VEC communication. Encapsulation efficiency, the number of filopodia and intercellular nanotubes, and the length of these structures depend on the egg’s vitality and, to a lesser degree, its maturation state. During encapsulation, live eggs induce VEC contractility and membranous structures formation in a Rho/ROCK pathway-dependent manner. Using elastic hydrogels embedded with fluorescent microbeads as substrates to culture VECs, live eggs induce VECs to exert significantly greater contractile forces during encapsulation than dead eggs, which leads to 3D deformations on both the VEC monolayer and the flexible substrate underneath. These significant mechanical deformations cause the VEC monolayer tension to fluctuate with the eventual rupture of VEC junctions, thus facilitating egg transit out of the blood vessel. Overall, our data on the mechanical interplay between host VECs and the schistosome egg improve our understanding of how this parasite manipulates its immediate environment to maintain disease transmission. Schistosomiasis, which infects over 200 million people, is a painful disease of poverty that is caused by inflammatory responses to the Schistosoma blood fluke’s eggs. To continue the parasite’s life cycle, eggs must escape the blood vessels and migrate through tissues of the host to the alimentary canal for exit into the environment. The biomechanical processes that help the immobile eggs to cross the blood vessel’s vascular endothelial cells (VECs) as the first step in this migration are not understood. We found that live but not dead eggs induce VECs to crawl over and encapsulate them. VECs in contact with live eggs make membranous extensions (filopodia) to explore the egg’s surface and also form long intercellular nanotubes to communicate with neighboring cells. VECs stimulate particular (Rho/ROCK) biochemical pathways to increase cell contractility and the forces generated are large enough to eventually break the junctions between cells and allow passage of the eggs into the underlying tissue. Our findings show how schistosome eggs activate and interact with VECs to initiate their escape from the bloodstream.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (YTY); (JCdA); (CRC)
| | - Danielle E. Skinner
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ernesto Criado-Hidalgo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Natalie Shee Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Antoni Garcia-De Herreros
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Lawrence Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Shun Zhang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle Washington, United States of America
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle Washington, United States of America
- * E-mail: (YTY); (JCdA); (CRC)
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (YTY); (JCdA); (CRC)
| |
Collapse
|
20
|
Janmey PA, Hinz B, McCulloch CA. Physics and Physiology of Cell Spreading in Two and Three Dimensions. Physiology (Bethesda) 2021; 36:382-391. [PMID: 34704856 PMCID: PMC8560373 DOI: 10.1152/physiol.00020.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Abstract
Cells spread on surfaces and within three-dimensional (3-D) matrixes as they grow, divide, and move. Both chemical and physical signals orchestrate spreading during normal development, wound healing, and pathological states such as fibrosis and tumor growth. Diverse molecular mechanisms drive different forms of cell spreading. This article discusses mechanisms by which cells spread in 2-D and 3-D and illustrates new directions in studies of this aspect of cell function.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Maruyama T, Fujita Y. Cell competition in vertebrates - a key machinery for tissue homeostasis. Curr Opin Genet Dev 2021; 72:15-21. [PMID: 34634592 DOI: 10.1016/j.gde.2021.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Cell competition is a process by which cells with different properties compete with each other for survival and space, and consequently suboptimal/abnormal cells are often eliminated from, in particular, epithelial tissues. In the last few years, cell competition studies have been developing at an explosive speed, and the molecular mechanisms of cell competition have been considerably revealed. For instance, upon cell competition, loser cells are eliminated from tissues via a variety of loser phenotypes, including apoptosis, cell differentiation, and cell death-independent extrusion. In addition, upstream regulatory mechanisms for the induction of these phenotypes have been elucidated. Furthermore, it has become evident that cell competition is involved in various physiological and pathological processes and thus is a crucial and indispensable homeostatic machinery that is required for embryonic development and prevention of diseases and ageing. Moreover, cell competition now has a profound impact on other research fields such as regenerative medicine. In this review, we will summarize the development of these recent studies, especially focusing on cell competition in vertebrates.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Waseda Institute for Advanced Study, Waseda University, Tokyo 162-8480, Japan.
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
22
|
Villars A, Levayer R. Collective effects in epithelial cell death and cell extrusion. Curr Opin Genet Dev 2021; 72:8-14. [PMID: 34626896 DOI: 10.1016/j.gde.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Programmed cell death, notably apoptosis, is an essential guardian of tissue homeostasis and an active contributor of organ shaping. While the regulation of apoptosis has been mostly analysed in the framework of a cell autonomous process, recent works highlighted important collective effects which can tune cell elimination. This is particularly relevant for epithelial cell death, which requires fine coordination with the neighbours in order to maintain tissue sealing during cell expulsion. In this review, we will focus on the recent advances which outline the complex multicellular communications at play during epithelial cell death and cell extrusion. We will first focus on the new unanticipated functions of neighbouring cells during extrusion, discuss the contribution of distant neighbours, and finally highlight the complex feedbacks generated by cell elimination on neighbouring cell death.
Collapse
Affiliation(s)
- Alexis Villars
- Institut Pasteur, Université de Paris, CNRS UMR3738, Department of Developmental and Stem Cell Biology, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Romain Levayer
- Institut Pasteur, Université de Paris, CNRS UMR3738, Department of Developmental and Stem Cell Biology, F-75015 Paris, France.
| |
Collapse
|
23
|
Liu X, Zhu K, Duan X, Wang P, Han Y, Peng W, Huang J. Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization. Biomaterials 2021; 277:121098. [PMID: 34478931 DOI: 10.1016/j.biomaterials.2021.121098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Pathogenic bacteria evolve multiple strategies to hijack host cells for intracellular survival and persistent infections. Previous studies have revealed the intricate interactions between bacteria and host cells at genetic, biochemical and even single molecular levels. Mechanical interactions and mechanotransduction exert a crucial impact on the behaviors and functions of pathogenic bacteria and host cells, owing to the ubiquitous mechanical microenvironments like extracellular matrix (ECM) stiffness. Nevertheless, it remains unclear whether and how ECM stiffness modulates bacterial infections and the sequential outcome of antibacterial therapy. Here we show that bacteria tend to adhere to and invade epithelial cells located on the regions with relatively high traction forces. ECM stiffness regulates spatial distributions of bacteria during the invasion through arrangements of F-actin cytoskeletons in host cells. Depolymerization of cytoskeletons in the host cells induced by bacterial infection decreases intracellular accumulation of antibiotics, thus preventing the eradication of invaded bacterial pathogens. These findings not only reveal the key regulatory role of ECM stiffness, but suggest that the coordination of cytoskeletons may provide alternative approaches to improve antibiotic therapy against multidrug resistant bacteria in clinic.
Collapse
Affiliation(s)
- Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Peng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
24
|
Levayer R. Cell competition: Bridging the scales through cell-based modeling. Curr Biol 2021; 31:R856-R858. [PMID: 34256920 DOI: 10.1016/j.cub.2021.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cell competition is a context-dependent, cell-elimination process that has been proposed to rely on several overlapping mechanisms. A new study combining cell-based modeling and quantitative microscopy data helps to evaluate the main contributors of mutant cell elimination.
Collapse
Affiliation(s)
- Romain Levayer
- Institut Pasteur, Department of Developmental and Stem Cell Biology, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
25
|
Bastounis EE, Radhakrishnan P, Prinz CK, Theriot JA. Volume measurement and biophysical characterization of mounds in epithelial monolayers after intracellular bacterial infection. STAR Protoc 2021; 2:100551. [PMID: 34095865 PMCID: PMC8165451 DOI: 10.1016/j.xpro.2021.100551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mechanical forces are important in (patho)physiological processes, including how host epithelial cells interact with intracellular bacterial pathogens. As these pathogens disseminate within host epithelial monolayers, large mounds of infected cells are formed due to the forceful action of surrounding uninfected cells, limiting bacterial spread across the basal cell monolayer. Here, we present a protocol for mound volume measurement and biophysical characterization of mound formation. Modifications to this protocol may be necessary for studying different host cell types or pathogenic organisms. For complete details on the use and execution of this protocol, please refer to Bastounis et al. (2021). Protocol allows for formation of mounds of extruded infected cells in cell monolayers Confocal microscopy and image processing to calculate volume of extruded domains Laser wounding protocol for tension estimation built around mounds TFM incorporated to measure traction stresses of infected mounders and surrounders
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.,Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tübingen, Tübingen 72074, Germany
| | - Prathima Radhakrishnan
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Christopher K Prinz
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Abbott CR, Newsome TP. A tight squeeze: host control of Listeria invasion. Dev Cell 2021; 56:404-405. [PMID: 33621490 DOI: 10.1016/j.devcel.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Organisms resist bacterial infection at many levels. One of the least understood is the collective action of cells to limit pathogen spread. In this issue of Developmental Cell, Bastounis et al. (2021) describe the extrusion of Listeria monocytogenes from an epithelial monolayer by surrounding bystander cells.
Collapse
Affiliation(s)
- Caitlin R Abbott
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Timothy P Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|