1
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
2
|
Olczak A, Pieczonka TD, Ławicki S, Łukaszyk K, Pulawska-Czub A, Cambier L, Kobielak K. The overexpression of R-spondin 3 affects hair morphogenesis and hair development along with the formation and maturation of the hair follicle stem cells. Front Physiol 2024; 15:1424077. [PMID: 39351282 PMCID: PMC11439821 DOI: 10.3389/fphys.2024.1424077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Mice hair follicles (HFs) are a valuable model for studying various aspects of hair biology, including morphogenesis, development, and regeneration due to their easily observable phenotype and genetic manipulability. The initiation and progression of hair follicle morphogenesis, as well as the hair follicle cycle, are regulated by various signaling pathways, of which the main role is played by the Wingless-type MMTV integration site family (Wnt) and the Bone Morphogenic Protein (BMP). During the hair follicle cycle, the BMP pathway maintains hair follicle stem cells (HFSCs) in a dormant state while the Wnt pathway activates them for hair growth. Given the pivotal role of the Wnt pathway in hair biology and HFSCs regulation, we investigated the influence of the Wnt modulator - R-spondin 3 (Rspo3), in these processes. For this purpose, we developed a transgenic mice model with the overexpression of Rspo3 (Rspo3GOF) in the whole ectoderm and its derivatives, starting from early morphogenesis. Rspo3GOF mice exhibited a distinct phenotype with sparse hair and visible bald areas, caused by reduced proliferation and increased apoptosis of hair matrix progenitor cells, which resulted in a premature anagen-to-catagen transition with a shortened growth phase and decreased overall length of all hair types. In addition, Rspo3GOF promoted induction of auchene and awl, canonical Wnt-dependent hair type during morphogenesis, but the overall hair amount remained reduced. We also discovered a delay in the pre-bulge formation during morphogenesis and prolonged immaturity of the HFSC population in the bulge region postnatally, which further impaired proper hair regeneration throughout the mice's lifespan. Our data supported that Rspo3 function observed in our model works in HFSCs' formation of pre-bulge during morphogenesis via enhancing activation of the canonical Wnt pathway, whereas in contrast, in the postnatal immature bulge, activation of canonical Wnt signaling was attenuated. In vitro studies on keratinocytes revealed changes in proliferation, migration, and colony formation, highlighting the inhibitory effect of constitutive overexpression of Rspo3 on these cellular processes. Our research provides novel insights into the role of Rspo3 in the regulation of hair morphogenesis and development, along with the formation and maturation of the HFSCs, which affect hair regeneration.
Collapse
Affiliation(s)
- Alicja Olczak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Tomasz D. Pieczonka
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Szymon Ławicki
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Konrad Łukaszyk
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Anna Pulawska-Czub
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Linda Cambier
- The Vision Center and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Krzysztof Kobielak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| |
Collapse
|
3
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Huycke TR, Häkkinen TJ, Miyazaki H, Srivastava V, Barruet E, McGinnis CS, Kalantari A, Cornwall-Scoones J, Vaka D, Zhu Q, Jo H, Oria R, Weaver VM, DeGrado WF, Thomson M, Garikipati K, Boffelli D, Klein OD, Gartner ZJ. Patterning and folding of intestinal villi by active mesenchymal dewetting. Cell 2024; 187:3072-3089.e20. [PMID: 38781967 PMCID: PMC11166531 DOI: 10.1016/j.cell.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/30/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Teemu J Häkkinen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hikaru Miyazaki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Emilie Barruet
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ali Kalantari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Qin Zhu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Roger Oria
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Lim CH, Kaminaka A, Lee SH, Moore S, Cronstein BN, Rabbani PS, Ito M. Dermal β-Catenin Is Required for Hedgehog-Driven Hair Follicle Neogenesis. J Invest Dermatol 2024:S0022-202X(24)00390-7. [PMID: 38810955 DOI: 10.1016/j.jid.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Hair follicle neogenesis (HFN) occurs after large skin excisions in mice, serving as a rare regenerative model in mammalian wound healing. Wound healing typically results in fibrosis in mice and humans. We previously showed that small skin excisions in mice result in scarring devoid of HFN, displaying features of nonregenerative healing, and hedgehog (Hh) activation in the dermis of such wounds can induce HFN. In this study, we sought to verify the role of dermal Wnt/β-catenin signaling in HFN because this pathway is essential for hair follicle development but is also paradoxically well-characterized in fibrosis of adult wounds. By deletion of β-catenin in large wound myofibroblasts, we show that Wnt/β-catenin signaling is required for endogenous mechanisms of HFN. By utilizing a combined mouse model that simultaneously induces deletion of β-catenin and constitutive activation of Smoothened in myofibroblasts, we also found that β-catenin is required for Hh-driven dermal papilla formation. Transcriptome analysis confirms that Wnt/β-catenin and Hh pathways are activated in dermal papilla cells. Our results indicate that Wnt-active fibrotic status may also create a permissive state for the regenerative function of Hh, suggesting that activation of both Wnt and Hh pathways in skin wound fibroblasts must be ensured in future strategies to promote HFN.
Collapse
Affiliation(s)
- Chae Ho Lim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA.
| | - Annette Kaminaka
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Soung-Hoon Lee
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Simone Moore
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- NYU-H+H Clinical and Translational Science Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Piul S Rabbani
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Mayumi Ito
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Qu R, Cheng X, Sefik E, Stanley Iii JS, Landa B, Strino F, Platt S, Garritano J, Odell ID, Coifman R, Flavell RA, Myung P, Kluger Y. Gene trajectory inference for single-cell data by optimal transport metrics. Nat Biotechnol 2024:10.1038/s41587-024-02186-3. [PMID: 38580861 PMCID: PMC11452571 DOI: 10.1038/s41587-024-02186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Single-cell RNA sequencing has been widely used to investigate cell state transitions and gene dynamics of biological processes. Current strategies to infer the sequential dynamics of genes in a process typically rely on constructing cell pseudotime through cell trajectory inference. However, the presence of concurrent gene processes in the same group of cells and technical noise can obscure the true progression of the processes studied. To address this challenge, we present GeneTrajectory, an approach that identifies trajectories of genes rather than trajectories of cells. Specifically, optimal transport distances are calculated between gene distributions across the cell-cell graph to extract gene programs and define their gene pseudotemporal order. Here we demonstrate that GeneTrajectory accurately extracts progressive gene dynamics in myeloid lineage maturation. Moreover, we show that GeneTrajectory deconvolves key gene programs underlying mouse skin hair follicle dermal condensate differentiation that could not be resolved by cell trajectory approaches. GeneTrajectory facilitates the discovery of gene programs that control the changes and activities of biological processes.
Collapse
Affiliation(s)
- Rihao Qu
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiuyuan Cheng
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | | | - Sarah Platt
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - James Garritano
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Ian D Odell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald Coifman
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
- Department of Mathematics, Yale University, New Haven, CT, USA
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Peggy Myung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Program in Applied Mathematics, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Biggs LC, Miroshnikova YA. Nuclear mechanotransduction on skin stem cell fate regulation. Curr Opin Cell Biol 2024; 87:102328. [PMID: 38340567 DOI: 10.1016/j.ceb.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Wang W, Wang H, Long Y, Li Z, Li J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2023; 14:20. [PMID: 38254620 PMCID: PMC10813359 DOI: 10.3390/biom14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Apoptosis is a physiological process that occurs in all cell types of the human body, and it profoundly changes the fate of hair by affecting hair follicle cells. This review outlines the cellular changes, intrinsic biochemical characteristics, and mechanisms underlying apoptosis and summarizes the hair follicle life cycle, including development, cycle stages, and corresponding cellular changes. Finally, the relationship between apoptosis and the hair cycle is discussed and the significance of apoptosis in hair loss conditions and drug treatments is highlighted. Apoptosis induces cellular changes and exhibits distinctive properties through intricate signaling pathways. Hair follicles undergo cyclic periods of growth, regression, and dormancy. Apoptosis is closely correlated with the regression phase by triggering hair follicle cell death and shedding. Regulation of apoptosis in hair follicles plays an essential role in hair loss due to maladies and drug treatments. Mitigating apoptosis can enhance hair growth and minimize hair loss. A comprehensive understanding of the correlation between apoptosis and the hair cycle can facilitate the development of novel treatments to prevent hair loss and stimulate hair regeneration.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
10
|
Lei M, Jiang J, Wang M, Wu W, Zhang J, Liu W, Zhou W, Lai YC, Jiang TX, Widelitz RB, Harn HIC, Yang L, Chuong CM. Epidermal-dermal coupled spheroids are important for tissue pattern regeneration in reconstituted skin explant cultures. NPJ Regen Med 2023; 8:65. [PMID: 37996466 PMCID: PMC10667216 DOI: 10.1038/s41536-023-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tissue patterning is critical for the development and regeneration of organs. To advance the use of engineered reconstituted skin organs, we study cardinal features important for tissue patterning and hair regeneration. We find they spontaneously form spheroid configurations, with polarized epidermal cells coupled with dermal cells through a newly formed basement membrane. Functionally, the spheroid becomes competent morphogenetic units (CMU) that promote regeneration of tissue patterns. The emergence of new cell types and molecular interactions during CMU formation was analyzed using scRNA-sequencing. Surprisingly, in newborn skin explants, IFNr signaling can induce apical-basal polarity in epidermal cell aggregates. Dermal-Tgfb induces basement membrane formation. Meanwhile, VEGF signaling mediates dermal cell attachment to the epidermal cyst shell, thus forming a CMU. Adult mouse and human fetal scalp cells fail to form a CMU but can be restored by adding IFNr or VEGF to achieve hair regeneration. We find different multi-cellular configurations and molecular pathways are used to achieve morphogenetic competence in developing skin, wound-induced hair neogenesis, and reconstituted explant cultures. Thus, multiple paths can be used to achieve tissue patterning. These insights encourage more studies of "in vitro morphogenesis" which may provide novel strategies to enhance regeneration.
Collapse
Affiliation(s)
- Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jinwei Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
11
|
Riddell J, Noureen SR, Sedda L, Glover JD, Ho WKW, Bain CA, Berbeglia A, Brown H, Anderson C, Chen Y, Crichton ML, Yates CA, Mort RL, Headon DJ. Rapid mechanosensitive migration and dispersal of newly divided mesenchymal cells aid their recruitment into dermal condensates. PLoS Biol 2023; 21:e3002316. [PMID: 37747910 PMCID: PMC10553821 DOI: 10.1371/journal.pbio.3002316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/05/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
Embryonic mesenchymal cells are dispersed within an extracellular matrix but can coalesce to form condensates with key developmental roles. Cells within condensates undergo fate and morphological changes and induce cell fate changes in nearby epithelia to produce structures including hair follicles, feathers, or intestinal villi. Here, by imaging mouse and chicken embryonic skin, we find that mesenchymal cells undergo much of their dispersal in early interphase, in a stereotyped process of displacement driven by 3 hours of rapid and persistent migration followed by a long period of low motility. The cell division plane and the elevated migration speed and persistence of newly born mesenchymal cells are mechanosensitive, aligning with tissue tension, and are reliant on active WNT secretion. This behaviour disperses mesenchymal cells and allows daughters of recent divisions to travel long distances to enter dermal condensates, demonstrating an unanticipated effect of cell cycle subphase on core mesenchymal behaviour.
Collapse
Affiliation(s)
- Jon Riddell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Shahzeb Raja Noureen
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - James D. Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - William K. W. Ho
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Connor A. Bain
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Arianna Berbeglia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Brown
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Calum Anderson
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Yuhang Chen
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Michael L. Crichton
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Christian A. Yates
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Richard L. Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Denis J. Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Huycke TR, Miyazaki H, Häkkinen TJ, Srivastava V, Barruet E, McGinnis CS, Kalantari A, Cornwall-Scoones J, Vaka D, Zhu Q, Jo H, DeGrado WF, Thomson M, Garikipati K, Boffelli D, Klein OD, Gartner ZJ. Patterning and folding of intestinal villi by active mesenchymal dewetting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546328. [PMID: 37425793 PMCID: PMC10326967 DOI: 10.1101/2023.06.25.546328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissue folding generates structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, the numerous finger-like protrusions that are essential for nutrient absorption. However, the molecular and mechanical mechanisms driving the initiation and morphogenesis of villi remain a matter of debate. Here, we identify an active mechanical mechanism that simultaneously patterns and folds intestinal villi. We find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. At the cell-level, this occurs through a process dependent upon matrix metalloproteinase-mediated tissue fluidization and altered cell-ECM adhesion. By combining computational models with in vivo experiments, we reveal these cellular features manifest at the tissue-level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active de-wetting of a thin liquid film.
Collapse
Affiliation(s)
- Tyler R. Huycke
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Equal contribution
| | - Hikaru Miyazaki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Equal contribution
| | - Teemu J. Häkkinen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Equal contribution
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Emilie Barruet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Christopher S. McGinnis
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ali Kalantari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Qin Zhu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, University of Michigan, Ann Arbor, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
13
|
Sulic AM, Das Roy R, Papagno V, Lan Q, Saikkonen R, Jernvall J, Thesleff I, Mikkola ML. Transcriptomic landscape of early hair follicle and epidermal development. Cell Rep 2023; 42:112643. [PMID: 37318953 DOI: 10.1016/j.celrep.2023.112643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Verdiana Papagno
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Riikka Saikkonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
14
|
Myung P, Ito M. Solving a molecular cryptogram for the human fingerprint. Cell 2023; 186:899-901. [PMID: 36868211 DOI: 10.1016/j.cell.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 03/05/2023]
Abstract
No two fingerprint patterns are exactly alike. In this issue of Cell, Glover et al. uncover the molecular and cellular mechanisms that result in patterned skin ridges over volar digits. This study reveals that the remarkable diversity of fingerprint configurations may originate from a common patterning code.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York, NY 10016, USA; The Department of Cell Biology, Grossman School of Medicine, New York University, New York, NY 10016, USA.
| |
Collapse
|
15
|
Glover JD, Sudderick ZR, Shih BBJ, Batho-Samblas C, Charlton L, Krause AL, Anderson C, Riddell J, Balic A, Li J, Klika V, Woolley TE, Gaffney EA, Corsinotti A, Anderson RA, Johnston LJ, Brown SJ, Wang S, Chen Y, Crichton ML, Headon DJ. The developmental basis of fingerprint pattern formation and variation. Cell 2023; 186:940-956.e20. [PMID: 36764291 DOI: 10.1016/j.cell.2023.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.
Collapse
Affiliation(s)
- James D Glover
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Zoe R Sudderick
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Barbara Bo-Ju Shih
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - Laura Charlton
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Andrew L Krause
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
| | - Calum Anderson
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Jon Riddell
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Adam Balic
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200433, PRC
| | - Václav Klika
- Department of Mathematics, FNSPE, Czech Technical University in Prague, Prague 16000, Czechia
| | | | - Eamonn A Gaffney
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Andrea Corsinotti
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Luke J Johnston
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sara J Brown
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yuhang Chen
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Michael L Crichton
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Denis J Headon
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK.
| |
Collapse
|
16
|
Xu K, Yu E, Wu M, Wei P, Yin J. Cells, growth factors and biomaterials used in tissue engineering for hair follicles regeneration. Regen Ther 2022; 21:596-610. [DOI: 10.1016/j.reth.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
|
17
|
Myung P, Andl T, Atit R. The origins of skin diversity: lessons from dermal fibroblasts. Development 2022; 149:dev200298. [PMID: 36444877 PMCID: PMC10112899 DOI: 10.1242/dev.200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/β-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, Orlando, FL 32827, USA
| | - Radhika Atit
- Department of Biology, Department of Genetics and Genome Sciences, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Morita R, Fujiwara H. Tracing the developmental origin of tissue stem cells. Dev Growth Differ 2022; 64:566-576. [PMID: 36217609 PMCID: PMC10091985 DOI: 10.1111/dgd.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/02/2022] [Accepted: 09/24/2022] [Indexed: 12/31/2022]
Abstract
Tissue stem cells are vital for organ homeostasis and regeneration owing to their ability to self-renew and differentiate into the various cell types that constitute organ tissue. These stem cells are formed during complex and dynamic organ development, necessitating spatial-temporal coordination of morphogenetic events and cell fate specification during this process. In recent years, technological advances have enabled the tracing of the cellular dynamics, states, and lineages of individual cells over time in relation to tissue morphological changes. These dynamic data have not only revealed the origin of tissue stem cells in various organs but have also led to an understanding of the molecular, cellular, and biophysical bases of tissue stem cell formation. Herein, we summarize recent findings on the developmental origin of tissue stem cells in the hair follicles, intestines, brain, skeletal muscles, and hematopoietic system, and further discuss how stem cell fate specification is coordinated with tissue topology.
Collapse
Affiliation(s)
- Ritsuko Morita
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
19
|
Park S. Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Front Cell Dev Biol 2022; 10:933370. [PMID: 35938157 PMCID: PMC9354988 DOI: 10.3389/fcell.2022.933370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Hair follicles are mini organs that repeat the growth and regression cycle continuously. These dynamic changes are driven by the regulation of stem cells via their multiple niche components. To build the complex structure of hair follicles and surrounding niches, sophisticated morphogenesis is required during embryonic development. This review will explore how hair follicles are formed and maintained through dynamic cellular changes and diverse signaling pathways. In addition, comparison of differences in stem cells and surrounding niche components during embryogenesis, neogenesis, and organogenesis will provide a comprehensive understanding of mechanisms for hair follicle generation and insights into skin regeneration.
Collapse
Affiliation(s)
- Sangbum Park
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- *Correspondence: Sangbum Park,
| |
Collapse
|