1
|
Nandakumar M, Sathyapalan T, Atkin SL, Butler AE. Effect of Hypoglycemia and Rebound Hyperglycemia on Proteomic Cardiovascular Risk Biomarkers. Biomedicines 2024; 12:1137. [PMID: 38927344 PMCID: PMC11201283 DOI: 10.3390/biomedicines12061137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Hypoglycemia has been associated with cardiovascular events, and glucose variability has been suggested to be associated with increased cardiovascular risk. Therefore, in this study, we examined the effect on proteomic cardiovascular risk protein markers of (i) mild iatrogenic hypoglycemia and (ii) severe iatrogenic hypoglycemia followed by rebound hyperglycemia. Methods: Two iatrogenic hypoglycemia studies were compared; firstly, mild hypoglycemia in 18 subjects (10 type 2 diabetes (T2D), 8 controls; blood glucose to 2.8 mmoL/L (50 mg/dL) for 1 h), and secondly, severe hypoglycemia in 46 subjects (23 T2D, 23 controls; blood glucose to <2.2 mmoL/L (<40 mg/dL) transiently followed by intravenous glucose reversal giving rebound hyperglycemia). A SOMAscan assay was used to measure 54 of the 92 cardiovascular protein biomarkers that reflect biomarkers involved in inflammation, cellular metabolic processes, cell adhesion, and immune response and complement activation. Results: Baseline to euglycemia showed no change in any of the proteins measured in the T2D cohort. With severe hypoglycemia, the study controls showed an increase in Angiopoietin 1 (ANGPT1) (p < 0.01) and Dickkopf-1 (DKK1) (p < 0.01), but no changes were seen with mild hypoglycemia. In both the mild and severe hypoglycemia studies, at the point of hypoglycemia, T2D subjects showed suppression of Brother of CDO (BOC) (p < 0.01). At 1 h post-hypoglycemia, the changes in ANGPT1, DKK1, and BOC had resolved, with no additional protein biomarker changes despite rebound hyperglycemia from 1.8 ± 0.1 to 12.2 ± 2.0 mmol/L. Conclusions: Proteomic biomarkers of cardiovascular disease showed changes at hypoglycemia that resolved within 1 h following the hypoglycemic event and with no changes following hyperglycemia rebound, suggesting that any cardiovascular risk increase is due to the hypoglycemia and not due to glucose fluctuation per se.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Research Department, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (M.N.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (M.N.); (S.L.A.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain; (M.N.); (S.L.A.)
| |
Collapse
|
2
|
Ferdous J, Rahman ME, Sraboni FS, Dutta AK, Rahman MS, Ali MR, Sikdar B, Khan A, Hasan MF. Assessment of the hypoglycemic and anti-hemostasis effects of Paederia foetida (L.) in controlling diabetes and thrombophilia combining in vivo and computational analysis. Comput Biol Chem 2023; 107:107954. [PMID: 37738820 DOI: 10.1016/j.compbiolchem.2023.107954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Paederia foetida is valued for its folk medicinal properties. This research aimed to assess the acute toxicity, hypoglycemic and anti-hemostasis properties of the methanolic extract of P. foetida leaves (PFLE). Acute toxicity of PFLE was performed on a mice model. Hypoglycemic and anti-hemostasis properties of PFLE were investigated on normal and streptozotocin-induced mice models. Deep learning, molecular docking, density functional theory, and molecular simulation techniques were employed to understand the underlying mechanisms through in silico study. Oral administration of PFLE at a dosage of 300 µg/kg body weight (BW) showed no signs of toxicity. Treatment with PFLE (300 µg/kg/BW) for 14 days resulted in a hypoglycemic condition and a 30.47% increase in body weight. Additionally, PFLE mixed with blood exhibited a 44.6% anti-hemostasis effect. Deep learning predicted the inhibitory concentration (pIC50, nM) of Cleomiscosins against SGLT2 and FXa to be 7.478 and 6.017, respectively. Molecular docking analysis revealed strong binding interactions of Cleomiscosins with crucial residues of the target proteins, exhibiting binding energies of -8.2 kcal/mol and -7.1 kcal/mol, respectively. ADME/Tox predictions indicated favorable pharmacokinetic properties of Cleomiscosins, and DFT calculations of frontier molecular orbitals analyzed the stability and reactivity of these compounds. Molecular simulation dynamics, principal component analysis and MM-PBSA calculation demonstrated the stable, compact, and rigid nature of the protein-ligand complexes. The methanolic PFLE exhibited significant hypoglycemic and anti-hemostasis properties. Cleomiscosin may have inhibitory properties for the development of novel drugs to manage diabetes and thrombophilia in the near future.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Md Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Farzana Sayed Sraboni
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Amit Kumar Dutta
- Department of Microbiology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Md Siddikur Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Md Roushan Ali
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Biswanath Sikdar
- Department of Microbiology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Alam Khan
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Faruk Hasan
- Department of Microbiology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
3
|
Coupland CA, Naylor-Adamson L, Booth Z, Price TW, Gil HM, Firth G, Avery M, Ahmed Y, Stasiuk GJ, Calaminus SDJ. Platelet zinc status regulates prostaglandin-induced signaling, altering thrombus formation. J Thromb Haemost 2023; 21:2545-2558. [PMID: 37210073 DOI: 10.1016/j.jtha.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Approximately 17.3% of the global population exhibits an element of zinc (Zn2+) deficiency. One symptom of Zn2+ deficiency is increased bleeding through impaired hemostasis. Platelets are crucial to hemostasis and are inhibited by endothelial-derived prostacyclin (prostaglandin I2 [PGI2]), which signals via adenylyl cyclase (AC) and cyclic adenosine monophosphate signaling. In other cell types, Zn2+ modulates cyclic adenosine monophosphate concentrations by changing AC and/or phosphodiesterase activity. OBJECTIVES To investigate if Zn2+ can modulate platelet PGI2 signaling. METHODS Platelet aggregation, spreading, and western blotting assays with Zn2+ chelators and cyclic nucleotide elevating agents were performed in washed platelets and platelet-rich plasma conditions. In vitro thrombus formation with various Zn2+ chelators and PGI2 was assessed in whole blood. RESULTS Incubation of whole blood or washed platelets with Zn2+ chelators caused either embolization of preformed thrombi or reversal of platelet spreading, respectively. To understand this effect, we analyzed resting platelets and identified that incubation with Zn2+ chelators elevated pVASPser157, a marker of PGI2 signaling. In agreement that Zn2+ affects PGI2 signaling, addition of the AC inhibitor SQ22536 blocked Zn2+ chelation-induced platelet spreading reversal, while addition of Zn2+ blocked PGI2-mediated platelet reversal. Moreover, Zn2+ specifically blocked forskolin-mediated AC reversal of platelet spreading. Finally, PGI2 inhibition of platelet aggregation and in vitro thrombus formation was potentiated in the presence of low doses of Zn2+ chelators, increasing its effectiveness in inducing platelet inhibition. CONCLUSION Zn2+ chelation potentiates platelet PGI2 signaling, elevating PGI2's ability to prevent effective platelet activation, aggregation, and thrombus formation.
Collapse
Affiliation(s)
- Charlie A Coupland
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | | | - Zoe Booth
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Helio M Gil
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - George Firth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michelle Avery
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Yusra Ahmed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Simon D J Calaminus
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
4
|
Frelinger AL, Spurgeon BEJ. Clinical Cytometry for Platelets and Platelet Disorders. Clin Lab Med 2023; 43:445-454. [PMID: 37481322 DOI: 10.1016/j.cll.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Clinical flow cytometry tests for inherited and acquired platelet disorders are useful diagnostic tools but are not widely available. Flow cytometric methods are available to detect inherited glycoprotein deficiencies, granule release (secretion defects), drug-induced thrombocytopenias, presence of antiplatelet antibodies, and pharmacodynamic inhibition by antiplatelet agents. New tests take advantage of advanced multicolor cytometers and allow identification of novel platelet subsets by high-dimensional immunophenotyping. Studies are needed to evaluate the value of these new tests for diagnosis and monitoring of therapy in patients with platelet disorders.
Collapse
Affiliation(s)
- Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Benjamin E J Spurgeon
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Ali AAG, Niinuma SA, Moin ASM, Atkin SL, Butler AE. The Role of Platelets in Hypoglycemia-Induced Cardiovascular Disease: A Review of the Literature. Biomolecules 2023; 13:241. [PMID: 36830610 PMCID: PMC9953659 DOI: 10.3390/biom13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally as well as the leading cause of mortality and morbidity in type 2 diabetes (T2D) patients. Results from large interventional studies have suggested hyperglycemia and poor glycemic control to be largely responsible for the development of CVDs. However, the association between hypoglycemia and cardiovascular events is also a key pathophysiological factor in the development of CVDs. Hypoglycemia is especially prevalent in T2D patients treated with oral sulfonylurea agents or exogenous insulin, increasing the susceptibility of this population to cardiovascular events. The adverse cardiovascular risk of hypoglycemia can persist even after the blood glucose levels have been normalized. Hypoglycemia may lead to vascular disease through mechanisms such as enhanced coagulation, oxidative stress, vascular inflammation, endothelial dysfunction, and platelet activation. In the following review, we summarize the evidence for the role of hypoglycemia in platelet activation and the subsequent effects this may have on the development of CVD. In addition, we review current evidence for the effectiveness of therapies in reducing the risk of CVDs.
Collapse
Affiliation(s)
- Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
6
|
MicroRNA Changes Up to 24 h following Induced Hypoglycemia in Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms232314696. [PMID: 36499023 PMCID: PMC9736413 DOI: 10.3390/ijms232314696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Hypoglycemia, as a complication of type 2 diabetes (T2D), causes increased morbidity and mortality but the physiological response underlying hypoglycemia has not been fully elucidated. Small noncoding microRNA (miRNA) have multiple downstream biological effects. This pilot exploratory study was undertaken to determine if induced miRNA changes would persist and contribute to effects seen 24 h post-hypoglycemia. A parallel, prospective study design was employed, involving T2D (n = 23) and control (n = 23) subjects. The subjects underwent insulin-induced hypoglycemia (2 mmol/L; 36 mg/dL); blood samples were drawn at baseline, upon the induction of hypoglycemia, and 4 h and 24 h post-hypoglycemia, with a quantitative polymerase chain reaction analysis of miRNA undertaken. The baseline miRNAs did not differ. In the controls, 15 miRNAs were downregulated and one was upregulated (FDR < 0.05) from the induction of hypoglycemia to 4 h later while, in T2D, only four miRNAs were altered (downregulated), and these were common to both cohorts (miR-191-5p; miR-143-3p; let-7b-5p; let-7g-5p), correlated with elevated glucagon levels, and all were associated with energy balance. From the induction of hypoglycemia to 24 h, 14 miRNAs were downregulated and 5 were upregulated (FDR < 0.05) in the controls; 7 miRNAs were downregulated and 7 upregulated (FDR < 0.05) in T2D; a total of 6 miRNAs were common between cohorts, 5 were downregulated (miR-93-5p, let-7b-5p, miR-191-5p, miR-185-5p, and miR-652-3p), and 1 was upregulated (miR-369-3p). An ingenuity pathway analysis indicated that many of the altered miRNAs were associated with metabolic and coagulation pathways; however, of the inflammatory proteins expressed, only miR-143-3p at 24 h correlated positively with tumor necrosis factor-α (TNFa; p < 0.05 and r = 0.46) and negatively with toll-like receptor-4 (TLR4; p < 0.05 and r = 0.43). The MiRNA levels altered by hypoglycemia reflected changes in counter-regulatory glucagon and differed between cohorts, and their expression at 24 h suggests miRNAs may potentiate and prolong the physiological response. Trial registration: ClinicalTrials.gov NCT03102801.
Collapse
|
7
|
Moin ASM, Sathyapalan T, Atkin SL, Butler AE. The severity and duration of Hypoglycemia affect platelet-derived protein responses in Caucasians. Cardiovasc Diabetol 2022; 21:202. [PMID: 36203210 PMCID: PMC9541052 DOI: 10.1186/s12933-022-01639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Severe hypoglycemia is associated with increased cardiovascular death risk, and platelet responses to hypoglycemia (hypo) have been described. However, the impact of deep transient hypo (deep-hypo) versus prolonged milder hypo (mild-hypo) on platelet response is unclear. Research Design and methods Two hypo studies were compared; firstly, mild-hypo in 18-subjects (10 type-2-diabetes (T2D), 8 controls), blood glucose to 2.8mmoL/L (50 mg/dL) for 1-hour; secondly deep-hypo in 46-subjects (23 T2D, 23 controls), blood glucose to < 2.2mmoL/L (< 40 mg/dL) transiently. Platelet-related protein (PRP) responses from baseline to after 1-hour of hypo (mild-hypo) or at deep-hypo were compared, and at 24-hours post-hypo. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was used to determine PRP changes for 13 PRPs. Results In controls, from baseline to hypo, differences were seen for four PRPs, three showing increased %change in deep-hypo (Plasminogen activator inhibitor-1(PAI-1), CD40 ligand (CD40LG) and Protein-S), one showing increased %change in mild-hypo (von Willebrand factor (vWF)); at 24-hours in controls, %change for Protein-S remained increased in deep-hypo, whilst % change for vWF and plasminogen were increased in mild-hypo. In T2D, from baseline to hypo, differences were seen for 4 PRPs, three showing increased %change in deep-hypo (PAI-1, platelet glycoprotein VI and Tissue factor), one showing increased %change in mild-hypo (CD40LG); at 24-hours in T2D, %change for CD40LG remained increased, together with vWF, in deep-hypo. Conclusion Both mild-hypo and deep-hypo showed marked PRP changes that continued up to 24-hours, showing that both the severity and duration of hypoglycemia are likely important and that any degree of hypoglycemia may be detrimental for increased cardiovascular risk events through PRP changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01639-w.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain.
| |
Collapse
|
8
|
Nandakumar M, Moin ASM, Ramanjaneya M, Qaissi AA, Sathyapalan T, Atkin SL, Butler AE. Severe iatrogenic hypoglycaemia modulates the fibroblast growth factor protein response. Diabetes Obes Metab 2022; 24:1483-1497. [PMID: 35415885 DOI: 10.1111/dom.14716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION There is evidence that fibroblast growth factor (FGF) levels may be implicated in hypoglycaemia, with FGF19 being a potential contributor to insulin-independent pathways driving postprandial hypoglycaemia following bariatric surgery and basic FGF (FGF2) being elevated following mild hypoglycaemia occurring after the glucose tolerance test. However, their response following severe iatrogenic hypoglycaemia is unknown and therefore this pilot exploratory study was undertaken. METHODS A case-control study of aged-matched type 2 diabetes (T2D; n = 23) and control (n = 23) subjects who underwent a hyperinsulinaemic clamp, initially to euglycaemia in T2D (5 mmol/L; 90 mg/dl), and then to hypoglycaemia (<2 mmol/L; <36 mg/dl) with subsequent follow-up time course to 24 h. FGF and FGF receptor proteins were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. RESULTS At baseline, FGF12 (p = .006) was higher and FGF20 (p = .004) was lower in T2D versus controls. At hypoglycaemia, FGF7 was lower in T2D. Post-hypoglycaemic levels of FGF18, FGF19, FGF20 and FGF23 were lower while FGF12 and FGF16 were higher in T2D versus control at different time points. No differences between T2D and controls were seen for FGF1, FGF2, FGF4, FGF6, FGF8, FGF9, FGF10, FGF21 or any of the FGF receptors. At 24 h post-hypoglycaemia, FGF20 (p = .01) differed between controls and T2D, while the levels for the other proteins measured returned to baseline. None of the FGF proteins altered from baseline to euglycaemia when clamped in T2D subjects. FGF23 negatively correlated with fasting blood glucose, but no FGFs correlated with body mass index in T2D. CONCLUSION Severe transient hypoglycaemia modulated FGF7, 16, 19, 20 and 23 (known to be associated with diabetes), together with FGF18 and 12, not previously reported to be associated with diabetes but that may be important in the pathophysiology of hypoglycaemia; FGF20 remained low at 24 h. Taken together, these data suggest that recurrent hypoglycaemia may contribute to the development of complications through changes in FGF proteins.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Al Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| |
Collapse
|
9
|
Finding the “switch” in platelet activation prediction of key mediators involved in reversal of platelet activation using a novel network biology approach. J Proteomics 2022; 261:104577. [DOI: 10.1016/j.jprot.2022.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
|
10
|
Chirkov YY, Nguyen TH, Horowitz JD. Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23031042. [PMID: 35162966 PMCID: PMC8835624 DOI: 10.3390/ijms23031042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
The propensity towards platelet-rich thrombus formation increases substantially during normal ageing, and this trend is mediated by decreases in platelet responsiveness to the anti-aggregatory nitric oxide (NO) and prostacyclin (PGI2) pathways. The impairment of soluble guanylate cyclase and adenylate cyclase-based signalling that is associated with oxidative stress represents the major mechanism of this loss of anti-aggregatory reactivity. Platelet desensitization to these autacoids represents an adverse prognostic marker in patients with ischemic heart disease and may contribute to increased thrombo-embolic risk in patients with heart failure. Patients with platelet resistance to PGI2 also are unresponsive to ADP receptor antagonist therapy. Apart from ischemia, diabetes and aortic valve disease are also associated with impaired anti-aggregatory homeostasis. This review examines the association of impaired platelet cyclic nucleotide (i.e., cGMP and cAMP) signalling with the emerging evidence of thromboembolic risk in cardiovascular diseases, and discusses the potential therapeutic strategies targeting this abnormality.
Collapse
Affiliation(s)
| | | | - John D. Horowitz
- Correspondence: ; Tel.: +61(08)-8222-7635; Fax: +61(08)-8222-6422
| |
Collapse
|
11
|
Ramanjaneya M, Priyanka R, Bensila M, Jerobin J, Pawar K, Sathyapalan T, Abou-Samra AB, Halabi NM, Moin ASM, Atkin SL, Butler AE. MiRNA and associated inflammatory changes from baseline to hypoglycemia in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:917041. [PMID: 36017315 PMCID: PMC9395634 DOI: 10.3389/fendo.2022.917041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Hypoglycemia in type 2 diabetes (T2D) increases morbidity and mortality but the underlying physiological response is still not fully understood, though physiological changes are still apparent 24 hours after the event. Small noncoding microRNA (miRNA) have multiple downstream biological effects that may respond rapidly to stress. We hypothesized that hypoglycemia would induce rapid miRNA changes; therefore, this pilot exploratory study was undertaken. METHODS A pilot prospective, parallel study in T2D (n=23) and controls (n=23). Insulin-induced hypoglycemia (2mmol/l: 36mg/dl) was induced and blood sampling performed at baseline and hypoglycemia. Initial profiling of miRNA was undertaken on pooled samples identified 96 miRNA that were differentially regulated, followed by validation on a custom designed 112 miRNA panel. RESULTS Nine miRNAs differed from baseline to hypoglycemia in control subjects; eight were upregulated: miR-1303, miR-let-7e-5p, miR-1267, miR-30a-5p, miR-571, miR-661, miR-770-5p, miR-892b and one was downregulated: miR-652-3p. None of the miRNAs differed from baseline in T2D subjects. CONCLUSION A rapid miRNA response reflecting protective pathways was seen in control subjects that appeared to be lost in T2D, suggesting that mitigating responses to hypoglycemia with blunting of the counter-regulatory response in T2D occurs even in patients with short duration of disease. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT03102801?term=NCT03102801&draw=2&rank=1, identifier NCT03102801.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ruth Priyanka
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Milin Bensila
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Krunal Pawar
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | | | - Najeeb M. Halabi
- Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
- *Correspondence: Alexandra E. Butler,
| |
Collapse
|
12
|
Heat Shock-Related Protein Responses and Inflammatory Protein Changes Are Associated with Mild Prolonged Hypoglycemia. Cells 2021; 10:cells10113109. [PMID: 34831332 PMCID: PMC8618421 DOI: 10.3390/cells10113109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Mild hypoglycemia is common in clinical practice. Severe hypoglycemia results in heat shock protein and associate co-chaperone changes. Whether mild prolonged hypoglycemia elicits a similar response with inflammatory and oxidative-stress responses compared with a severe hypoglycemic event is unclear; therefore, this pilot exploratory study was undertaken. We performed a case–control induced hypoglycemia clamp study, maintaining blood glucose at 2.8 mmol/L (50 mg/dL) for 1 h in 17 subjects (T2D (n = 10); controls (n = 7)). Blood sampling was performed at baseline, hypoglycemia, and 24 h; slow off-rate modified aptamer (SOMA)-scan plasma protein analysis of HSP-related proteins, inflammatory stress markers, and oxidative stress markers was performed. In total, 16 HSPs were analyzed. At baseline, TLR4:MD-2 complex was elevated (p = 0.01), whilst HSPA8 was lower (p < 0.05) in T2D. At hypoglycemia, UBE2N, STIP1, and UBE2L3 increased (all p < 0.05), whilst TLR4:MD-2 and HSPA8 decreased (p < 0.05) in T2D versus baseline. In follow-up after hypoglycemia, HSPs normalized to baseline by 24 h, except UBE2L3 (p < 0.05), which was decreased in controls versus baseline. Correlation of altered inflammatory markers with HSPs revealed the following: at baseline, TLR4:MD-2 correlated with CXCL10 (p < 0.01) and SIGLEC1 (p < 0.05) in controls; HSPA8 negatively correlated with IL5 (p < 0.05) in T2D. A negative correlation between urinary isoprostane 8-iso PGF2α, a marker of oxidative stress, and HSPA1A was seen at 24 h in T2D only (p < 0.05). In conclusion, the HSP changes seen for mild prolonged hypoglycemia were similar to those previously reported for a severe event. However, mild prolonged hypoglycemia appeared to elicit an increased inflammatory response that was associated with heat shock and related proteins.
Collapse
|
13
|
Glucose variability and diabetes complications: Risk factor or biomarker? Can we disentangle the "Gordian Knot"? DIABETES & METABOLISM 2021; 47:101225. [PMID: 33454438 DOI: 10.1016/j.diabet.2021.101225] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
« Variability in glucose homoeostasis » is a better description than « glycaemic variability » as it encompasses two categories of dysglycaemic disorders: i) the short-term daily glucose fluctuations and ii) long-term weekly, monthly or quarterly changes in either HbA1c, fasting or postprandial plasma glucose. Presently, the relationship between the "variability in glucose homoeostasis" and diabetes complications has never been fully clarified because studies are either observational or limited to retrospective analysis of trials not primarily designed to address this issue. Despite the absence of definitive evidence from randomized controlled trials (RCTs), it is most likely that acute and long-term glucose homoeostasis "cycling", akin to weight and blood pressure "cycling" in obese and hypertensive individuals, are additional risk factors for diabetes complications in the presence of sustained ambient hyperglycaemia. As hypoglycaemic events are strongly associated with short- and long-term glucose variability, two relevant messages can be formulated. Firstly, due consideration should be given to avoid within-day glucose fluctuations in excess of 36% (coefficient of variation) at least for minimizing the inconvenience and dangers associated with hypoglycaemia. Secondly, it seems appropriate to consider that variability in glucose homoeostasis is not only associated with cardiovascular events but is also a causative risk factor via hypoglycaemic episodes as intermediary step. Untangling the" Gordian Knot", to provide confirmation about the impact of variability in glucose homoeostasis and diabetes complications remains a daunting prospect.
Collapse
|
14
|
Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Type 2 Diabetes Coagulopathy Proteins May Conflict With Biomarkers Reflective of COVID-19 Severity. Front Endocrinol (Lausanne) 2021; 12:658304. [PMID: 34248840 PMCID: PMC8267927 DOI: 10.3389/fendo.2021.658304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Detailed proteomic analysis in a cohort of patients with differing severity of COVID-19 disease identified biomarkers within the complement and coagulation cascades as biomarkers for disease severity has been reported; however, it is unclear if these proteins differ sufficiently from other conditions to be considered as biomarkers. METHODS A prospective, parallel study in T2D (n = 23) and controls (n = 23). A hyperinsulinemic clamp was performed and normoglycemia induced in T2D [4.5 ± 0.07 mmol/L (81 ± 1.2 mg/dl)] for 1-h, following which blood glucose was decreased to ≤2.0 mmol/L (36 mg/dl). Proteomic analysis for the complement and coagulation cascades were measured using Slow Off-rate Modified Aptamer (SOMA)-scan. RESULTS Thirty-four proteins were measured. At baseline, 4 of 18 were found to differ in T2D versus controls for platelet degranulation [Neutrophil-activating peptide-2 (p = 0.014), Thrombospondin-1 (p = 0.012), Platelet factor-4 (p = 0.007), and Kininogen-1 (p = 0.05)], whilst 3 of 16 proteins differed for complement and coagulation cascades [Coagulation factor IX (p < 0.05), Kininogen-1 (p = 0.05), and Heparin cofactor-2 (p = 0.007)]; STRING analysis demonstrated the close relationship of these proteins to one another. Induced euglycemia in T2D showed no protein changes versus baseline. At hypoglycemia, however, four proteins changed in controls from baseline [Thrombospondin-1 (p < 0.014), platelet factor-4 (p < 0.01), Platelet basic protein (p < 0.008), and Vitamin K-dependent protein-C (p < 0.00003)], and one protein changed in T2D [Vitamin K-dependent protein-C, (p < 0.0002)]. CONCLUSION Seven of 34 proteins suggested to be biomarkers of COVID-19 severity within the platelet degranulation and complement and coagulation cascades differed in T2D versus controls, with further changes occurring at hypoglycemia, suggesting that validation of these biomarkers is critical. It is unclear if these protein changes in T2D may predict worse COVID-19 disease for these patients. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/, identifier NCT03102801.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
- Department of Endocrinology, Leeds Medical School, Leeds, United Kingdom
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexandra E. Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- *Correspondence: Alexandra E. Butler, ;
| |
Collapse
|
15
|
Mapping of type 2 diabetes proteins to COVID-19 biomarkers: A proteomic analysis. Metabol Open 2020; 9:100074. [PMID: 33364597 PMCID: PMC7753193 DOI: 10.1016/j.metop.2020.100074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
|
16
|
Kahal H, Halama A, Aburima A, Bhagwat AM, Butler AE, Graumann J, Suhre K, Sathyapalan T, Atkin SL. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci Rep 2020; 10:4750. [PMID: 32179763 PMCID: PMC7075968 DOI: 10.1038/s41598-020-61531-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Intensive diabetes control has been associated with increased mortality in type 2 diabetes (T2DM); this has been suggested to be due to increased hypoglycemia. We measured hypoglycemia-induced changes in endothelial parameters, oxidative stress markers and inflammation at baseline and after a 24-hour period in type 2 diabetic (T2DM) subjects versus age-matched controls. Case-control study: 10 T2DM and 8 control subjects. Blood glucose was reduced from 5 (90 mg/dl) to hypoglycemic levels of 2.8 mmol/L (50 mg/dl) for 1 hour by incremental hyperinsulinemic clamps using baseline and 24 hour samples. Measures of endothelial parameters, oxidative stress and inflammation at baseline and at 24-hours post hypoglycemia were performed: proteomic (Somalogic) analysis for inflammatory markers complemented by C-reactive protein (hsCRP) measurement, and proteomic markers and urinary isoprostanes for oxidative measures, together with endothelial function. Between baseline and 24 -hours after hypoglycemia, 15 of 140 inflammatory proteins differed in T2DM whilst only 1 of 140 differed in controls; all returned to baseline at 24-hours. However, elevated hsCRP levels were seen at 24-hours in T2DM (2.4 mg/L (1.2-5.4) vs. 3.9 mg/L (1.8-6.1), Baseline vs 24-hours, P < 0.05). In patients with T2DM, between baseline and 24-hour after hypoglycemia, only one of 15 oxidative stress proteins differed and this was not seen in controls. An increase (P = 0.016) from baseline (73.4 ng/mL) to 24 hours after hypoglycemia (91.7 ng/mL) was seen for urinary isoprostanes. Hypoglycemia resulted in inflammatory and oxidative stress markers being elevated in T2DM subjects but not controls 24-hours after the event.
Collapse
Affiliation(s)
- Hassan Kahal
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Hull, UK
| | - Anna Halama
- Weill Cornell Medicine Qatar, Education City, PO, 24144, Doha, Qatar
| | - Ahmed Aburima
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Hull, UK
| | - Aditya M Bhagwat
- Weill Cornell Medicine Qatar, Education City, PO, 24144, Doha, Qatar
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box, 34110, Doha, Qatar.
| | - Johannes Graumann
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, PO Box, 24144, Doha, Qatar
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Karsten Suhre
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, PO Box, 24144, Doha, Qatar
| | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To critically review the literature describing links between mean platelet volume (MPV) and cardiovascular disease (CVD). We will focus on coronary artery disease (CAD). The MPV is measured routinely as part of a routine blood count. RECENT FINDINGS There is accumulating evidence showing that the MPV may predict CVD, as well as outcomes in patients with CAD. There is also evidence linking MPV and comorbidities (e.g. diabetes mellitus and impaired glycaemic control) that are expected in patients with CAD. The effect on MPV of drugs commonly used to treat CAD has not been clarified, but there is some evidence that they may exert a beneficial effect on the MPV. More specifically, the MPV may predict the effect of antiplatelet drugs (e.g. clopidogrel). There is also evidence relating MPV to stroke, atrial fibrillation, coronary artery ectasia and periprocedural outcomes after percutaneous coronary intervention (PCI). SUMMARY Measuring the MPV may prove useful in CVD risk assessment in patients with established CAD or at risk of developing CAD. Overall, there is evidence pointing to the role of MPV as a contributor rather than simple marker of CVD.
Collapse
|
18
|
Aberer F, Pferschy PN, Tripolt NJ, Sourij C, Obermayer AM, Prüller F, Novak E, Reitbauer P, Kojzar H, Prietl B, Kofler S, Brunner M, Svehlikova E, Stojakovic T, Scharnagl H, Oulhaj A, Aziz F, Riedl R, Sourij H. Hypoglycaemia leads to a delayed increase in platelet and coagulation activation markers in people with type 2 diabetes treated with metformin only: Results from a stepwise hypoglycaemic clamp study. Diabetes Obes Metab 2020; 22:212-221. [PMID: 31595635 PMCID: PMC6972619 DOI: 10.1111/dom.13889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
AIMS To investigate the effect of hypoglycaemia on platelet and coagulation activation in people with type 2 diabetes. MATERIALS AND METHODS This monocentric, open, single-arm, mechanistic trial included 14 people with established type 2 diabetes (four women, 10 men, age 55 ± 7 years, glycated haemoglobin concentration 51 ± 7 mmol/mol) receiving metformin monotherapy. A stepwise hyperinsulinaemic-hypoglycaemic clamp experiment (3.5 and 2.5 mmol/L, for 30 minutes respectively) was performed, aiming to investigate platelet and coagulation activity during predefined plateaus of hypoglycaemia, as well as 1 day and 7 days later. RESULTS While platelet activation assessed by light transmittance aggregometry did not significantly increase after the hypoglycaemic clamp procedure, the more sensitive flow cytometry-based measurement of platelet surface activation markers showed hypoglycaemia-induced activation 24 hours (PAC1pos CD62Ppos , PAC1pos CD63Ppos and PAC1pos CD62Ppos CD63pos ; P < .01) and 7 days after the hypoglycaemic clamp (P < .001 for PAC1pos CD63pos ; P < .01 for PAC1pos CD62Ppos and PAC1pos CD62Ppos CD63pos ) in comparison to baseline. Coagulation markers, such as fibrinogen, D-dimer, plasminogen activator inhibitor-1, von Willebrand factor activity and factor VIII, were also significantly increased, an effect that was most pronounced 24 hours after the hypoglycaemic clamp. CONCLUSION A single event of insulin-induced hypoglycaemia led to an increase in markers of platelet activation and coagulation in people with early stages of type 2 diabetes on metformin therapy. However, the activation occurred with a delay and was evident 24 hours and 7 days after the actual hypoglycaemic episode.
Collapse
Affiliation(s)
- Felix Aberer
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Peter N. Pferschy
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
- CBmed GmbH, Centre for Biomarker Research in MedicineGrazAustria
| | - Norbert J. Tripolt
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Caren Sourij
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Anna M Obermayer
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
- CBmed GmbH, Centre for Biomarker Research in MedicineGrazAustria
| | - Florian Prüller
- Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory DiagnosticsGrazAustria
| | - Eva Novak
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Philipp Reitbauer
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Harald Kojzar
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
- CBmed GmbH, Centre for Biomarker Research in MedicineGrazAustria
| | - Barbara Prietl
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
- CBmed GmbH, Centre for Biomarker Research in MedicineGrazAustria
| | - Selina Kofler
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
- CBmed GmbH, Centre for Biomarker Research in MedicineGrazAustria
| | - Martina Brunner
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Eva Svehlikova
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| | - Tatjana Stojakovic
- Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory DiagnosticsGrazAustria
| | - Hubert Scharnagl
- Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory DiagnosticsGrazAustria
| | - Abderrahim Oulhaj
- College of Medicine and Health SciencesUnited Arab Emirates University, Institute of Public HealthAl AinUAE
| | - Faisal Aziz
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
- CBmed GmbH, Centre for Biomarker Research in MedicineGrazAustria
| | - Regina Riedl
- Medical University of Graz, Institute for Medical Informatics, Statistics and DocumentationGrazAustria
| | - Harald Sourij
- Division of Endocrinology and DiabetologyMedical University of GrazGrazAustria
| |
Collapse
|
19
|
Nusca A, Tuccinardi D, Proscia C, Melfi R, Manfrini S, Nicolucci A, Ceriello A, Pozzilli P, Ussia GP, Grigioni F, Di Sciascio G. Incremental role of glycaemic variability over HbA1c in identifying type 2 diabetic patients with high platelet reactivity undergoing percutaneous coronary intervention. Cardiovasc Diabetol 2019; 18:147. [PMID: 31706305 PMCID: PMC6842151 DOI: 10.1186/s12933-019-0952-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/25/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Diabetic patients with on-treatment high platelet reactivity (HPR) show an increased risk of thrombotic events. Whether measuring glycated haemoglobin (HbA1c) levels and/or glycaemic variability (GV) may help identifying diabetic patients at higher risk deserving tailored antiplatelet and/or glucose lowering strategies is unknown. We aimed to investigate the relationship between GV, HbA1c levels and platelet reactivity in patients with type 2 diabetes mellitus (DM) undergoing percutaneous coronary intervention (PCI). METHODS Platelet reactivity was measured in type 2 DM patients using VerifyNow P2Y12 assay. HPR was defined as P2Y12 Reaction Unit (PRU) > 240. GV was expressed through mean amplitude of glycaemic excursions (MAGE) and coefficient of variance (CV) by using the iPro™ continuous glucose recorder. RESULTS Thirty-five patients (age 70 ± 9 years, 86% male, mean HbA1c 7.2 ± 1.0%) on clopidogrel therapy were enrolled. HbA1c was independently associated with HPR (OR 7.25, 95% CI 1.55-33.86, p = 0.012). Furthermore, when factored into the model, GV indexes provided independent (OR 1.094, 95% CI 1.007-1.188, p < 0.034) and additional (p < 0.001) diagnostic significance in identifying diabetic patients with HPR. CONCLUSIONS Glyco-metabolic state significantly correlates with HPR in well-controlled type 2 DM patients on clopidogrel therapy. HbA1c identifies patients at higher thrombotic risk but the highest diagnostic accuracy is achieved by combining GV and HbA1c. Whether individualized antithrombotic and glucose-lowering therapies based on the assessment of these parameters may reduce the incidence of thrombotic events in patients undergoing PCI should be further investigated.
Collapse
Affiliation(s)
- Annunziata Nusca
- Unit of Cardiac Sciences, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Claudio Proscia
- Cardiology Department, Liverpool Heart and Chest Hospital NHS Trust, Liverpool, UK
| | - Rosetta Melfi
- Unit of Cardiac Sciences, Campus Bio-Medico University of Rome, Rome, Italy
| | - Silvia Manfrini
- Unit of Endocrinology and Diabetes Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Antonio Nicolucci
- Cardiovascular and Diabetes Department, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy
| | - Antonio Ceriello
- Cardiovascular and Diabetes Department, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy
| | - Paolo Pozzilli
- Unit of Endocrinology and Diabetes Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Gian Paolo Ussia
- Unit of Cardiac Sciences, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiac Sciences, Campus Bio-Medico University of Rome, Rome, Italy
| | | |
Collapse
|
20
|
Glucocentric risk factors for macrovascular complications in diabetes: Glucose 'legacy' and 'variability'-what we see, know and try to comprehend. DIABETES & METABOLISM 2019; 45:401-408. [PMID: 30685425 DOI: 10.1016/j.diabet.2019.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
Abstract
Recognizing the role of dysglycaemia, 'ambient' hyperglycaemia, 'metabolic memory' and glycaemic variability as risk factors for macrovascular diseases is mandatory for effective diabetes management. Chronic hyperglycaemia, also referred to as 'ambient hyperglycaemia', was only fully acknowledged as a risk factor for adverse cardiovascular events when the beneficial effects of intensive glucose-lowering strategies were consolidated in the extended follow-up (> 10 years) of patients included in the United Kingdom Prospective Diabetes Study (UKPDS) and Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study. These studies led to the concept of the glucose-lowering 'legacy effect' (metabolic memory), which depends on the duration and magnitude of glucose-lowering, and is not a 'forever' phenomenon, as demonstrated in the 15-year follow-up of the Veterans Affairs Diabetes Trial (VADT). The relatively weak evidence for linking long- and short-term glycaemic variability to vascular complications in patients with diabetes is mainly due to a reliance on observational and retrospective studies, and the lack of randomized interventional trials. However, hypoglycaemia may play an intermediary role in accentuating the link between glycaemic variability and vascular events.
Collapse
|