1
|
Khoza S, George JA, Naicker P, Stoychev SH, Fabian J, Govender IS. Proteomic Analysis Identifies Dysregulated Proteins in Albuminuria: A South African Pilot Study. BIOLOGY 2024; 13:680. [PMID: 39336107 PMCID: PMC11428484 DOI: 10.3390/biology13090680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Albuminuria may precede decreases in the glomerular filtration rate (GFR) and both tests are insensitive predictors of early stages of kidney disease. Our aim was to characterise the urinary proteome in black African individuals with albuminuria and well-preserved GFR from South Africa. This case-controlled study compared the urinary proteomes of 52 normoalbuminuric (urine albumin: creatinine ratio (uACR) < 3 mg/mmol) and 56 albuminuric (uACR ≥ 3 mg/mmol) adults of black African ethnicity. Urine proteins were precipitated, reduced, alkylated, digested, and analysed using an Evosep One LC (Evosep Biosystems, Odense, Denmark) coupled to a Sciex 5600 Triple-TOF (Sciex, Framingham, MA, USA) in data-independent acquisition mode. The data were searched on SpectronautTM 15. Differentially abundant proteins (DAPs) were filtered to include those with a ≥2.25-fold change and a false discovery rate ≤ 1%. Receiver-operating characteristic curves were used to assess the discriminating abilities of proteins of interest. Pathway analysis was performed using Enrichr software. As expected, the albuminuric group had higher uACR (7.9 vs. 0.55 mg/mmol, p < 0.001). The median eGFR (mL/min/1.73 m2) showed no difference between the groups (111 vs. 114, p = 0.707). We identified 80 DAPs in the albuminuria group compared to the normoalbuminuria group, of which 59 proteins were increased while 21 proteins were decreased in abundance. We found 12 urinary proteins with an AUC > 0.8 and a p < 0.001 in the multivariate analysis. Furthermore, an 80-protein model was developed that showed a high AUC ˃ 0.907 and a predictive accuracy of 91.3% between the two groups. Pathway analysis found that the DAPs were involved in insulin growth factor (IGF) functions, innate immunity, platelet degranulation, and extracellular matrix organization. In albuminuric individuals with a well-preserved eGFR, pathways involved in preventing the release and uptake of IGF by insulin growth factor binding protein were significantly enriched. These proteins are indicative of a homeostatic imbalance in a variety of cellular processes underlying renal dysfunction and are implicated in chronic kidney disease.
Collapse
Affiliation(s)
- Siyabonga Khoza
- Department of Chemical Pathology, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Jaya A George
- Wits Diagnostic Innovation Hub, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Stoyan H Stoychev
- ReSyn BioSciences, Edenvale 1610, South Africa
- Evosep Biosystems, 5230 Odense, Denmark
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ireshyn S Govender
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- ReSyn BioSciences, Edenvale 1610, South Africa
| |
Collapse
|
2
|
Santiago-Hernandez A, Martin-Lorenzo M, Gómez-Serrano M, Lopez JA, Martin-Blazquez A, Vellosillo P, Minguez P, Martinez PJ, Vázquez J, Ruiz-Hurtado G, Barderas MG, Sarafidis P, Segura J, Ruilope LM, Alvarez-Llamas G. The Urinary Glycopeptide Profile Differentiates Early Cardiorenal Risk in Subjects Not Meeting Criteria for Chronic Kidney Disease. Int J Mol Sci 2024; 25:7005. [PMID: 39000114 PMCID: PMC11241500 DOI: 10.3390/ijms25137005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Early diagnosis and treatment of chronic kidney disease (CKD) is a worldwide challenge. Subjects with albumin-to-creatinine ratio (ACR) ≥ 30 mg/g and preserved renal function are considered to be at no cardiorenal risk in clinical practice, but prospective clinical studies evidence increased risk, even at the high-normal (HN) ACR range (10-30 mg/g), supporting the need to identify other molecular indicators for early assessment of patients at higher risk. Following our previous studies, here we aim to stratify the normoalbuminuria range according to cardiorenal risk and identify the glycoproteins and N-glycosylation sites associated with kidney damage in subclinical CKD. Glycoproteins were analyzed in urine from hypertensive patients within the HN ACR range compared to control group (C; ACR < 10 mg/g) by mass spectrometry. A different cohort was analyzed for confirmation (ELISA) and sex perspective was evaluated. Patients' follow-up for 8 years since basal urine collection revealed higher renal function decline and ACR progression for HN patients. Differential N-glycopeptides and their N -glycosylation sites were also identified, together with their pathogenicity. N-glycosylation may condition pathological protein deregulation, and a panel of 62 glycoproteins evidenced alteration in normoalbuminuric subjects within the HN range. Haptoglobin-related protein, haptoglobin, afamin, transferrin, and immunoglobulin heavy constant gamma 1 (IGHG1) and 2 (IGHG2) showed increased levels in HN patients, pointing to disturbed iron metabolism and tubular reabsorption and supporting the tubule as a target of interest in the early progression of CKD. When analyzed separately, haptoglobin, afamin, transferrin, and IGHG2 remained significant in HN, in both women and men. At the peptide level, 172 N-glycopeptides showed differential abundance in HN patients, and 26 showed high pathogenicity, 10 of them belonging to glycoproteins that do not show variation between HN and C groups. This study highlights the value of glycosylation in subjects not meeting KDIGO criteria for CKD. The identified N-glycopeptides and glycosylation sites showed novel targets, for both the early assessment of individual cardiorenal risk and for intervention aimed at anticipating CKD progression.
Collapse
Grants
- PI16/01334, PI20/01103, IF08/3667-1, CPII20/00022, CPII21/00015, CP22/00100, FI21/00128, PRB3 [IPT17/0019-ISCIII-SGEFI/ERDF], RICORS2040 [RD21/0005/0001] Instituto de Salud Carlos III
- PID2021-122348NB-I00, PLEC2022-009235 and PLEC2022-009298 Ministerio de Ciencia, Innovación y Universidades
- PEJ-2020-AI/BMD-17899; PEJD-2019-PRE/BMD-16992, 2018-T2/BMD-11561, P2022/BMD-7333 Comunidad de Madrid
- N/A Fundación SENEFRO/SEN
- N/A Fundación Mutua Madrileña
- HR17-00247 and LCF/PR/HR22/52420019 La Caixa Banking Foundation
- N/A Fundación Conchita Rábago
Collapse
Affiliation(s)
- Aranzazu Santiago-Hernandez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Marta Martin-Lorenzo
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - María Gómez-Serrano
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Juan Antonio Lopez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
| | - Ariadna Martin-Blazquez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Perceval Vellosillo
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Pablo Minguez
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- Bioinformatics Unit, Genetics Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Paula J. Martinez
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain; (M.G.-S.); (J.A.L.); (J.V.)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
| | - Gema Ruiz-Hurtado
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, IDISCAM, 45004 Toledo, Spain
| | - Pantelis Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julian Segura
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Hypertension Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Ruilope
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28041 Madrid, Spain; (G.R.-H.); (L.M.R.)
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- School of Doctoral Studies and Research, European University of Madrid, 28005 Madrid, Spain
| | - Gloria Alvarez-Llamas
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (A.S.-H.); (M.M.-L.); (A.M.-B.); (P.J.M.)
- Fundación Jiménez Díaz University Hospital-UAM, 28040 Madrid, Spain; (P.V.); (P.M.)
- RICORS2040, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
3
|
Mokhtari Ardekani A, Kharazinejad E, Ghasemi E, Ghasemi H, Soltani R. Circulating afamin positively correlated with the miR-122 expression and type 2 diabetes mellitus-related phenotype according to the duration of diabetes. Heliyon 2024; 10:e28053. [PMID: 38560140 PMCID: PMC10979149 DOI: 10.1016/j.heliyon.2024.e28053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Afamin is a hepatokine that involves in glucose and lipids metabolism. miR-122 is mainly expressed in liver and involves in lipid and carbohydrate metabolism. This study aimed at investigating the circulating afamin, its correlation with type 2 diabetes mellitus (T2DM) and miR-122 gene expression in T2DM patients and healthy control subjects according to the duration of diabetes. Methods This case-control study included 220 participants, with 100 individuals serving as controls and 120 individuals diagnosed with type 2 diabetes mellitus (T2DM). The miR-122 gene expression was assessed using real-time PCR. The serum concentration of biochemical parameters such as glucose levels, lipid profile, and small-dense low-density lipoprotein (sdLDL) were measured using colorimetric kits. Circulating afamin and insulin levels were assayed using an ELISA kit. Glycated hemoglobin (HbA1c) was measured using capillary electrophoresis. Results Circulating afamin level was significantly higher in T2DM patients compared to the control group, (73.8 ± 10.8 vs. 65.9 ± 8.7, respectively; P < 0.001). Similarly, miR122 expression was significantly increased in T2DM patients compared to healthy control subjects (4.24 ± 2.01 vs. 1.00 ± 0.85, respectively; P < 0.001). Among patients diagnosed with T2DM, those with longstanding diabetes (>5 years) exhibited significantly higher levels of circulating afamin and miR-122 expression compared to individuals with a shorter duration of diabetes (≤5 years) (P < 0.05). Circulating afamin levels were significantly correlated with waist circumference, small-dense low-density lipoprotein (sdLDL), fasting blood sugar (FBS), insulin, resistance to insulin, and miR-122 expression, depending on the duration of the disease (P < 0.05). Furthermore, the performance of afamin as a diagnostic marker for T2DM was confirmed through receiver operating characteristic (ROC) analysis, yielding an area under the curve (AUC) of 0.7 (P < 0.001). Conclusions Circulating afamin involved in the T2DM-related complications and its concentration is positively correlated to the miR-122 expression, especially in patient with longstanding diabetes.
Collapse
Affiliation(s)
- Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Rahmatollah Soltani
- Clinical Education Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Govender MA, Stoychev SH, Brandenburg JT, Ramsay M, Fabian J, Govender IS. Proteomic insights into the pathophysiology of hypertension-associated albuminuria: Pilot study in a South African cohort. Clin Proteomics 2024; 21:15. [PMID: 38402394 PMCID: PMC10893729 DOI: 10.1186/s12014-024-09458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Hypertension is an important public health priority with a high prevalence in Africa. It is also an independent risk factor for kidney outcomes. We aimed to identify potential proteins and pathways involved in hypertension-associated albuminuria by assessing urinary proteomic profiles in black South African participants with combined hypertension and albuminuria compared to those who have neither condition. METHODS The study included 24 South African cases with both hypertension and albuminuria and 49 control participants who had neither condition. Protein was extracted from urine samples and analysed using ultra-high-performance liquid chromatography coupled with mass spectrometry. Data were generated using data-independent acquisition (DIA) and processed using Spectronaut™ 15. Statistical and functional data annotation were performed on Perseus and Cytoscape to identify and annotate differentially abundant proteins. Machine learning was applied to the dataset using the OmicLearn platform. RESULTS Overall, a mean of 1,225 and 915 proteins were quantified in the control and case groups, respectively. Three hundred and thirty-two differentially abundant proteins were constructed into a network. Pathways associated with these differentially abundant proteins included the immune system (q-value [false discovery rate] = 1.4 × 10- 45), innate immune system (q = 1.1 × 10- 32), extracellular matrix (ECM) organisation (q = 0.03) and activation of matrix metalloproteinases (q = 0.04). Proteins with high disease scores (76-100% confidence) for both hypertension and chronic kidney disease included angiotensinogen (AGT), albumin (ALB), apolipoprotein L1 (APOL1), and uromodulin (UMOD). A machine learning approach was able to identify a set of 20 proteins, differentiating between cases and controls. CONCLUSIONS The urinary proteomic data combined with the machine learning approach was able to classify disease status and identify proteins and pathways associated with hypertension-associated albuminuria.
Collapse
Affiliation(s)
- Melanie A Govender
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Stoyan H Stoychev
- Council for Scientific and Industrial Research, NextGen Health, Pretoria, South Africa
- ReSyn Biosciences, Edenvale, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ireshyn S Govender
- Council for Scientific and Industrial Research, NextGen Health, Pretoria, South Africa.
- ReSyn Biosciences, Edenvale, South Africa.
| |
Collapse
|
5
|
Piarulli F, Banfi C, Ragazzi E, Gianazza E, Munno M, Carollo M, Traldi P, Lapolla A, Sartore G. Multiplexed MRM-based proteomics for identification of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. Cardiovasc Diabetol 2024; 23:36. [PMID: 38245742 PMCID: PMC10800045 DOI: 10.1186/s12933-024-02125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) increases the risk of coronary heart disease (CHD) by 2-4 fold, and is associated with endothelial dysfunction, dyslipidaemia, insulin resistance, and chronic hyperglycaemia. The aim of this investigation was to assess, by a multimarker mass spectrometry approach, the predictive role of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. METHODS The study considered 34 patients with both T2DM and CHD, 31 patients with T2DM and without CHD, and 30 patients without diabetes with a diagnosis of CHD. Plasma samples of subjects were analysed through a multiplexed targeted liquid chromatography mass spectrometry (LC-MS)-based assay, namely Multiple Reaction Monitoring (MRM), allowing the simultaneous detection of peptides derived from a protein of interest. Gene Ontology (GO) Analysis was employed to identify enriched GO terms in the biological process, molecular function, or cellular component categories. Non-parametric multivariate methods were used to classify samples from patients and evaluate the relevance of the analysed proteins' panel. RESULTS A total of 81 proteins were successfully quantified in the human plasma samples. Gene Ontology analysis assessed terms related to blood microparticles, extracellular exosomes and collagen-containing extracellular matrix. Preliminary evaluation using analysis of variance (ANOVA) of the differences in the proteomic profile among patient groups identified 13 out of the 81 proteins as significantly different. Multivariate analysis, including cluster analysis and principal component analysis, identified relevant grouping of the 13 proteins. The first main cluster comprises apolipoprotein C-III, apolipoprotein C-II, apolipoprotein A-IV, retinol-binding protein 4, lysozyme C and cystatin-C; the second one includes, albeit with sub-grouping, alpha 2 macroglobulin, afamin, kininogen 1, vitronectin, vitamin K-dependent protein S, complement factor B and mannan-binding lectin serine protease 2. Receiver operating characteristic (ROC) curves obtained with the 13 selected proteins using a nominal logistic regression indicated a significant overall distinction (p < 0.001) among the three groups of subjects, with area under the ROC curve (AUC) ranging 0.91-0.97, and sensitivity and specificity ranging from 85 to 100%. CONCLUSIONS Targeted mass spectrometry approach indicated 13 multiple circulating proteins as possible biomarkers of cardiovascular damage progression associated with T2DM, with excellent classification results in terms of sensitivity and specificity.
Collapse
Affiliation(s)
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Milano, 20138, Italy.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, Milano, 20138, Italy
| | - Marco Munno
- Centro Cardiologico Monzino, IRCCS, Milano, 20138, Italy
| | - Massimo Carollo
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | - Giovanni Sartore
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Du S, Zhai L, Ye S, Wang L, Liu M, Tan M. In-depth urinary and exosome proteome profiling analysis identifies novel biomarkers for diabetic kidney disease. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2587-2603. [PMID: 37405567 DOI: 10.1007/s11427-022-2348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 07/06/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of type 2 diabetes mellitus (T2DM). Monitoring the early diagnostic period and disease progression plays a crucial role in treating DKD. In this study, to comprehensively elucidate the molecular characteristics of urinary proteins and urinary exosome proteins in type 2 DKD, we performed large-scale urinary proteomics (n=144) and urinary exosome proteomics (n=44) analyses on T2DM patients with albuminuria in varying degrees. The dynamics analysis of the urinary and exosome proteomes in our study provides a valuable resource for discovering potential urinary biomarkers in patients with DKD. A series of potential biomarkers, such as SERPINA1 and transferrin (TF), were detected and validated to be used for DKD diagnosis or disease monitoring. The results of our study comprehensively elucidated the changes in the urinary proteome and revealed several potential biomarkers reflecting the progression of DKD, which provide a reference for DKD biomarker screening.
Collapse
Affiliation(s)
- Shichun Du
- Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Shu Ye
- Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Le Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| |
Collapse
|
7
|
Kaur R, Krishan P, Kumari P, Singh T, Singh V, Singh R, Ahmad SF. Clinical Significance of Adropin and Afamin in Evaluating Renal Function and Cardiovascular Health in the Presence of CKD-MBD Biomarkers in Chronic Kidney Disease. Diagnostics (Basel) 2023; 13:3158. [PMID: 37835901 PMCID: PMC10572291 DOI: 10.3390/diagnostics13193158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
AIM The study aims to test the hypothesis that concentrations of adropin and afamin differ between patients in various stages of chronic kidney disease when compared with healthy controls. The study also investigates the association of the biomarkers (adropin and afamin) with CKD-MBD and traditional cardiovascular risk parameters in CKD patients. METHODOLOGY The cross-sectional study includes the subjects divided into four groups comprising the control group (healthy volunteers = 50), CKD stages 1-2 patients (n = 50), CKD stages 3-4 patients (n = 50), CKD stage 5 patients (n = 50). Serum concentrations of adropin and afamin were determined using ELISA. Clinical variables (renal, lipid, and CKD-MBD parameters) were correlated to adropin and afamin concentrations. RESULTS Afamin concentration was found to be higher in group IV, followed by groups III and II when compared to the control group, i.e., (83.243 ± 1.46, 64.233 ± 0.99, and 28.948 ± 0.72 vs. 14.476 ± 0.5) mg/L (p < 0.001), and adropin concentration was found to be lower in group IV as compared to groups III, II, and I (200.342 ± 8.37 vs. 284.682 ± 9.89 vs. 413.208 ± 12.32 vs. 706.542 ± 11.32) pg/mL (p < 0.001), respectively. Pearson correlation analysis showed that afamin was positively correlated with traditional cardiovascular risk biomarkers, while adropin showed a negative correlation. CONCLUSIONS Adropin and afamin may potentially serve as futuristic predictors for the deterioration of renal function and may be involved in the pathological mechanisms of CKD and its associated complications such as CKD-MBD and high lipid levels.
Collapse
Affiliation(s)
- Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India;
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA;
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India;
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
8
|
Guo C, Fan Y, Cheng J, Deng Y, Zhang X, Chen Y, Jing H, Li W, Liu P, Xie J, Ning W, Chen H, Zhou J. AFM negatively regulates the infiltration of monocytes to mediate sepsis-associated acute kidney injury. Front Immunol 2023; 14:1049536. [PMID: 36793712 PMCID: PMC9922996 DOI: 10.3389/fimmu.2023.1049536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Background Sepsis is organ dysfunction due to the host's deleterious response to infection, and the kidneys are one of the organs damaged in common sepsis. Sepsis-associated acute kidney injury (SA-AKI) increases the mortality in patients with sepsis. Although a substantial volume of research has improved the prevention and treatment of the disease, SA-SKI is still a significant clinical concern. Purpose Aimed to use weighted gene co-expression network analysis (WGCNA) and immunoinfiltration analysis to study SA-AKI-related diagnostic markers and potential therapeutic targets. Methods Immunoinfiltration analysis was performed on SA-AKI expression datasets from the Gene Expression Synthesis (GEO) database. A weighted gene co-expression network analysis (WGCNA) analysis was performed on immune invasion scores as trait data, and modules associated with immune cells of interest were identified as hub modules. Screening hub geneset in the hub module using protein-protein interaction (PPI) network analysis. The hub gene was identified as a target by intersecting with significantly different genes screened by differential expression analysis and validated using two external datasets. Finally, the correlation between the target gene, SA-AKI, and immune cells was verified experimentally. Results Green modules associated with monocytes were identified using WGCNA and immune infiltration analysis. Differential expression analysis and PPI network analysis identified two hub genes (AFM and GSTA1). Further validation using additional AKI datasets GSE30718 and GSE44925 showed that AFM was significantly downregulated in AKI samples and correlated with the development of AKI. The correlation analysis of hub genes and immune cells showed that AFM was significantly associated with monocyte infiltration and hence, selected as a critical gene. In addition, Gene single-enrichment analysis (GSEA) and PPI analyses results showed that AFM was significantly related to the occurrence and development of SA-AKI. Conclusions AFM is inversely correlated with the recruitment of monocytes and the release of various inflammatory factors in the kidneys of AKI. AFM can be a potential biomarker and therapeutic target for monocyte infiltration in sepsis-related AKI.
Collapse
Affiliation(s)
- Caiyun Guo
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People's Hospital of Kashgar, Xinjiang, China,Department of Anesthesiology, The Second People’s Hospital of Panyu, Guangzhou, China
| | - Jiurong Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yingdong Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiangsheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Ning
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Jun Zhou,
| |
Collapse
|
9
|
Xu Z, Zhang M, Wang Y, Chen R, Xu S, Sun X, Yang Y, Lin Z, Wang S, Huang H. Gentiopicroside Ameliorates Diabetic Renal Tubulointerstitial Fibrosis via Inhibiting the AT1R/CK2/NF-κB Pathway. Front Pharmacol 2022; 13:848915. [PMID: 35814242 PMCID: PMC9260113 DOI: 10.3389/fphar.2022.848915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Renal tubulointerstitial fibrosis (TIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells, is the typical pathological alteration in diabetic nephropathy. Gentiopicroside (GPS), a natural compound with anti-inflammatory activity, has been demonstrated to alleviate glomerulosclerosis, whereas whether GPS inhibits TIF via regulating inflammation remains unclear. In this study, diabetic db/db mice and high glucose (HG)-stimulated renal tubular epithelial cells (NRK-52E) were applied to explore the effects and mechanisms of GPS on TIF. The results in vivo showed that GPS effectively improves glycolipid metabolism disorder, renal dysfunction, and TIF. In particular, GPS treatment reversed the abnormal expressions of EMT marker proteins including elevated α-smooth muscle actin and vimentin and decreased E-cadherin in the kidney of db/db mice. Moreover, GPS treatment also inhibited protein expressions of angiotensinⅡ type 1 receptor (AT1R) and CK2α and the activation of the NF-κB pathway. Importantly, the aforementioned effects of GPS acted in vivo were further observed in vitro in HG-stimulated NRK-52E cells, which were independent of its effects on glucose and lipid-lowering activity but were reversed by AT1R over-expression. Together, our results indicate that GPS that directly inhibits the CK2/NF-κB inflammatory signaling pathway via AT1R may also contribute to the amelioration of TIF in diabetes.
Collapse
Affiliation(s)
- Zhanchi Xu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou,, China
| | - Rui Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiyue Xu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Shiyue Xu, ; Shaogui Wang, ; Heqing Huang,
| | - Xiaohong Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zeyuan Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaogui Wang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shiyue Xu, ; Shaogui Wang, ; Heqing Huang,
| | - Heqing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Shiyue Xu, ; Shaogui Wang, ; Heqing Huang,
| |
Collapse
|
10
|
Yin X, Takov K, Straube R, Voit-Bak K, Graessler J, Julius U, Tselmin S, Rodionov RN, Barbir M, Walls M, Theofilatos K, Mayr M, Bornstein SR. Precision Medicine Approach for Cardiometabolic Risk Factors in Therapeutic Apheresis. Horm Metab Res 2022; 54:238-249. [PMID: 35413745 DOI: 10.1055/a-1776-7943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lipoprotein apheresis (LA) is currently the most powerful intervention possible to reach a maximal reduction of lipids in patients with familial hypercholesterolemia and lipoprotein(a) hyperlipidemia. Although LA is an invasive method, it has few side effects and the best results in preventing further major cardiovascular events. It has been suggested that the highly significant reduction of cardiovascular complications in patients with severe lipid disorders achieved by LA is mediated not only by the potent reduction of lipid levels but also by the removal of other proinflammatory and proatherogenic factors. Here we performed a comprehensive proteomic analysis of patients on LA treatment using intra-individually a set of differently sized apheresis filters with the INUSpheresis system. This study revealed that proteomic analysis correlates well with routine clinical chemistry in these patients. The method is eminently suited to discover new biomarkers and risk factors for cardiovascular disease in these patients. Different filters achieve reduction and removal of proatherogenic proteins in different quantities. This includes not only apolipoproteins, C-reactive protein, fibrinogen, and plasminogen but also proteins like complement factor B (CFAB), protein AMBP, afamin, and the low affinity immunoglobulin gamma Fc region receptor III-A (FcγRIIIa) among others that have been described as atherosclerosis and metabolic vascular diseases promoting factors. We therefore conclude that future trials should be designed to develop an individualized therapy approach for patients on LA based on their metabolic and vascular risk profile. Furthermore, the power of such cascade filter treatment protocols may improve the prevention of cardiometabolic disease and its complications.
Collapse
Affiliation(s)
- X Yin
- Kings College London, London, UK
| | - K Takov
- Kings College London, London, UK
| | - R Straube
- Zentrum für Apherese- und Hämofiltration am INUS Tagesklinikum, Cham, Germany
| | - K Voit-Bak
- Zentrum für Apherese- und Hämofiltration am INUS Tagesklinikum, Cham, Germany
| | - J Graessler
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - U Julius
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - S Tselmin
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Roman N Rodionov
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - M Barbir
- Royal Brompton Hospital, London, UK
| | | | | | - M Mayr
- Kings College London, London, UK
- Technische Universität Dresden, Dresden, Germany
| | - S R Bornstein
- Kings College London, London, UK
- Department and Outpatient Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
11
|
Masood A, Benabdelkamel H, Jammah AA, Ekhzaimy AA, Alfadda AA. Identification of Protein Changes in the Urine of Hypothyroid Patients Treated with Thyroxine Using Proteomics Approach. ACS OMEGA 2021; 6:2367-2378. [PMID: 33521475 PMCID: PMC7841925 DOI: 10.1021/acsomega.0c05686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
The thyroid gland and thyroid hormones control a multitude of homeostatic functions including maintenance of fluid and electrolyte balance and normal functioning of the kidneys. Thyroid dysfunction alters the sytemic hemodynamic and metabolic balance, thereby affecting the kidney. In this study, we aimed to identify and characterize the urinary proteome of the patients with hypothyroidism. An untargeted proteomic approach with network analysis was used to identify changes in total urinary proteome in patients with newly diagnosed overt hypothyroidism. Urine samples were collected from nine age-matched patients' before and after l-thyroxine treatment. Differences in the abundance of urinary proteins between hypothyroid and euthyroid states were determined using a two-dimensional difference in gel electrophoresis (2D-DIGE) coupled to matrix-assisted laser desorption and ionization time-of-flight (MALDI TOF) mass spectrometry. Alterations in the abundance of urinary proteins, analyzed by Progenesis software, revealed statistically significant differential abundance in a total of 49 spots corresponding to 42 proteins, 28 up and 14 down (≥1.5-fold change, analysis of variance (ANOVA), p ≤ 0.05). The proteins identified in the study are known to regulate processes related to transport, acute phase response, oxidative stress, generation of reactive oxygen species, cellular proliferation, and endocytosis. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) identified dysregulation of pathways related to amino acid metabolism, molecular transport, and small-molecule biochemistry and involved the MAPK kinase, vascular endothelial growth factor (VEGF), PI3 kinase/Akt, protein kinase C (PKC), signaling pathways. The identified proteins were involved in the regulation of thyroglobulin (Tg) and thyrotropin (TSH) metabolism. Alterations in their levels indicate the presence of a compensatory mechanism aimed at increasing the regulation of Tg in the hypothyroid state.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anwar A. Jammah
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Aishah A. Ekhzaimy
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics
Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Department
of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
12
|
Nuñez-Calonge R, Cortes S, Caballero Peregrín P, Gutierrez Gonzalez LM, Kireev R. Seminal Plasma and Serum Afamin Levels Are Associated with Infertility in Men with Oligoasthenoteratozoospermia. Reprod Sci 2021; 28:1498-1506. [PMID: 33409873 DOI: 10.1007/s43032-020-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
The plasma glycoprotein afamin has been previously identified as an alternative carrier protein for vitamin E in extravascular fluids such as plasma and cerebrospinal, ovarian follicular, and seminal fluids. However, to date, no study has established a relationship between afamin levels and infertility in women or men. The purposes of our study were (i) to assess the level of afamin in serum and seminal fluids in infertile men compared to healthy controls and (ii) to study the association between polymorphisms in afamin genes and male infertility. This observational, prospective study evaluated the afamin levels in serum and seminal fluids from infertile men (n = 39) and compared them to those in healthy controls (n = 30). We studied the association between single-nucleotide polymorphisms (SNPs) in the 5`-untranslated region (5`-UTR) of the afamin gene and infertility and analyzed a total of 1000 base pairs from the untranslated region of the afamin gene. Subjects with low sperm motility and low sperm concentration had higher median seminal afamin (18.9 ± 2.9 ng/mg of proteins) and serum afamin concentrations (24.1 ± 4.0 ng/mg of proteins) than subjects with normal sperm parameters (10.6 ± 1.4 ng/mg of proteins) (p < 0.02) (15.6 ± 1.4 ng/mg of proteins) (p < 0.002). A total of five different polymorphisms were found, including one deletion and four single-nucleotide polymorphisms (SNPs). A new transversion (A/T) (position 4:73481093) was identified in an oligoasthenoteratozoospermic patient and was associated with high levels of afamin in plasma and seminal fluids. The prevalence of this variant in our study in the case homozygous for TT is 0.985 (98.5%), and in the case heterozygous for TA is 0.015 (1.5%). Our results suggest that genetic variations in afamin might be associated with male infertility. These findings could significantly enhance our understanding of the molecular genetic causes of infertility.
Collapse
Affiliation(s)
- Rocio Nuñez-Calonge
- International Assisted Reproduction Unit, Madrid, IERA Foundation, Madrid, Avenida General Perón 20, 28020, Madrid, Spain.
| | | | - Pedro Caballero Peregrín
- International Assisted Reproduction Unit, Madrid, IERA Foundation, Madrid, Avenida General Perón 20, 28020, Madrid, Spain
| | | | - Roman Kireev
- Galicia Sur Health Research Institute, Vigo, Spain
| |
Collapse
|
13
|
Kurdiova T, Balaz M, Kovanicova Z, Zemkova E, Kuzma M, Belan V, Payer J, Gasperikova D, Dieplinger H, Ukropcova B, Ukropec J. Serum Afamin a Novel Marker of Increased Hepatic Lipid Content. Front Endocrinol (Lausanne) 2021; 12:670425. [PMID: 34603196 PMCID: PMC8481912 DOI: 10.3389/fendo.2021.670425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
AIM Afamin is a liver-produced glycoprotein, a potential early marker of metabolic syndrome. Here we investigated regulation of afamin in a course of the metabolic disease development and in response to 3-month exercise intervention. METHODS We measured whole-body insulin sensitivity (euglycemic hyperinsulinemic clamp), glucose tolerance, abdominal adiposity, hepatic lipid content (magnetic resonance imaging/spectroscopy), habitual physical activity (accelerometers) and serum afamin (enzyme-linked immunosorbent assay) in 71 middle-aged men with obesity, prediabetes and newly diagnosed type 2 diabetes. Effects of 3-month exercise were investigated in 22 overweight-to-obese middle-aged individuals (16M/6F). RESULTS Prediabetes and type 2 diabetes, but not obesity, were associated with increased serum afamin (p<0.001). Afamin correlated positively with hepatic lipids, fatty liver index and liver damage markers; with parameters of adiposity (waist circumference, %body fat, adipocyte diameter) and insulin resistance (fasting insulin, C-peptide, HOMA-IR; p<0.001 all). Moreover, afamin negatively correlated with whole-body insulin sensitivity (M-value/Insulin, p<0.001). Hepatic lipids and fasting insulinemia were the most important predictors of serum afamin, explaining >63% of its variability. Exercise-related changes in afamin were paralleled by reciprocal changes in insulinemia, insulin resistance and visceral adiposity. No significant change in hepatic lipid content was observed. CONCLUSIONS Subjects with prediabetes and type 2 diabetes had the highest serum afamin levels. Afamin was more tightly related to hepatic lipid accumulation, liver damage and insulin resistance than to obesity.
Collapse
Affiliation(s)
- Timea Kurdiova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Balaz
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Kovanicova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Erika Zemkova
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Martin Kuzma
- 5 Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | - Juraj Payer
- 5 Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Daniela Gasperikova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hans Dieplinger
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Jozef Ukropec, ; Hans Dieplinger,
| | - Barbara Ukropcova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Clinical Pathophysiology, Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Jozef Ukropec, ; Hans Dieplinger,
| |
Collapse
|
14
|
Karlsson C, Wallenius K, Walentinsson A, Greasley PJ, Miliotis T, Hammar M, Iaconelli A, Tapani S, Raffaelli M, Mingrone G, Carlsson B. Identification of Proteins Associated with the Early Restoration of Insulin Sensitivity After Biliopancreatic Diversion. J Clin Endocrinol Metab 2020; 105:5896394. [PMID: 32830851 PMCID: PMC7518464 DOI: 10.1210/clinem/dgaa558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023]
Abstract
CONTEXT Insulin resistance (IR) is a risk factor for type 2 diabetes, diabetic kidney disease, cardiovascular disease and nonalcoholic steatohepatitis. Biliopancreatic diversion (BPD) is the most effective form of bariatric surgery for improving insulin sensitivity. OBJECTIVE To identify plasma proteins correlating with the early restoration of insulin sensitivity after BPD. DESIGN Prospective single-center study including 20 insulin-resistant men with morbid obesity scheduled for BPD. Patient characteristics and blood samples were repeatedly collected from baseline up to 4 weeks postsurgery. IR was assessed by homeostatic model assessment for insulin resistance (HOMA-IR), Matsuda Index, and by studying metabolic profiles during meal tolerance tests. Unbiased proteomic analysis was performed to identify plasma proteins altered by BPD. Detailed plasma profiles were made on a selected set of proteins by targeted multiple reaction monitoring mass spectrometry (MRM/MS). Changes in plasma proteome were evaluated in relation to metabolic and inflammatory changes. RESULTS BPD resulted in improved insulin sensitivity and reduced body weight. Proteomic analysis identified 29 proteins that changed following BPD. Changes in plasma levels of afamin, apolipoprotein A-IV (ApoA4), and apolipoprotein A-II (ApoA2) correlated significantly with changes in IR. CONCLUSION Circulating levels of afamin, ApoA4, and ApoA2 were associated with and may contribute to the rapid improvement in insulin sensitivity after BPD.
Collapse
Affiliation(s)
- Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence and Reprint Requests: Cecilia Karlsson, MD, PhD, Assoc Prof, Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden, Pepparedsleden 1, SE-431 83 Mölndal, Sweden. E-mail:
| | - Kristina Wallenius
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Anna Walentinsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Peter J Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Tasso Miliotis
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Mårten Hammar
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | | | - Sofia Tapani
- Early Biometrics and Statistical Innovation, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Marco Raffaelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Diabetes, King’s College London, London, United Kingdom
| | - Björn Carlsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| |
Collapse
|
15
|
Insights into predicting diabetic nephropathy using urinary biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140475. [DOI: 10.1016/j.bbapap.2020.140475] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
|
16
|
Guo J, Zheng HJ, Zhang W, Lou W, Xia C, Han XT, Huang WJ, Zhang F, Wang Y, Liu WJ. Accelerated Kidney Aging in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1234059. [PMID: 32774664 PMCID: PMC7407029 DOI: 10.1155/2020/1234059] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
With aging, the kidney undergoes inexorable and progressive changes in structural and functional performance. These aging-related alterations are more obvious and serious in diabetes mellitus (DM). Renal accelerated aging under DM conditions is associated with multiple stresses such as accumulation of advanced glycation end products (AGEs), hypertension, oxidative stress, and inflammation. The main hallmarks of cellular senescence in diabetic kidneys include cyclin-dependent kinase inhibitors, telomere shortening, and diabetic nephropathy-associated secretory phenotype. Lysosome-dependent autophagy and antiaging proteins Klotho and Sirt1 play a fundamental role in the accelerated aging of kidneys in DM, among which the autophagy-lysosome system is the convergent mechanism of the multiple antiaging pathways involved in renal aging under DM conditions. Metformin and the inhibitor of sodium-glucose cotransporter 2 are recommended due to their antiaging effects independent of antihyperglycemia, besides angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Additionally, diet intervention including low protein and low AGEs with antioxidants are suggested for patients with diabetic nephropathy (DN). However, their long-term benefits still need further study. Exploring the interactive relationships among antiaging protein Klotho, Sirt1, and autophagy-lysosome system may provide insight into better satisfying the urgent medical needs of elderly patients with aging-related DN.
Collapse
Affiliation(s)
- Jing Guo
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Juan Zheng
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenting Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenjiao Lou
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenhui Xia
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xue Ting Han
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jun Huang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yaoxian Wang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, No. 57th South Renmin Road, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
17
|
Zeng M, Liu J, Yang W, Zhang S, Liu F, Dong Z, Peng Y, Sun L, Xiao L. Identification of key biomarkers in diabetic nephropathy via bioinformatic analysis. J Cell Biochem 2019; 120:8676-8688. [PMID: 30485525 DOI: 10.1002/jcb.28155] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease. Although intense efforts have been made to elucidate the pathogenesis, the molecular mechanisms of DN remain to be clarified. To identify the candidate genes in the progression of DN, microarray datasets GSE30122, GSE30528, and GSE47183 were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified, and function enrichment analyses were performed. The protein-protein interaction network was constructed and the module analysis was performed using the Search Tool for the Retrieval of Interacting Genes and Cytoscape. A total of 61 DEGs were identified. The enriched functions and pathways of the DEGs included glomerulus development, extracellular exosome, collagen binding, and the PI3K-Akt signaling pathway. Fifteen hub genes were identified and biological process analysis revealed that these genes were mainly enriched in acute inflammatory response, inflammatory response, and blood vessel development. Correlation analysis between unexplored hub genes and clinical features of DN suggested that COL6A3, MS4A6A,PLCE1, TNNC1, TNNI1, TNN2, and VSIG4 may involve in the progression of DN. In conclusion, DEGs and hub genes identified in this study may deepen our understanding of molecular mechanisms underlying the progression of DN, and provide candidate targets for diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenxia Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shumin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|