1
|
Xiao Q, Wang J, Wang L, Ding H. APOA1/C3/A4/A5 Gene Cluster at 11q23.3 and Lipid Metabolism Disorders: From Epigenetic Mechanisms to Clinical Practices. Biomedicines 2024; 12:1224. [PMID: 38927431 PMCID: PMC11201263 DOI: 10.3390/biomedicines12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
2
|
Pérez-Beltrán YE, González-Becerra K, Rivera-Iñiguez I, Martínez-López E, Ramos-Lopez O, Alcaraz-Mejía M, Rodríguez-Echevarría R, Sáyago-Ayerdi SG, Mendivil EJ. A Nutrigenetic Strategy for Reducing Blood Lipids and Low-Grade Inflammation in Adults with Obesity and Overweight. Nutrients 2023; 15:4324. [PMID: 37892400 PMCID: PMC10609523 DOI: 10.3390/nu15204324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The pathogenesis of obesity and dyslipidemia involves genetic factors, such as polymorphisms related to lipid metabolism alterations predisposing their development. This study aimed to evaluate the effect of a nutrigenetic intervention on the blood lipid levels, body composition, and inflammation markers of adults with obesity and overweight. Eleven genetic variants associated with dyslipidemias in Mexicans were selected, and specific nutrigenetic recommendations for these polymorphisms were found. One hundred and one adults were recruited and assigned to follow either a standard or nutrigenetic diet for eight weeks. Anthropometric, biochemical, body composition, and inflammation markers were evaluated through standardized methods. Weighted genetic risk scores (wGRSs) were computed using the study polymorphisms. After intervention, both diets significantly decreased the anthropometric parameters and body composition (p < 0.05). Only the nutrigenetic diet group showed significant reductions in VLDL-c (p = 0.001), triglycerides (p = 0.002), TG:HDL (p = 0.002), IL-6 (p = 0.002), and TNF-α (p = 0.04). wGRSs had a high impact on the ΔTGs and ΔVLDL-c of both groups (standard diet: ΔTGs: Adj R2 = 0.69, p = 0.03; ΔVLDL-c: Adj R2 = 0.71, p = 0.02; nutrigenetic diet: ΔTGs: Adj R2 = 0.49, p = 0.03 and ΔVLDL-c: R2 = 0.29, p = 0.04). This nutrigenetic intervention improved lipid abnormalities in patients with excessive body weight. Hence, nutrigenetic strategies could be coadjuvant tools and enhance the standard dietary treatment for cardiometabolic diseases.
Collapse
Affiliation(s)
- Yolanda E. Pérez-Beltrán
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico;
| | - Karina González-Becerra
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Instituto de Investigación en Genética Molecular, Universidad de Guadalajara, Ocotlán 47820, Jalisco, Mexico;
| | - Ingrid Rivera-Iñiguez
- Department of Pediatrics, University of California, UCSD Center for Healthy Eating and Activity Research (CHEAR), San Diego, CA 92037, USA;
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.M.-L.); (R.R.-E.)
| | - Omar Ramos-Lopez
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Baja California, Mexico;
| | - Mildreth Alcaraz-Mejía
- Departamento de Electrónica, Sistemas e Informática, ITESO, Unioversidad Jesuita de Guadalajara, Tlaquepaque 45604, Jalisco, Mexico;
| | - Roberto Rodríguez-Echevarría
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (E.M.-L.); (R.R.-E.)
| | - Sonia G. Sáyago-Ayerdi
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Nayarit, Mexico;
| | - Edgar J. Mendivil
- Departamento de Salud, Universidad Iberoamericana, Ciudad de Mexico 01219, Mexico
| |
Collapse
|
3
|
Vourdoumpa A, Paltoglou G, Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023; 15:1416. [PMID: 36986146 PMCID: PMC10058966 DOI: 10.3390/nu15061416] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represents one of the most challenging public health problems of our century owing to its epidemic proportions and the associated significant morbidity, mortality, and increase in public health costs. The pathogenesis of polygenic obesity is multifactorial and is due to the interaction among genetic, epigenetic, and environmental factors. More than 1100 independent genetic loci associated with obesity traits have been currently identified, and there is great interest in the decoding of their biological functions and the gene-environment interaction. The present study aimed to systematically review the scientific evidence and to explore the relation of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with changes in body mass index (BMI) and other measures of body composition in children and adolescents with obesity, as well as their response to lifestyle interventions. Twenty-seven studies were included in the qualitative synthesis, which consisted of 7928 overweight/obese children and adolescents at different stages of pubertal development who underwent multidisciplinary management. The effect of polymorphisms in 92 different genes was assessed and revealed SNPs in 24 genetic loci significantly associated with BMI and/or body composition change, which contribute to the complex metabolic imbalance of obesity, including the regulation of appetite and energy balance, the homeostasis of glucose, lipid, and adipose tissue, as well as their interactions. The decoding of the genetic and molecular/cellular pathophysiology of obesity and the gene-environment interactions, alongside with the individual genotype, will enable us to design targeted and personalized preventive and management interventions for obesity early in life.
Collapse
Affiliation(s)
- Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Reprint of: Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022; 128:253-264. [DOI: https:/doi.org/10.1016/j.tifs.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
|
6
|
Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Single-nucleotide polymorphisms in medical nutritional weight loss: Challenges and future directions. J Transl Int Med 2022; 10:1-4. [PMID: 35702183 PMCID: PMC8997798 DOI: 10.2478/jtim-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Abdullah MMH, Vazquez-Vidal I, Baer DJ, House JD, Jones PJH, Desmarchelier C. Common Genetic Variations Involved in the Inter-Individual Variability of Circulating Cholesterol Concentrations in Response to Diets: A Narrative Review of Recent Evidence. Nutrients 2021; 13:695. [PMID: 33671529 PMCID: PMC7926676 DOI: 10.3390/nu13020695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The number of nutrigenetic studies dedicated to the identification of single nucleotide polymorphisms (SNPs) modulating blood lipid profiles in response to dietary interventions has increased considerably over the last decade. However, the robustness of the evidence-based science supporting the area remains to be evaluated. The objective of this review was to present recent findings concerning the effects of interactions between SNPs in genes involved in cholesterol metabolism and transport, and dietary intakes or interventions on circulating cholesterol concentrations, which are causally involved in cardiovascular diseases and established biomarkers of cardiovascular health. We identified recent studies (2014-2020) that reported significant SNP-diet interactions in 14 cholesterol-related genes (NPC1L1, ABCA1, ABCG5, ABCG8, APOA1, APOA2, APOA5, APOB, APOE, CETP, CYP7A1, DHCR7, LPL, and LIPC), and which replicated associations observed in previous studies. Some studies have also shown that combinations of SNPs could explain a higher proportion of variability in response to dietary interventions. Although some findings still need replication, including in larger and more diverse study populations, there is good evidence that some SNPs are consistently associated with differing circulating cholesterol concentrations in response to dietary interventions. These results could help clinicians provide patients with more personalized dietary recommendations, in order to lower their risk for cardiovascular disease.
Collapse
Affiliation(s)
| | - Itzel Vazquez-Vidal
- Richardson Centre for Functional Foods & Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
| | - David J. Baer
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - James D. House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Peter J. H. Jones
- Nutritional Fundamentals for Health, Vaudreuil-Dorion, QC J7V 5V5, Canada;
| | | |
Collapse
|
9
|
Fan L, You Y, Fan Y, Shen C, Xue Y. Association Between ApoA1 Gene Polymorphisms and Antipsychotic Drug-Induced Dyslipidemia in Schizophrenia. Neuropsychiatr Dis Treat 2021; 17:1289-1297. [PMID: 33958870 PMCID: PMC8096449 DOI: 10.2147/ndt.s305200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Dyslipidemia frequently occurs in schizophrenia patients treated with antipsychotic drugs (APDs), especially atypical APDs. Apolipoprotein A1 (ApoA1) plays a key role in lipid metabolism. The aim of this study was to investigate whether ApoA1 gene polymorphisms are associated with APD-induced dyslipidemia in schizophrenia patients. PATIENTS AND METHODS A total of 1987 patients with schizophrenia were enrolled in this study. Serum lipid profiles were determined with a biochemistry analyzer. Genotyping for the rs5072 polymorphism of ApoA1 was performed with TaqMan assay. Logistic regression analysis was carried out to evaluate the relationship between ApoA1 gene polymorphisms and APD-induced dyslipidemia. The effects of drug classification (typical vs atypical APD) and drug regimen (monotherapy vs combination therapy) on serum lipid levels were also analyzed. RESULTS A significant association was found between rs5072 and triglyceride (TG) levels in the recessive model of the logistic regression analysis (adjusted odds ratio [OR]=1.50, 95% confidence interval [CI]: 1.03, 2.17; P<0.05). TG level was significantly higher in patients treated with combination therapy (1.03 (0.71, 1.51) mmol/l) compared to monotherapy (0.93 (0.67, 1.43) mmol/l) and was also associated with sex. There were significant differences in TG levels among the three genotypes of ApoA1 rs5072 (GG, GA, and AA) in the whole study population and in patients treated with atypical APDs. CONCLUSION The ApoA1 rs5072 variant is associated with dysregulated TG metabolism in schizophrenia patients treated with APDs, which may increase susceptibility to dyslipidemia.
Collapse
Affiliation(s)
- Lin Fan
- Department of Pharmacy, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| | - Yiwen You
- Department of Pharmacy, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yong Xue
- Department of Medical Laboratory, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
10
|
Naureen Z, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Zulian A, Romanelli R, Bertelli M. Genetic test for the prescription of diets in support of physical activity. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020011. [PMID: 33170161 PMCID: PMC8023120 DOI: 10.23750/abm.v91i13-s.10584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023]
Abstract
Owing to the fields of nutrigenetics and nutrigenomics today we can think of devising approaches to optimize health, delay onset of diseases and reduce its severity according to our genetic blue print. However this requires a deep understanding of nutritional impact on expression of genes that may result in a specific phenotype. The extensive research and observational studies during last two decades reporting interactions between genes, diet and physical activity suggest a cross talk between various genetic and environmental factors and lifestyle interventions. Although considerable efforts have been made in unraveling the mechanisms of gene-diet interactions the scientific evidences behind developing commercial genetic tests for providing personalized nutrition recommendations are still scarce. In this scenario the current mini-review aims to provide useful insights into salient feature of nutrition based genetic research and its commercial application and the ethical issue and concerns related to its outcome.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | - Barbara Aquilanti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Valeria Velluti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Giuseppina Matera
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Lucilla Gagliardi
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | | | | | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
11
|
Yang L, Bai J, Ju Z, Jiang Q, Wang J, Gao Y, Zhang Y, Wei X, Huang J. Effect of functional single nucleotide polymorphism g.-572 A > G of apolipoprotein A1 gene on resistance to ketosis in Chinese Holstein cows. Res Vet Sci 2020; 135:310-316. [PMID: 33127092 DOI: 10.1016/j.rvsc.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/15/2022]
Abstract
The ketosis has negative effects on the high-yielding dairy cows during early lactation. Apolipoprotein A1 (APOA1) is a component of high-density lipoprotein. However, the association of APOA1 gene with ketosis, and the molecular mechanisms of expression of APOA1 gene are not fully understood in dairy cows. In this study, expression of APOA1 in the liver and blood was investigated by RT-qPCR and immunohistochemistry, and genetic variation in the 5'-flanking region of the AOPA1 gene was also screened and identified. In addition, correlation of the single nucleotide polymorphisms (SNPs) of APOA1 gene with blood ketone characters, and activity of APOA1 promoter were analyzed in dairy cows. The results showed that ApoA1 protein was expressed in the liver, and the mRNA level of APOA1 was significantly higher in the cows with ketosis comparing to the healthy cows. In addition, a novel SNP (g.-572 A > G) in the core promoter of the APOA1 gene was identified between base g.-714 and g.-68 through transient transfection in both HepG2 cell and FFb cell, and luciferase report assay. Moreover, there was lower concentration of blood β-hydroxybutyrate in cows with genotype GG comparing to the cows with genotypes AA and AG. This study reported for the first time that the genetic variant g.-572 A > G in the core promoter region of APOA1 gene was associated with the ketosis in Chinese Holstein cows, and g.-572 A > G may be used as a genetic marker for ketosis prevention.
Collapse
Affiliation(s)
- Ling Yang
- Department of Animal Science, School of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jiachen Bai
- Department of Animal Science, School of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Xiaochao Wei
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250131, China.
| |
Collapse
|
12
|
Ramezani-Jolfaie N, Aghaei S, Yazd EF, Moradi A, Mozaffari-Khosravi H, Zimorovat A, Raeisi-Dehkordi H, Moghtaderi F, Amiri M, Yasini Ardakani SA, Salehi-Abargouei A. Association of rs670 variant of APOA-1 gene with cardiometabolic markers after consuming sesame, canola and sesame-canola oils in adults with and without type 2 diabetes mellitus. Clin Nutr ESPEN 2020; 38:129-137. [DOI: 10.1016/j.clnesp.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/05/2023]
|
13
|
[Influence of rs670 variant of APOA1 gene on serum HDL response to an enriched-polyunsaturated vs. an enriched-monounsaturated fat hypocaloric diet]. NUTR HOSP 2019; 36:1288-1295. [PMID: 31682461 DOI: 10.20960/nh.02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background and objectives: genetic variants of the APOA1 gene have been related to lipid profile in obese subjects. Our aim was to analyze the effects of the rs670 APOA1 gene polymorphism on metabolic changes secondary to an enriched-polyunsaturated fat vs. an enriched-monounsaturated fat hypocaloric diet. Methods: 360 Caucasian obese subjects were randomly allocated to two groups. One group received an enriched-polyunsaturated fat (diet P) and the other an enriched-monounsaturated fat hypocaloric diet (diet M) during 12 weeks. The effects on serum biomarkers related to lipid and carbohydrate metabolism were evaluated before and after the dietary intervention. Results: after both diets, body mass index, weight, fat mass, waist circumference, systolic blood pressure, plasma leptin concentration, and waist circumference decreased in all patients. After 12 weeks of intervention with diet P, plasma insulin levels and HOMA-IR decreased in A-allele carriers: delta: -7.3 ± 2.2 IU/L (p = 0.01), and delta: -2.8 ± 0.5 units (p = 0.02), respectively. The same changes in delta were observed after diet M in A-allele carriers: insulin delta: -5.9 ± 1.2 IU/L (p = 0.01), and HOMA-IR delta: -2.1 ± 0.8 units (p = 0.02). In A-allele carriers, LDL-cholesterol decreased and HDL-cholesterol increased after the dietary intervention with diet P: delta: -12.1 ± 4.3 mg/dL (p = 0.01), and delta: 2.6 ± 0.7 mg/dL (p = 0.01), respectively. No differences in lipid profile were observed after diet M. These improvements were not observed in non-A-allele carriers after both interventions. Conclusions: our study showed the association of the rs670 ApoA1 polymorphism with insulin resistance changes as induced by both diets. An enriched-polyunsaturated fat diet produced an additional improvement of HDL-cholesterol and LDL-cholesterol in A-allele carriers.
Collapse
|
14
|
Tan P, Mitra S, Amini F. Lifestyle Interventions for Weight Control Modified by Genetic Variation: A Review of the Evidence. Public Health Genomics 2019; 21:169-185. [DOI: 10.1159/000499854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/23/2019] [Indexed: 11/19/2022] Open
|
15
|
Izaola O, Primo D, Gomez Hoyos E, Lopez Gomez JJ, Ortola A, de Luis D. Association of rs670 variant of APOA1 gene with lipid profile and insulin resistance after 9 months of a high protein/low carbohydrate vs a standard hypocaloric diet. Clin Nutr 2019; 39:988-993. [PMID: 31080037 DOI: 10.1016/j.clnu.2019.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS A common G-to-A transition (rs670) in the APOA1 gene has been related with metabolism. We evaluate the association of this SNP with changes in lipid profile and insulin resistance in response to two diets. METHODS 268 obese patients were randomly allocated to a high protein/low carbohydrate -Diet HP- vs. a standard hypocaloric diet -Diet S- for 9 months. Anthropometric and biochemical status were evaluated at 3 and 9 months. RESULTS 179 subjects (66.8%) had the genotype GG, 79 patients GA (29.4%) and 10 subjects AA (3,8%). With both diets: the decrease of BMI, weight, waist circumference, fat mass was higher in A allele carriers than non-carriers. Also on both diets A allele carriers showed greater improvements in total cholesterol (-19.0 ± 2.5 mg/dl (non-A allele carriers -12.1 ± 2.0 mg/dl:p = 0.02 after Diet HP) and -13.1 ± 2.1 mg/dl (non-A allele carriers -8.9 ± 1.1 mg/dl:p = 0.02 after Diet S)), LDL-cholesterol (-18.0 ± 2.1 mg/dl (non-A allele carriers -8.3 ± 2.2 mg/dl:p = 0.01 after Diet HP) and -12.0 ± 1.5 mg/dl (non-A allele carriers -6.3 ± 2.3 mg/dl:p = 0.01 after Diet S)), insulin (-2.5 ± 0.2 mUI/L (in non A allele -1.8 ± 0.2 mUI/L:p = 0.01 after Diet HP) and -2.1 ± 0.1 mUI/L (non A allele carriers -1.2 ± 0.3 mUI/L:p = 0.01 after Diet S)), HOMA-IR (-1.3 ± 0.3 units (non A allele group -0.8 ± 0.2:p = 0.03 after Diet HP) and -1.1 ± 0.1 units (non A allele carriers -0.3 ± 0.2 mg/dl:p = 0.01 after Diet S)) than non-A allele carriers. CONCLUSIONS A allele carriers of rs670 ApoA1 polymorphism showed a higher decrease of insulin resistance, LDL cholesterol and adiposity induced by two different hypocaloric diet than non A allele carriers.
Collapse
Affiliation(s)
- Olatz Izaola
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - David Primo
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Emilia Gomez Hoyos
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Juan Jose Lopez Gomez
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Ana Ortola
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Daniel de Luis
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain.
| |
Collapse
|
16
|
Wu C, Wang Y, Gong P, Wang L, Liu C, Chen C, Jiang X, Dong X, Cheng B, Li H. Promoter Methylation Regulates ApoA-I Gene Transcription in Chicken Abdominal Adipose Tissue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4535-4544. [PMID: 30932484 DOI: 10.1021/acs.jafc.9b00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a central constituent of HDL (high-density lipoprotein), apolipoprotein A-I (ApoA-I) has a vital function in lipid metabolism. Our previous studies confirmed that ApoA-I was differentially expressed in the adipose tissue of the abdomen of lean and fat broilers. The aim of the current work was to evaluate whether the transcription of ApoA-I in chicken abdominal adipose tissue was regulated by DNA methylation. The methylation status of ApoA-I promoter CpG island (PCGI) and promoter non-CpG island (PNCGI) as well as the ApoA-I expression level in adipose tissue of lean and fat broilers were determined using Sequenom MassARRAY and real-time PCR. The correlation analysis results showed that the methylation level of PCGI and the ApoA-I mRNA expression level were negatively correlated. Bisulfite sequencing PCR was used to assess the methylation level of ApoA-I promoter in the ICP1 cells treated with 5-aza-2'-deoxycytidine (5-Aza-CdR: an inhibitor of DNA methyltransferase). The result showed that 5-Aza-CdR caused a reduction in the methylation level of the ApoA-I promoter, thereby causing an increase in expression of the ApoA-I mRNA. Meanwhile, luciferase reporter assays indicated that in vitro methylation of the ApoA-I promoter containing CpG island with CpG methyltransferase led to transcriptional repression. Furthermore, the noticeable activation of NRF1 on ApoA-I transcription was largely enhanced by the demethylation of the ApoA-I PCGI region. These observations indicated that the differential expression of ApoA-I gene in the adipose tissue of broilers could be mediated by transcription regulation, at least in part by DNA methylation in its PCGI region.
Collapse
Affiliation(s)
- Chunyan Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chong Chen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xiuying Jiang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xiangyu Dong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction of Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| |
Collapse
|