1
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
2
|
Bacterial Resistance to β-Lactam Antibiotics in Municipal Wastewater: Insights from a Full-Scale Treatment Plant in Poland. Microorganisms 2022; 10:microorganisms10122323. [PMID: 36557576 PMCID: PMC9783957 DOI: 10.3390/microorganisms10122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated enzymatic and genetic determinants of bacterial resistance to β-lactam antibiotics in the biocenosis involved in the process of biological treatment of wastewater by activated sludge. The frequency of bacteria resistant to selected antibiotics and the activity of enzymes responsible for resistance to β-lactam antibiotics were estimated. The phenomenon of selection and spread of a number of genes determining antibiotic resistance was traced using PCR and gene sequencing. An increase in the percentage of bacteria showing resistance to β-lactam antibiotics in the microflora of wastewater during the treatment process was found. The highest number of resistant microorganisms, including multi-resistant strains, was recorded in the aeration chamber. Significant amounts of these bacteria were also present in treated wastewater, where the percentage of penicillin-resistant bacteria exceeded 50%, while those resistant to the new generation β-lactam antibiotics meropenem and imipenem were found at 8.8% and 6.4%, respectively. Antibiotic resistance was repeatedly accompanied by the activity of enzymes such as carbapenemases, metallo-β-lactamases, cephalosporinases and β-lactamases with an extended substrate spectrum. The activity of carbapenemases was shown in up to 97% of the multi-resistant bacteria. Studies using molecular biology techniques showed a high frequency of genes determining resistance to β-lactam antibiotics, especially the blaTEM1 gene. The analysis of the nucleotide sequences of blaTEM1 gene variants present in bacteria at different stages of wastewater treatment showed 50-100% mutual similarity of.
Collapse
|
3
|
Conte D, Mesa D, Jové T, Zamparette CP, Sincero TCM, Palmeiro JK, Dalla-Costa LM. Novel Insights into blaGES Mobilome Reveal Extensive Genetic Variation in Hospital Effluents. Microbiol Spectr 2022; 10:e0246921. [PMID: 35880869 PMCID: PMC9430818 DOI: 10.1128/spectrum.02469-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance among different bacterial species and genera. This study characterizes the genetic backbone of blaGES in Aeromonas spp. and Klebsiella spp. isolated from untreated hospital effluents. Plasmids ranging in size from 9 to 244 kb, sequenced using Illumina and Nanopore platforms, revealed representatives of plasmid incompatibility groups IncP6, IncQ1, IncL/M1, IncFII, and IncFII-FIA. Different GES enzymes (GES-1, GES-7, and GES-16) were located in novel class 1 integrons in Aeromonas spp. and GES-5 in previously reported class 1 integrons in Klebsiella spp. Furthermore, in Klebsiella quasipneumoniae, blaGES-5 was found in tandem as a coding sequence that disrupted the 3' conserved segment (CS). In Klebsiella grimontii, blaGES-5 was observed in two different plasmids, and one of them carried multiple IncF replicons. Three Aeromonas caviae isolates presented blaGES-1, one Aeromonas veronii isolate presented blaGES-7, and another A. veronii isolate presented blaGES-16. Multilocus sequence typing (MLST) analysis revealed novel sequence types for Aeromonas and Klebsiella species. The current findings highlight the large genetic diversity of these species, emphasizing their great adaptability to the environment. The results also indicate a public health risk because these antimicrobial-resistant genes have the potential to reach wastewater treatment plants and larger water bodies. Considering that they are major interfaces between humans and the environment, they could spread throughout the community to clinical settings. IMPORTANCE In the "One Health" approach, which encompasses human, animal, and environmental health, emerging issues of antimicrobial resistance are associated with hospital effluents that contain clinically relevant antibiotic-resistant bacteria along with a wide range of antibiotic concentrations, and lack regulatory status for mandatory prior and effective treatment. blaGES genes have been reported in aquatic environments despite the low detection of these genes among clinical isolates within the studied hospitals. Carbapenemase enzymes, which are relatively unusual globally, such as GES type inserted into new integrons on plasmids, are worrisome. Notably, K. grimontii, a newly identified species, carried two plasmids with blaGES-5, and K. quasipneumoniae carried two copies of blaGES-5 at the same plasmid. These kinds of plasmids are primarily responsible for multidrug resistance among bacteria in both clinical and natural environments, and they harbor resistant genes against antibiotics of key importance in clinical therapy, possibly leading to a public health problem of large proportion.
Collapse
Affiliation(s)
- Danieli Conte
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - Dany Mesa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - Thomas Jové
- University of Limoges, INSERM, CHU Limoges, RESINFIT, Limoges, France
| | - Caetana Paes Zamparette
- Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Thaís Cristine Marques Sincero
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina (ACL-UFSC), Florianópolis, Santa Catarina, Brazil
- Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Jussara Kasuko Palmeiro
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina (ACL-UFSC), Florianópolis, Santa Catarina, Brazil
- Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Böhm ME, Razavi M, Flach CF, Larsson DGJ. A Novel, Integron-Regulated, Class C β-Lactamase. Antibiotics (Basel) 2020; 9:antibiotics9030123. [PMID: 32183280 PMCID: PMC7148499 DOI: 10.3390/antibiotics9030123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
AmpC-type β-lactamases severely impair treatment of many bacterial infections, due to their broad spectrum (they hydrolyze virtually all β-lactams, except fourth-generation cephalosporins and carbapenems) and the increasing incidence of plasmid-mediated versions. The original chromosomal AmpCs are often tightly regulated, and their expression is induced in response to exposure to β-lactams. Regulation of mobile ampC expression is in many cases less controlled, giving rise to constitutively resistant strains with increased potential for development or acquisition of additional resistances. We present here the identification of two integron-encoded ampC genes, blaIDC-1 and blaIDC-2 (integron-derived cephalosporinase), with less than 85% amino acid sequence identity to any previously annotated AmpC. While their resistance pattern identifies them as class C β-lactamases, their low isoelectric point (pI) values make differentiation from other β-lactamases by isoelectric focusing impossible. To the best of our knowledge, this is the first evidence of an ampC gene cassette within a class 1 integron, providing a mobile context with profound potential for transfer and spread into clinics. It also allows bacteria to adapt expression levels, and thus reduce fitness costs, e.g., by cassette-reshuffling. Analyses of public metagenomes, including sewage metagenomes, show that the discovered ampCs are primarily found in Asian countries.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; (M.-E.B.); (M.R.); (C.-F.F.)
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
5
|
Hong JS, Choi N, Kim SJ, Choi KH, Roh KH, Lee S. Molecular Characteristics of GES-Type Carbapenemase-Producing Pseudomonas aeruginosa Clinical Isolates from Long-Term Care Facilities and General Hospitals in South Korea. Microb Drug Resist 2019; 26:605-610. [PMID: 31800356 DOI: 10.1089/mdr.2019.0302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since carbapenems have been used for the treatment of infections in medical settings, multidrug-resistant Pseudomonas aeruginosa containing resistance for carbapenems has become a major cause of nosocomial infections worldwide. Information on carbapenemase-producing P. aeruginosa isolates at community hospitals, including long-term care facilities and general hospitals, has rarely been reported in South Korea. The aims of this study were to describe the characteristics of seven carbapenemase-producing P. aeruginosa isolates recovered from two long-term care facilities in South Korea. The carbapenemase genes were identified by PCR and sequencing. Strain typing was assessed by pulsed field gel electrophoresis and multilocus sequence typing (MLST) analysis. Isolates with a genomic island and class I integron surrounding blaGES-type were confirmed by the PCR mapping method. Of seven GES-type carbapenemase-producing P. aeruginosa isolates, the blaGES-24 gene was detected in six isolates, and the blaGES-5 gene was detected in one isolate. The epidemiological relatedness of the seven isolates carrying blaGES-24 and blaGES-5 showed >81% similarity. Five isolates carrying blaGES-24 were sequence type 155 (ST155) by MLST, followed by one ST244 isolate carrying blaGES-24 and one ST308 isolate carrying blaGES-5. blaGES-type genes were embedded in two different class I integrons in a genomic island-15-like region. Our results indicate the possible spread of carbapenemase-producing P. aeruginosa and present a current threat of antimicrobial resistance in community hospitals.
Collapse
Affiliation(s)
- Jun Sung Hong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Naeun Choi
- Center of Laboratory Medicine, Seegene Medical Foundation, Seoul, South Korea
| | - Si Jong Kim
- Center of Laboratory Medicine, Seegene Medical Foundation, Seoul, South Korea
| | - Kwang Hoo Choi
- Center of Molecular Diagnostics, Seegene Medical Foundation, Seoul, South Korea
| | - Kyoung Ho Roh
- Center of Molecular Diagnostics, Seegene Medical Foundation, Seoul, South Korea
| | - SunHwa Lee
- Center of Laboratory Medicine, Seegene Medical Foundation, Seoul, South Korea
| |
Collapse
|
6
|
Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann N Y Acad Sci 2019; 1457:61-91. [PMID: 31469443 DOI: 10.1111/nyas.14223] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have been listed by the WHO as high-priority pathogens owing to their high association with mortalities and morbidities. Resistance to multiple β-lactams complicates effective clinical management of CRE infections. Using plasmid typing methods, a wide distribution of plasmid replicon groups has been reported in CREs around the world, including IncF, N, X, A/C, L/M, R, P, H, I, and W. We performed a literature search for English research papers, published between 2013 and 2018, reporting on plasmid-mediated carbapenem resistance. A rise in both carbapenemase types and associated plasmid replicon groups was seen, with China, Canada, and the United States recording a higher increase than other countries. blaKPC was the most prevalent, except in Angola and the Czech Republic, where OXA-181 (n = 50, 88%) and OXA-48-like (n = 24, 44%) carbapenemases were most prevalent, respectively; blaKPC-2/3 accounted for 70% (n = 956) of all reported carbapenemases. IncF plasmids were found to be responsible for disseminating different antibiotic resistance genes worldwide, accounting for almost 40% (n = 254) of plasmid-borne carbapenemases. blaCTX-M , blaTEM , blaSHV , blaOXA-1/9 , qnr, and aac-(6')-lb were mostly detected concurrently with carbapenemases. Most reported plasmids were conjugative but not present in multiple countries or species, suggesting limited interspecies and interboundary transmission of a common plasmid. A major limitation to effective characterization of plasmid evolution was the use of PCR-based instead of whole-plasmid sequencing-based plasmid typing.
Collapse
Affiliation(s)
- Katlego Kopotsa
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa.,National Health Laboratory Service, Tshwane Division, Department of Medical Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
7
|
Hishinuma T, Tada T, Kuwahara-Arai K, Yamamoto N, Shimojima M, Kirikae T. Spread of GES-5 carbapenemase-producing Pseudomonas aeruginosa clinical isolates in Japan due to clonal expansion of ST235. PLoS One 2018; 13:e0207134. [PMID: 30452435 PMCID: PMC6242314 DOI: 10.1371/journal.pone.0207134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022] Open
Abstract
The first outbreak in Japan of GES-5 carbapenemase-producing Pseudomonas aeruginosa occurred in a long-term care facility in 2014. To assess the spread of GES-5 producing P. aeruginosa clinical isolates in medical settings in Japan, 1,476 carbapenem-resistant P. aeruginosa isolates obtained from 2012 to 2016 were characterized. Of these 1,476 isolates, 104 (7.0%) harbored blaGES-5. Southern blotting revealed that the blaGES-5 was located on the chromosome. The isolation rates of these GES-5 producers increased significantly every year, from 2.0% (6 of 295) in 2012 to 2.8% (8 of 283) in 2013 to 5.3% (16 of 303) in 2014 to 9.7% (29 of 300) in 2015 to 15.3% (45 of 295) in 2016. Of the 104 GES-5 producers, 102 belonged to clonal complex (CC) 235, including 99 belonging to ST235 and three belonging to ST2233). Whole genome sequence analysis revealed that CC235 P. aeruginosa harboring blaGES-5 spread in a clonal manner. These results indicate that these GES-5 producing CC235 P. aeruginosa clinical isolates have spread in medical settings throughout Japan.
Collapse
Affiliation(s)
- Tomomi Hishinuma
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Kyoko Kuwahara-Arai
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Yamamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Teruo Kirikae
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Streling AP, Barbosa PP, Marcondes MF, Nicoletti AG, Picão RC, Pinto EC, Marques EA, Oliveira V, Gales AC. Genetic and biochemical characterization of GES-16, a new GES-type β-lactamase with carbapenemase activity in Serratia marcescens. Diagn Microbiol Infect Dis 2018; 92:147-151. [PMID: 29861147 DOI: 10.1016/j.diagmicrobio.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/08/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
Abstract
We evaluated the genetic environment of blaGES-16 found in 2 carbapenem-resistant Serratia marcescens clinical isolates recovered from patients hospitalized at a tertiary hospital located in Rio de Janeiro, Brazil. We also compared the kinetics constants for GES-16 and GES-5 against several β-lactams. Both S. marcescens isolates showed identical PFGE pattern and carried the carbapenemase-encoding gene blaGES-16 and the extended-spectrum β-lactamase encoding gene blaOXA-10. The blaGES-16 was inserted at the first position of a defective class 1 integron, composed by a fragmented integrase gene that lacked its attI1 recombination site, followed by dfr22, aac(6')-IIc, and aadA1 genes. This integron was located on a 30-kb nonconjugative plasmid. The GES-16 showed 2 amino acid substitutions (Gln38Glu and Gly170Ser) compared to GES-1. Kinetic analysis showed that GES-16 presented hydrolytic activity against all β-lactams tested, except for aztreonam. Imipenem was the carbapenem more efficiently hydrolyzed (highest kcat/Km) by GES-16. The kinetic parameters of GES-16 were similar to those of GES-5. In conclusion, we identified a new GES-type enzyme with carbapenemase activity in S. marcescens. The increasing diversity of such resistance determinants confirms the ongoing evolution of these β-lactamases towards a broader spectrum of activity.
Collapse
Affiliation(s)
- Ana Paula Streling
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil.
| | - Paula P Barbosa
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil
| | - Marcelo F Marcondes
- Department of Biophysics, Federal University of São Paulo-UNIFESP, São Paulo-SP, Brazil
| | - Adriana G Nicoletti
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil
| | - Renata C Picão
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil; Laboratório de Investigação em Microbiologia Médica-LIMM, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Elisa C Pinto
- Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro-UERJ, Rio de Janeiro, Brazil
| | - Elizabeth A Marques
- Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro-UERJ, Rio de Janeiro, Brazil
| | - Vitor Oliveira
- Department of Biophysics, Federal University of São Paulo-UNIFESP, São Paulo-SP, Brazil
| | - Ana C Gales
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil
| |
Collapse
|
9
|
Characteristics of Carbapenemase-Producing Enterobacteriaceae in Wastewater Revealed by Genomic Analysis. Antimicrob Agents Chemother 2018; 62:AAC.02501-17. [PMID: 29483120 DOI: 10.1128/aac.02501-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Wastewater is considered a major source of antibiotic-resistant bacteria released into the environment. Here, we characterized carbapenemase-producing Enterobacteriaceae (CPE) in wastewater by whole-genome analysis. Wastewater samples (n = 40) were collected from municipal wastewater treatment plants and hospital wastewater in Japan and Taiwan. Samples were screened for CPE using selective media, and the obtained isolates were sequenced using an Illumina MiSeq. The isolates (n = 45) included the following microorganisms: Klebsiella quasipneumoniae (n = 12), Escherichia coli (n = 10), Enterobacter cloacae complex (n = 10), Klebsiella pneumoniae (n = 8), Klebsiella variicola (n = 2), Raoultella ornithinolytica (n = 1), Citrobacter freundii (n = 1), and Citrobacter amalonaticus (n = 1). Among the 45 isolates, 38 harbored at least one carbapenemase-encoding gene. Of these, the blaGES (blaGES-5, blaGES-6, and blaGES-24) genes were found in 29 isolates. The genes were situated in novel class 1 integrons, but the integron structures were different between the Japanese (In1439 with blaGES-24 and In1440 with blaGES-5) and Taiwanese (In1441 with blaGES-5 and In1442 with blaGES-6) isolates. Other carbapenemase-encoding genes (blaVIM-1, blaNDM-5, blaIMP-8, blaIMP-19, and blaKPC-2) were found in one to three isolates. Notably, class 1 integrons previously reported among clinical isolates obtained in the same regions as the present study, namely, In477 with blaIMP-19 and In73 with blaIMP-8, were found among the Japanese and Taiwanese isolates, respectively. The results indicate that CPE with various carbapenemase-encoding genes in different genetic contexts were present in biologically treated wastewater, highlighting the need to monitor for antibiotic resistance in wastewater.
Collapse
|
10
|
Moura Q, Cerdeira L, Fernandes MR, Vianello MA, Lincopan N. Novel class 1 integron (In1390) harboring bla GES-5 in a Morganella morganii strain recovered from a remote community. Diagn Microbiol Infect Dis 2018; 91:345-347. [PMID: 29628289 DOI: 10.1016/j.diagmicrobio.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 11/25/2022]
Abstract
Antimicrobial resistance in Morganella morganii has been mainly acquired via plasmids and class 1 integrons. We hereby report acquisition of blaGES-5 by a M. morganii isolated in a remote community from the Amazon region. Genomic analysis revealed that blaGES-5 was harbored by a novel class 1 integron designated as In1390.
Collapse
Affiliation(s)
- Quézia Moura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Louise Cerdeira
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Laudy AE, Róg P, Smolińska-Król K, Ćmiel M, Słoczyńska A, Patzer J, Dzierżanowska D, Wolinowska R, Starościak B, Tyski S. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. PLoS One 2017; 12:e0180121. [PMID: 28658322 PMCID: PMC5489192 DOI: 10.1371/journal.pone.0180121] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/11/2017] [Indexed: 01/17/2023] Open
Abstract
Knowledge of the prevalence of ESBL enzymes among P. aeruginosa strains compared to the Enterobacteraiceae family is limited. The phenotypic tests recommended by EUCAST for the detection of ESBL-producing Enterobacteriaceae are not always suited for P. aeruginosa strains. This is mainly due to the presence of other families of ESBLs in P. aeruginosa isolates more often than in Enterobacteriaceae, production of natural AmpC cephalosporinase and its overexpression, and co-production of metallo-β-lactamases. The aim of this study was to determine the occurrence of ESBLs in P. aeruginosa isolated from patients from hospitals in Warsaw, to evaluate the ESBL production of these isolates using currently available phenotypic tests, their modifications, multiplex PCR and molecular typing of ESBL-positive isolates by PFGE. Clinical isolates of P. aeruginosa were collected in 2000-2014 from four Warsaw hospitals. Based on the data obtained in this study, we suggest using three DDST methods with inhibitors, such as clavulanic acid, sulbactam and imipenem, to detect ESBL-producing P. aeruginosa strains. Depending on the appearance of the plates, we suggest a reduction in the distance between discs with antibiotics to 15 mm and the addition of boronic acid at 0.4 mg per disc. The analysed isolates carried genes encoding ESBL from the families VEB (69 isolates with VEB-9), GES (6 with GES-1, 1 GES-5, 5 GES-13 and 2 with GES-15), OXA-2 (12 with OXA-15, 1 OXA-141, 1 OXA-210, 1 OXA-543 and 1 with OXA-544) and OXA-10 (5 isolates with OXA-74 and one with OXA-142). The most important result of this study was the discovery of three new genes, blaGES-15, blaOXA-141 and blaOXA-142; their nucleotide sequences have been submitted to the NCBI GenBank. It is also very important to note that this is the first report on the epidemiological problem of VEB-9-producing bacterial strains, not only in Poland but also worldwide.
Collapse
Affiliation(s)
- Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | - Patrycja Róg
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Milena Ćmiel
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Słoczyńska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Jan Patzer
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Danuta Dzierżanowska
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Bohdan Starościak
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
12
|
Nodari CS, Siebert M, Matte UDS, Barth AL. Draft genome sequence of a GES-5-producing Serratia marcescens isolated in southern Brazil. Braz J Microbiol 2016; 48:191-192. [PMID: 27932081 PMCID: PMC5470340 DOI: 10.1016/j.bjm.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/01/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Serratia marcescens is a Gram-negative rod intrinsically resistant to polymyxins and usually associated with wound, respiratory and urinary tract infections. The whole genome of the first GES-5-producing S. marcescens isolated from a Brazilian patient was sequenced using Ion Torrent PGM System. Besides blaGES-5, we were able to identify genes encoding for other β-lactamases, for aminoglycoside modifying enzymes and for an efflux pump to tetracyclines.
Collapse
Affiliation(s)
- Carolina Silva Nodari
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Porto Alegre, RS, Brazil.
| | - Marina Siebert
- Hospital de Clínicas de Porto Alegre, Unidade de Análises Moleculares e de Proteínas, Porto Alegre, RS, Brazil
| | - Ursula da Silveira Matte
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Afonso Luís Barth
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Emergence and Plasmid Analysis of Klebsiella pneumoniae KP01 Carrying blaGES-5 from Guangzhou, China. Antimicrob Agents Chemother 2016; 60:6362-4. [PMID: 27431225 DOI: 10.1128/aac.00764-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
Klebsiella pneumoniae strain KP01 carrying blaGES-5 was identified from a patient in Guangzhou, China. High-throughput sequencing assigned blaGES-5 to a 28.5-kb nonconjugative plasmid, pGES-GZ. A 13-kb plasmid backbone sequence on pGES-GZ was found to share high sequence identities with plasmids from Gram-negative nonfermenters. A novel class 1 integron carrying a gene cassette array of orf28-orf28-blaGES-5 was identified on pGES-GZ, within which orf28 encoded a hypothetical protein possibly correlated to fosfomycin resistance.
Collapse
|
14
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 471] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
15
|
Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16:9654-92. [PMID: 25938965 PMCID: PMC4463611 DOI: 10.3390/ijms16059654] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.
Collapse
|
16
|
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568-85. [PMID: 25857949 DOI: 10.1016/j.ijantimicag.2015.03.001] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is quite common among non-fermenting Gram-negative rods, in particular among clinically relevant species including Pseudomonas aeruginosa and Acinetobacter baumannii. These bacterial species, which are mainly nosocomial pathogens, possess a diversity of resistance mechanisms that may lead to multidrug or even pandrug resistance. Extended-spectrum β-lactamases (ESBLs) conferring resistance to broad-spectrum cephalosporins, carbapenemases conferring resistance to carbapenems, and 16S rRNA methylases conferring resistance to all clinically relevant aminoglycosides are the most important causes of concern. Concomitant resistance to fluoroquinolones, polymyxins (colistin) and tigecycline may lead to pandrug resistance. The most important mechanisms of resistance in P. aeruginosa and A. baumannii and their most recent dissemination worldwide are detailed here.
Collapse
Affiliation(s)
- Anaïs Potron
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Laurent Poirel
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland.
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; HFR - Hôpital Cantonal de Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
In vitro prediction of the evolution of GES-1 β-lactamase hydrolytic activity. Antimicrob Agents Chemother 2015; 59:1664-70. [PMID: 25561336 DOI: 10.1128/aac.04450-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Resistance to β-lactams is constantly increasing due to the emergence of totally new enzymes but also to the evolution of preexisting β-lactamases. GES-1 is a clinically relevant extended-spectrum β-lactamase (ESBL) that hydrolyzes penicillins and broad-spectrum cephalosporins but spares monobactams and carbapenems. However, several GES-1 variants (i.e., GES-2 and GES-5) previously identified among clinical isolates display an extended spectrum of activity toward carbapenems. To study the evolution potential of the GES-1 β-lactamase, this enzyme was submitted to in vitro-directed evolution, with selection on increasing concentrations of the cephalosporin cefotaxime, the monobactam aztreonam, or the carbapenem imipenem. The highest resistance levels were conferred by a combination of up to four substitutions. The A6T-E104K-G243A variant selected on cefotaxime and the A6T-E104K-T237A-G243A variant selected on aztreonam conferred high resistance to cefotaxime, ceftazidime, and aztreonam. Conversely, the A6T-G170S variant selected on imipenem conferred high resistance to imipenem and cefoxitin. Of note, the A6T substitution involved in higher MICs for all β-lactams is located in the leader peptide of the GES enzyme and therefore is not present in the mature protein. Acquired cross-resistance was not observed, since selection with cefotaxime or aztreonam did not select for resistance to imipenem, and vice versa. Here, we demonstrate that the β-lactamase GES-1 exhibits peculiar properties, with a significant potential to gain activity against broad-spectrum cephalosporins, monobactams, and carbapenems.
Collapse
|
18
|
Stewart NK, Smith CA, Frase H, Black DJ, Vakulenko SB. Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. Biochemistry 2014; 54:588-97. [PMID: 25485972 PMCID: PMC4303295 DOI: 10.1021/bi501052t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Carbapenems are the last resort antibiotics
for treatment of life-threatening
infections. The GES β-lactamases are important contributors
to carbapenem resistance in clinical bacterial pathogens. A single
amino acid difference at position 170 of the GES-1, GES-2, and GES-5
enzymes is responsible for the expansion of their substrate profile
to include carbapenem antibiotics. This highlights the increasing
need to understand the mechanisms by which the GES β-lactamases
function to aid in development of novel therapeutics. We demonstrate
that the catalytic efficiency of the enzymes with carbapenems meropenem,
ertapenem, and doripenem progressively increases (100-fold) from GES-1
to -5, mainly due to an increase in the rate of acylation. The data
reveal that while acylation is rate limiting for GES-1 and GES-2 for
all three carbapenems, acylation and deacylation are indistinguishable
for GES-5. The ertapenem–GES-2 crystal structure shows that
only the core structure of the antibiotic interacts with the active
site of the GES-2 β-lactamase. The identical core structures
of ertapenem, doripenem, and meropenem are likely responsible for
the observed similarities in the kinetics with these carbapenems.
The lack of a methyl group in the core structure of imipenem may provide
a structural rationale for the increase in turnover of this carbapenem
by the GES β-lactamases. Our data also show that in GES-2 an
extensive hydrogen-bonding network between the acyl-enzyme complex
and the active site water attenuates activation of this water molecule,
which results in poor deacylation by this enzyme.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | |
Collapse
|
19
|
Detection of bla(GES-5) in carbapenem-resistant Kluyvera intermedia isolates recovered from the hospital environment. Antimicrob Agents Chemother 2013; 58:622-3. [PMID: 24189244 DOI: 10.1128/aac.02271-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Lee JH, Sohn SG, Jung HI, An YJ, Lee SH. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance. CRYSTALLOGR REP+ 2013. [DOI: 10.1134/s1063774513040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Martinez E, Pérez JE, Márquez C, Vilacoba E, Centrón D, Leal AL, Saavedra C, Saavedra SY, Tovar C, Vanegas N, Stokes HW. Emerging and existing mechanisms co-operate in generating diverse β-lactam resistance phenotypes in geographically dispersed and genetically disparate Pseudomonas aeruginosa strains. J Glob Antimicrob Resist 2013; 1:135-142. [PMID: 27873623 DOI: 10.1016/j.jgar.2013.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/05/2013] [Accepted: 03/30/2013] [Indexed: 11/19/2022] Open
Abstract
β-Lactam resistance in Pseudomonas aeruginosa clinical isolates is driven by a number of mechanisms. Whilst several are understood, how they act co-operatively in pathogenic strains is less clear. In some isolates, resistance profiles cannot always be explained by identifying the common resistance-determining pathways, suggesting that other mechanisms may be important. Pathogenic P. aeruginosa isolates from four countries were characterised by PCR. Quantitative expression analysis was also assessed for the activity of several pathways that influence antibiotic resistance, and culture experiments were conducted to test how random transposition of the insertion sequence IS26 during growth may influence resistance to some antibiotics. In most strains, antibiotic resistance was being driven by changes in multiple pathways and by the presence or absence of genes acquired by lateral gene transfer. Multiple mechanisms of resistance were prevalent in strains from all of the countries examined, although regional differences in the type of interacting mechanisms were apparent. Changes in chromosomal pathways included overexpression of AmpC and two efflux pumps. Also, gain or loss of IS26 at some chromosomal locations, most notably oprD, could influence resistance to carbapenems. IS26-related resistance was found in strains from Argentina and geographically linked Uruguay, but not in strains from either Colombia or Australia. Pseudomonas aeruginosa pathogenic strains are evolving to become multidrug-resistant in more complex ways. This is being influenced by single strains acquiring changes in numerous known pathways as well as by newly emerging resistance mechanisms in this species.
Collapse
Affiliation(s)
- Elena Martinez
- The ithree institute, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Javier Escobar Pérez
- Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia
| | - Carolina Márquez
- Cátedra de Microbiología, Instituto de Química Biológica, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Elisabet Vilacoba
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Aura L Leal
- Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Catalina Tovar
- Grupo de Resistencia Bacteriana y Enfermedades Tropicales, Universidad del Sinú, Monteria-Cordoba, Colombia
| | - Natasha Vanegas
- The ithree institute, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; Laboratorio de Genética Molecular Bacteriana, Universidad El Bosque, Bogotá, Colombia
| | - H W Stokes
- The ithree institute, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
22
|
GES-18, a new carbapenem-hydrolyzing GES-Type β-lactamase from Pseudomonas aeruginosa that contains Ile80 and Ser170 residues. Antimicrob Agents Chemother 2012; 57:396-401. [PMID: 23114760 DOI: 10.1128/aac.01784-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A clinical isolate of Pseudomonas aeruginosa recovered from the lower respiratory tract of an 81-year-old patient hospitalized in Belgium was sent to the national reference center to determine its resistance mechanism. PCR sequencing identified a new GES variant, GES-18, which differs from the carbapenem-hydrolyzing enzyme GES-5 by a single amino acid substitution (Val80Ile, in the numbering according to Ambler) and from GES-1 by two substitutions (Val80Ile and Gly170Ser). Detailed kinetic characterization showed that GES-18 and GES-5 hydrolyze imipenem and cefoxitin with similar kinetic parameters and that GES-18 was less susceptible than GES-1 to classical β-lactamase inhibitors such as clavulanate and tazobactam. The overall structure of GES-18 is similar to the solved structures of GES-1 and GES-2, the Val80Ile and Gly170Ser substitutions causing only subtle local rearrangements. Notably, the hydrolytic water molecule and the Glu166 residue were slightly displaced compared to their counterparts in GES-1. Our kinetic and crystallographic data for GES-18 highlight the pivotal role of the Gly170Ser substitution which distinguishes GES-5 and GES-18 from GES-1.
Collapse
|
23
|
Fonseca F, Chudyk EI, van der Kamp MW, Correia A, Mulholland AJ, Spencer J. The basis for carbapenem hydrolysis by class A β-lactamases: a combined investigation using crystallography and simulations. J Am Chem Soc 2012; 134:18275-85. [PMID: 23030300 DOI: 10.1021/ja304460j] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbapenems are the most potent β-lactam antibiotics and key drugs for treating infections by Gram-negative bacteria. In such organisms, β-lactam resistance arises principally from β-lactamase production. Although carbapenems escape the activity of most β-lactamases, due in the class A enzymes to slow deacylation of the covalent acylenzyme intermediate, carbapenem-hydrolyzing class A β-lactamases are now disseminating in clinically relevant bacteria. The reasons why carbapenems are substrates for these enzymes, but inhibit other class A β-lactamases, remain to be fully established. Here, we present crystal structures of the class A carbapenemase SFC-1 from Serratia fonticola and of complexes of its Ser70 Ala (Michaelis) and Glu166 Ala (acylenzyme) mutants with the carbapenem meropenem. These are the first crystal structures of carbapenem complexes of a class A carbapenemase. Our data reveal that, in the SFC-1 acylenzyme complex, the meropenem 6α-1R-hydroxyethyl group interacts with Asn132, but not with the deacylating water molecule. Molecular dynamics simulations indicate that this mode of binding occurs in both the Michaelis and acylenzyme complexes of wild-type SFC-1. In carbapenem-inhibited class A β-lactamases, it is proposed that the deacylating water molecule is deactivated by interaction with the carbapenem 6α-1R-hydroxyethyl substituent. Structural comparisons with such enzymes suggest that in SFC-1 subtle repositioning of key residues (Ser70, Ser130, Asn132 and Asn170) enlarges the active site, permitting rotation of the carbapenem 6α-1R-hydroxyethyl group and abolishing this contact. Our data show that SFC-1, and by implication other such carbapenem-hydrolyzing enzymes, uses Asn132 to orient bound carbapenems for efficient deacylation and prevent their interaction with the deacylating water molecule.
Collapse
Affiliation(s)
- Fátima Fonseca
- School of Cellular and Molecular Medicine, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
24
|
Kinetic and crystallographic studies of extended-spectrum GES-11, GES-12, and GES-14 β-lactamases. Antimicrob Agents Chemother 2012; 56:5618-25. [PMID: 22908160 DOI: 10.1128/aac.01272-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
GES-1 is a class A extended-spectrum β-lactamase conferring resistance to penicillins, narrow- and expanded-spectrum cephalosporins, and ceftazidime. However, GES-1 poorly hydrolyzes aztreonam and cephamycins and exhibits very low k(cat) values for carbapenems. Twenty-two GES variants have been discovered thus far, differing from each other by 1 to 3 amino acid substitutions that affect substrate specificity. GES-11 possesses a Gly243Ala substitution which seems to confer to this variant an increased activity against aztreonam and ceftazidime. GES-12 differs from GES-11 by a single Thr237Ala substitution, while GES-14 differs from GES-11 by the Gly170Ser mutation, which is known to confer increased carbapenemase activity. GES-11 and GES-12 were kinetically characterized and compared to GES-1 and GES-14. Purified GES-11 and GES-12 showed strong activities against most tested β-lactams, with the exception of temocillin, cefoxitin, and carbapenems. Both variants showed a significantly increased rate of hydrolysis of cefotaxime, ceftazidime, and aztreonam. On the other hand, GES-11 and GES-12 (and GES-14) variants all containing Ala243 exhibited increased susceptibility to classical inhibitors. The crystallographic structures of the GES-11 and GES-14 β-lactamases were solved. The overall structures of GES-11 and GES-14 are similar to that of GES-1. The Gly243Ala substitution caused only subtle local rearrangements, notably in the typical carbapenemase disulfide bond. The active sites of GES-14 and GES-11 are very similar, with the Gly170Ser substitution leading only to the formation of additional hydrogen bonds of the Ser residue with hydrolytic water and the Glu166 residue.
Collapse
|
25
|
Castillo-Vera J, Ribas-Aparicio RM, Nicolau CJ, Oliver A, Osorio-Carranza L, Aparicio-Ozores G. Unusual diversity of acquired β-lactamases in multidrug-resistant Pseudomonas aeruginosa isolates in a Mexican hospital. Microb Drug Resist 2012; 18:471-8. [PMID: 22554004 DOI: 10.1089/mdr.2011.0183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS To investigate the presence of extended spectrum and metallo β-lactamases (MBLs) in Pseudomonas aeruginosa isolates which are resistant to imipenem and ceftazidime that were isolated in a hospital in Mexico. RESULTS Pulsed-field gel electrophoresis (PFGE) revealed the presence of four clonal types among the 14 isolates. All these genes were found either alone or simultaneously in the P. aeruginosa strains in the following five different arrangements: <bla(GES-5)>; <bla(GES-5), bla(VIM-11)>; <bla(GES-5), bla(VIM-2), bla(VIM-11)>; <bla(GES-5), bla(OXA-2)>; and <bla(GES-5), bla(VIM-2), bla(VIM-11), and bla(OXA-2)>. Class 1 integrons were detected and contained the cassettes bla(GES-5) and bla(OXA-2), but not that of bla(VIM). bla(VIM) genes occurred only in the chromosome, while bla(GES-5) was located in the chromosome and in the plasmids. CONCLUSIONS To our knowledge, this is the first description of P. aeruginosa strains simultaneously producing the VIM-2 and VIM-11 variants, and the combination of GES-5 and MBL carbapenemases, which determines a major challenge for the clinical microbiology laboratory and a remarkable epidemiological risk for the nosocomial spread of multidrug-resistant determinants.
Collapse
Affiliation(s)
- Jane Castillo-Vera
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
FPH-1 is a new class A carbapenemase from Francisella philomiragia. It produces high-level resistance to penicillins and the narrow-spectrum cephalosporin cephalothin and hydrolyzes these β-lactam antibiotics with catalytic efficiencies of 10(6) to 10(7) M(-1) s(-1). When expressed in Escherichia coli, the enzyme confers resistance to clavulanic acid, tazobactam, and sulbactam and has K(i) values of 7.5, 4, and 220 μM, respectively, against these inhibitors. FPH-1 increases the MIC of the monobactam aztreonam 256-fold and the MIC of the broad-spectrum cephalosporin ceftazidime 128-fold, while the MIC of cefoxitin remains unchanged. MICs of the carbapenem antibiotics imipenem, meropenem, doripenem, and ertapenem are elevated 8-, 8-, 16-, and 64-fold, respectively, against an E. coli JM83 strain producing the FPH-1 carbapenemase. The catalytic efficiencies of the enzyme against carbapenems are in the range of 10(4) to 10(5) M(-1) s(-1). FPH-1 is 77% identical to the FTU-1 β-lactamase from Francisella tularensis and has low amino acid sequence identity with other class A β-lactamases. Together with FTU-1, FPH-1 constitutes a new branch of the prolific and ever-expanding class A β-lactamase tree.
Collapse
|
27
|
Carbapenem-hydrolyzing GES-5-encoding gene on different plasmid types recovered from a bacterial community in a sewage treatment plant. Appl Environ Microbiol 2011; 78:1292-5. [PMID: 22156421 DOI: 10.1128/aem.06841-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plasmids pRSB113 and pRSB115 were recovered from an activated sludge bacterial community of a municipal wastewater treatment plant in Germany. Both plasmids carry the same bla(GES-5) carbapenemase gene, located within two distinct class 1 integrons. These plasmids have different backbones, belong to different incompatibility groups, and could replicate in both Pseudomonas aeruginosa and Escherichia coli.
Collapse
|
28
|
Ripoll A, Baquero F, Novais Â, Rodríguez-Domínguez MJ, Turrientes MC, Cantón R, Galán JC. In vitro selection of variants resistant to beta-lactams plus beta-lactamase inhibitors in CTX-M beta-lactamases: predicting the in vivo scenario? Antimicrob Agents Chemother 2011; 55:4530-6. [PMID: 21788458 PMCID: PMC3186957 DOI: 10.1128/aac.00178-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/25/2011] [Accepted: 07/16/2011] [Indexed: 01/23/2023] Open
Abstract
CTX-M β-lactamases are the most prevalent group of enzymes within the extended-spectrum β-lactamases (ESBL). The therapeutic options for CTX-M-carrying isolates are scarce, forcing the reexamination of the therapeutic possibilities of β-lactams plus β-lactamase inhibitors (BBLIs). Inhibitor-resistant CTX-M β-lactamases (IR-CTX-M) have not hitherto been described in natural isolates. In this study, 168 cultures of the hypermutagenic Escherichia coli GB20 strain carrying plasmid pBGS18 with different bla(CTX-M) genes were submitted to parallel experimental evolution assays in the presence of increasing concentrations of a combination of amoxicillin and clavulanate. Fourteen CTX-M β-lactamases belonging to the three most representative clusters (CTX-M-1, -2, and -9) and the two main phenotypes (cefotaxime resistance and cefotaxime-ceftazidime resistance) were studied. Three types of IR-CTX-M mutants were detected, having mutations S130G, K234R, and S237G, which are associated with different resistance patterns. The most frequently recovered mutation was S130G, which conferred the highest resistance levels to BBLIs (reaching 12 μg/ml for amoxicillin-clavulanate and 96 μg/ml for piperacillin-tazobactam when acquired by CTX-M-1 cluster enzymes). The S130G change also provided a clear antagonistic pleiotropy effect, strongly decreasing the enzyme's activity against all cephalosporins tested. A double mutation, S130G L169S, partially restored the resistance against cephalosporins. A complex pattern observed in CTX-M-58, carrying P167S and S130G or K234R changes, conferred ESBL and IR phenotypes simultaneously. The K234R and S237G changes had a smaller effect in providing inhibitor resistance. In summary, IR-CTX-M enzymes might evolve under exposure to BBLIs, and the probability is higher for enzymes belonging to the CTX-M-1 cluster. However, this process could be delayed by antagonistic pleiotropy.
Collapse
Affiliation(s)
- Aida Ripoll
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| | - Ângela Novais
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Mario J. Rodríguez-Domínguez
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Maria-Carmen Turrientes
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| | - Juan-Carlos Galán
- Servicio de Microbiología and CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
| |
Collapse
|
29
|
Emergence of Escherichia coli sequence type ST131 carrying both the blaGES-5 and blaCTX-M-15 genes. Antimicrob Agents Chemother 2011; 55:2974-5. [PMID: 21444709 DOI: 10.1128/aac.01703-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli clinical isolate BD07372 of sequence type ST131 recovered from a bed sore specimen exhibited high-level resistance to ceftazidime and cefotaxime but exhibited susceptibility to imipenem and meropenem. The isolate harbored two β-lactamase genes, the bla(CTX-M-15) gene carried by an ∼250-kbp plasmid carrying the FIA and FIC replicons and the bla(GES-5) gene carried by a class 1 integron in the chromosome.
Collapse
|
30
|
Importance of position 170 in the inhibition of GES-type β-lactamases by clavulanic acid. Antimicrob Agents Chemother 2011; 55:1556-62. [PMID: 21220532 DOI: 10.1128/aac.01292-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial resistance to β-lactam antibiotics (penicillins, cephalosporins, carbapenems, etc.) is commonly the result of the production of β-lactamases. The emergence of β-lactamases capable of turning over carbapenem antibiotics is of great concern, since these are often considered the last resort antibiotics in the treatment of life-threatening infections. β-Lactamases of the GES family are extended-spectrum enzymes that include members that have acquired carbapenemase activity through a single amino acid substitution at position 170. We investigated inhibition of the GES-1, -2, and -5 β-lactamases by the clinically important β-lactamase inhibitor clavulanic acid. While GES-1 and -5 are susceptible to inhibition by clavulanic acid, GES-2 shows the greatest susceptibility. This is the only variant to possess the canonical asparagine at position 170. The enzyme with asparagine, as opposed to glycine (GES-1) or serine (GES-5), then leads to a higher affinity for clavulanic acid (K(i) = 5 μM), a higher rate constant for inhibition, and a lower partition ratio (r ≈ 20). Asparagine at position 170 also results in the formation of stable complexes, such as a cross-linked species and a hydrated aldehyde. In contrast, serine at position 170 leads to formation of a long-lived trans-enamine species. These studies provide new insight into the importance of the residue at position 170 in determining the susceptibility of GES enzymes to clavulanic acid.
Collapse
|
31
|
Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 55:349-54. [PMID: 20956589 DOI: 10.1128/aac.00773-10] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii isolate AP was recovered from a bronchial lavage of a patient hospitalized in Paris, France. A. baumannii AP was resistant to all β-lactams, including carbapenems, and produced the extended-spectrum β-lactamase (ESBL) GES-14, which differs from GES-1 by two substitutions, Gly170Ser and Gly243Ala. Cloning of the bla(GES-14) gene followed by its expression in Escherichia coli showed that GES-14 compromised significantly the efficacy of all β-lactams, including cephalosporins, aztreonam, and carbapenems. The carbapenemase activity of purified GES-14 was confirmed by kinetic studies. The bla(GES-14) gene was located into a class 1 integron structure and located onto a ca. 95-kb self-transferable plasmid. This study identified a very broad-spectrum β-lactamase in A. baumannii.
Collapse
|
32
|
Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob Agents Chemother 2010; 54:4864-71. [PMID: 20696873 DOI: 10.1128/aac.00771-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In GES-type β-lactamases, positions 104 and 170 are occupied by Glu or Lys and by Gly, Asn, or Ser, respectively. Previous studies have indicated an important role of these amino acids in the interaction with β-lactams, although their precise role, especially that of residue 104, remains uncertain. In this study, we constructed GES-1 (Glu104, Gly170), GES-2 (Glu104, Asn170), GES-5 (Glu104, Ser170), GES-6 (Lys104, Ser170), GES-7 (Lys104, Gly170), and GES-13 (Lys104, Asn170) by site-specific mutagenesis and compared their hydrolytic properties. Isogenic comparisons of β-lactam resistance levels conferred by these GES variants were also performed. Data indicated the following patterns: (i) Lys104-containing enzymes exhibited enhanced hydrolysis of oxyimino-cephalosporins and reduced efficiency against imipenem in relation to enzymes possessing Glu104, (ii) Asn170-containing enzymes showed reduced hydrolysis rates of penicillins and older cephalosporins, (iii) Ser170 enabled GES to hydrolyze cefoxitin efficiently, and (iv) Asn170 and Ser170 increased the carbapenemase character of GES enzymes but reduced their activity against ceftazidime. Molecular dynamic simulations of GES apoenzyme models, as well as construction of GES structures complexed with cefoxitin and an achiral ceftazidime-like boronic acid, provided insights into the catalytic behavior of the studied mutants. There were indications that an increased stability of the hydrogen bonding network of Glu166-Lys73-Ser70 and an altered positioning of Trp105 correlated with the substrate spectra, especially with acylation of GES by imipenem. Furthermore, likely effects of Ser170 on GES interactions with cefoxitin and of Lys104 on interactions with oxyimino-cephalosporins were revealed. Overall, the data unveiled the importance of residues 104 and 170 in the function of GES enzymes.
Collapse
|
33
|
Lee JH, Bae IK, Lee SH. New definitions of extended-spectrum β-lactamase conferring worldwide emerging antibiotic resistance. Med Res Rev 2010; 32:216-32. [PMID: 20577973 DOI: 10.1002/med.20210] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although there is no consensus of the precise definition of ESBL, three kinds of ESBL definitions have been proposed. First, the classical definition includes variants derived from TEM-1, TEM-2, or SHV-1; K1 (KOXY) of Klebsiella oxytoca. Second, the broadened definition has stretched the classical definition of ESBL to include: (1) β-lactamases (CTX-M-ESBLs, GES-ESBLs, and VEB-ESBLs), with spectra similar to those of TEM and SHV variants (designated as TEM- and SHV-ESBLs, respectively) but derived from other sources; (2) TEM and SHV variants with borderline ESBL activity; e.g., TEM-12; and (3) various β-lactamases conferring wider resistance than their parent types but not meeting the definition for group 2be; e.g., OXA-types (OXA-ESBLs) and mutant AmpC-types (AmpC-ESBLs), with increased activity against oxyimino-cephalosporins and with resistance to clavulanic acid. Third, the all-inclusive definition includes: (1) ESBL(A) (named for class A ESBLs); (2) ESBL(M) (miscellaneous ESBLs), which has been subdivided into ESBL(M-C) (class C; plasmid-mediated AmpC) and ESBL(M-D) (class D); and (3) ESBL(CARBA) (ESBLs with hydrolytic activity against carbapenems), which has been subdivided into ESBL(CARBA-A) (class A carbapenemases), ESBL(CARBA-B) (class B carbapenemases), and ESBL(CARBA-D) (class D carbapenemases). The consensus view about the ESBL definition is that the classical ESBL definition must be expanded to class A non-TEM- and non-SHV-ESBLs (CTX-M-, GES-, VEB-ESBLs, etc.). However, these three definitions evoke rational debate on the question "Which would be included in the category of ESBLs among AmpC-ESBLs, OXA-ESBLs, and/or carbapenemases?" Therefore, there is a great need for consensus in the precise definition of ESBL.
Collapse
Affiliation(s)
- Jung Hun Lee
- Drug Resistance Proteomics Laboratory, Department of Biological Sciences, Myongji University, San 38-2 Namdong, Yongin, Gyeonggido 449-728, Republic of Korea
| | | | | |
Collapse
|
34
|
Picão RC, Santos AF, Nicoletti AG, Furtado GH, Gales AC. Detection of GES-5-producing Klebsiella pneumoniae in Brazil. J Antimicrob Chemother 2010; 65:796-7. [PMID: 20139141 DOI: 10.1093/jac/dkq024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
GES-13, a beta-lactamase variant possessing Lys-104 and Asn-170 in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54:1331-3. [PMID: 20065056 DOI: 10.1128/aac.01561-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GES-13 beta-lactamase, a novel GES variant possessing Lys-104 and Asn-170, was identified in Pseudomonas aeruginosa. bla(GES-13) was the single gene cassette of a class 1 integron probably located in the chromosome. GES-13 efficiently hydrolyzed broad-spectrum cephalosporins and aztreonam. Imipenem was a potent inhibitor of GES-13 but was not hydrolyzed at measurable rates.
Collapse
|
36
|
Brown NG, Shanker S, Prasad BVV, Palzkill T. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. J Biol Chem 2009; 284:33703-12. [PMID: 19812041 DOI: 10.1074/jbc.m109.053819] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TEM-1 beta-lactamase is the most common plasmid-encoded beta-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A beta-lactamases share several conserved residues including Ser(70), Glu(166), and Asn(170) that coordinate a hydrolytic water involved in deacylation. Unlike Ser(70) and Glu(166), the functional significance of residue Asn(170) is not well understood even though it forms hydrogen bonds with both Glu(166) and the hydrolytic water. The goal of this study was to examine the importance of Asn(170) for catalysis and substrate specificity of beta-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn(170) side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.
Collapse
Affiliation(s)
- Nicholas G Brown
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
37
|
Frase H, Shi Q, Testero SA, Mobashery S, Vakulenko SB. Mechanistic basis for the emergence of catalytic competence against carbapenem antibiotics by the GES family of beta-lactamases. J Biol Chem 2009; 284:29509-13. [PMID: 19656947 DOI: 10.1074/jbc.m109.011262] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major mechanism of bacterial resistance to beta-lactam antibiotics (penicillins, cephalosporins, carbapenems, etc.) is the production of beta-lactamases. A handful of class A beta-lactamases have been discovered that have acquired the ability to turn over carbapenem antibiotics. This is a disconcerting development, as carbapenems are often considered last resort antibiotics in the treatment of difficult infections. The GES family of beta-lactamases constitutes a group of extended spectrum resistance enzymes that hydrolyze penicillins and cephalosporins avidly. A single amino acid substitution at position 170 has expanded the breadth of activity to include carbapenems. The basis for this expansion of activity is investigated in this first report of detailed steady-state and pre-steady-state kinetics of carbapenem hydrolysis, performed with a class A carbapenemase. Monitoring the turnover of imipenem (a carbapenem) by GES-1 (Gly-170) revealed the acylation step as rate-limiting. GES-2 (Asn-170) has an enhanced rate of acylation, compared with GES-1, and no longer has a single rate-determining step. Both the acylation and deacylation steps are of equal magnitude. GES-5 (Ser-170) exhibits an enhancement of the rate constant for acylation by a remarkable 5000-fold, whereby the enzyme acylation event is no longer rate-limiting. This carbapenemase exhibits k(cat)/K(m) of 3 x 10(5) m(-1)s(-1), which is sufficient for manifestation of resistance against imipenem.
Collapse
Affiliation(s)
- Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
38
|
Giske CG, Sundsfjord AS, Kahlmeter G, Woodford N, Nordmann P, Paterson DL, Canton R, Walsh TR. Redefining extended-spectrum -lactamases: balancing science and clinical need--authors' response. J Antimicrob Chemother 2009. [DOI: 10.1093/jac/dkp143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antimicrob Agents Chemother 2009; 53:2492-8. [PMID: 19332679 DOI: 10.1128/aac.00033-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance genes are spread mostly through plasmids, integrons (as a form of gene cassettes), and transposons in gram-negative bacteria. We describe here a novel genetic structure, named the integron mobilization unit (IMU), that has characteristics similar to those of miniature inverted transposable elements (MITEs). Two IMUs (288 bp each) were identified from a carbapenem-resistant Enterobacter cloacae isolate that formed a composite structure encompassing a defective class 1 integron containing the carbapenem resistance gene bla(GES-5). This beta-lactamase gene was located on a 7-kb IncQ-type plasmid named pCHE-A, which was sequenced completely. The plasmid pCHE-A was not self conjugative but was mobilizable, and it was successfully transferred from E. cloacae to Pseudomonas aeruginosa. The in silico analysis of the extremities of the IMU elements identified similarities with those of insertion sequence ISSod9 from Shewanella oneidensis MR-1. The mobilization of the IMU composite structure was accomplished by using the transposase activity of ISSod9 that was provided in trans. This is the first identification of MITE-type structures as a source of gene mobilization, implicating here a clinically relevant antibiotic resistance gene.
Collapse
|
40
|
|
41
|
Su LH, Chu C, Cloeckaert A, Chiu CH. An epidemic of plasmids? Dissemination of extended-spectrum cephalosporinases among Salmonella and other Enterobacteriaceae. ACTA ACUST UNITED AC 2007; 52:155-68. [PMID: 18093140 DOI: 10.1111/j.1574-695x.2007.00360.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTX-M- and AmpC-type beta-lactamases comprise the two most rapidly growing populations among the extended-spectrum cephalosporinases. The evolution and dissemination of resistance genes encoding these enzymes occur mostly through the transmission of plasmids. The high prevalence of clinical isolates of Enterobacteriaceae producing the plasmid-mediated extended-spectrum cephalosporinases resembles an epidemic of plasmids, and has generated serious therapeutic problems. This review describes the emergence and worldwide spread of various classes of plasmid-mediated extended-spectrum cephalosporinases in Salmonella and other Enterobacteriaceae, the transfer mechanism of the plasmids, detection methods, and therapeutic choices.
Collapse
Affiliation(s)
- Lin-Hui Su
- Department of Clinical Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
42
|
Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol 2007; 2:501-12. [PMID: 17927473 DOI: 10.2217/17460913.2.5.501] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbapenemases are beta-lactamases that hydrolyze most beta-lactams including carbapenems. Carbapenemases are classified in four molecular classes; those belonging to class A are the chromosomally-encoded and clavulanic acid-inhibited IMI, NMC-A and SME, identified in Enterobacter cloacae and Serratia marcescens; the plasmid-encoded KPC enzymes identified in Enterobacteriaceae (and rarely in Pseudomonas aeruginosa); and the GES-type enzymes identified in Enterobacteriaceae and P. aeruginosa. The class B enzymes are the most clinically-significant carbapenemases; they are metallo-beta-lactamases, mostly of the IMP and the VIM series. They have been reported worldwide and their genes are plasmid- and integron-located, hydrolyzing all beta-lactams with the exception of aztreonam. One single plasmid-mediated AmpC beta-lactamase, CMY-10, identified in an Enterobacter aerogenes isolate, has been shown to be a cephaslosporinase with some carbapenemase properties. Finally, the class D carbapenemases are being increasingly reported, mostly in Acinetobacter baumannii, and they compromise the efficacy of imipenem and meropenem significantly.
Collapse
Affiliation(s)
- Laurent Poirel
- Université Paris XI, Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Punblique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 94275 K.-Bicêtre, France.
| | | | | |
Collapse
|
43
|
Abstract
Carbapenems, such as imipenem and meropenem, are most often used to treat infections caused by enterobacteria that produce extended-spectrum beta-lactamases, and the emergence of enzymes capable of inactivating carbapenems would therefore limit the options for treatment. Carbapenem resistance in Enterobacteriaceae is rare, but class A beta-lactamases with activity against the carbapenems are becoming more prevalent within this bacterial family. The class A carbapenemases can phylogenetically be segregated into six different groups of which four groups are formed by members of the GES, KPC, SME, IMI/NMC-A enzymes, while SHV-38 and SFC-1 each separately constitute a group. The genes encoding the class A carbapenemases are either plasmid-borne or located on the chromosome of the host. The bla(GES) genes reside as gene cassettes on mainly class I integrons, whereas the bla(KPC) genes and a single bla(IMI-2) gene are flanked by transposable elements on plasmids. Class A carbapenemases hydrolyse penicillins, classical cephalosporins, monobactam, and imipenem and meropenem, and the enzymes are divided into four phenotypically different groups, namely group 2br, 2be, 2e and 2f, according to the Bush-Jacoby-Medeiros classification system. Class A carbapenemases are inhibited by clavulanate and tazobactam like other class A beta-lactamases.
Collapse
Affiliation(s)
- Jan Walther-Rasmussen
- Department of Clinical Microbiology, 9301, Rigshospitalet, National University Hospital, Copenhagen, Denmark.
| | | |
Collapse
|