1
|
Corrêa-Moreira D, da Costa GL, de Lima Neto RG, Pinto T, Salomão B, Fumian TM, Mannarino CF, Prado T, Miagostovich MP, de Souza Ramos L, Souza Dos Santos AL, Oliveira MME. Screening of Candida spp. in wastewater in Brazil during COVID-19 pandemic: workflow for monitoring fungal pathogens. BMC Biotechnol 2024; 24:43. [PMID: 38909197 PMCID: PMC11193224 DOI: 10.1186/s12896-024-00868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
Fungal diseases are often linked to poverty, which is associated with poor hygiene and sanitation conditions that have been severely worsened by the COVID-19 pandemic. Moreover, COVID-19 patients are treated with Dexamethasone, a corticosteroid that promotes an immunosuppressive profile, making patients more susceptible to opportunistic fungal infections, such as those caused by Candida species. In this study, we analyzed the prevalence of Candida yeasts in wastewater samples collected to track viral genetic material during the COVID-19 pandemic and identified the yeasts using polyphasic taxonomy. Furthermore, we investigated the production of biofilm and hydrolytic enzymes, which are known virulence factors. Our findings revealed that all Candida species could form biofilms and exhibited moderate hydrolytic enzyme activity. We also proposed a workflow for monitoring wastewater using Colony PCR instead of conventional PCR, as this technique is fast, cost-effective, and reliable. This approach enhances the accurate taxonomic identification of yeasts in environmental samples, contributing to environmental monitoring as part of the One Health approach, which preconizes the monitoring of possible emergent pathogenic microorganisms, including fungi.
Collapse
Affiliation(s)
- Danielly Corrêa-Moreira
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil.
| | - Gisela Lara da Costa
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | | | - Tatiana Pinto
- Medical Microbiology Department, Paulo de Goés Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Bruna Salomão
- Laboratory of Microbiology, Federal Hospital of Andaraí, Rio de Janeiro, 20541-173, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Tatiana Prado
- Laboratory of Respiratory, Exanthematic, Enteric viruses and Viral Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Lívia de Souza Ramos
- Laboratory for Advanced Studies of Emerging and Resistant Microorganisms, General Microbiology Department, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - André Luis Souza Dos Santos
- Laboratory for Advanced Studies of Emerging and Resistant Microorganisms, General Microbiology Department, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Manoel Marques Evangelista Oliveira
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
2
|
Oliveira MME, Lopes AP, Pinto TN, da Costa GL, Goes-Neto A, Hauser-Davis RA. A Novel One Health Approach concerning Yeast Present in the Oral Microbiome of the Endangered Rio Skate ( Rioraja agassizii) from Southeastern Brazil. Microorganisms 2023; 11:1969. [PMID: 37630528 PMCID: PMC10459090 DOI: 10.3390/microorganisms11081969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The current climate change scenario caused by anthropogenic activities has resulted in novel environmental pressures, increasing the occurrence and severity of fungal infections in the marine environment. Research on fungi in several taxonomic groups is widespread although not the case for elasmobranchs (sharks and rays). In this context, the aim of the present study was to screen the oral fungal microbiota present in artisanally captured Rioraja agassizii, a batoid that, although endangered, is highly fished and consumed worldwide. Oropharyngeal samples were obtained by swabbing and the samples were investigated using morphological and phenotypic methods by streaking on Sabouraud Dextrose Agar (SDA) and subculturing onto CHROMagar Candida (BD Difco) and CHROMagar Candida Plus (CHROMagarTM), as well as molecular techniques by amplification of the ITS1-5.8S-ITS2 ribosomal DNA region and a MALDI-TOF MS assessment. The findings indicated the presence of Candida parapsilosis (seven isolates), Candida duobushaemulonii (one isolate) and Rhodotorula mucilaginosa (three isolates), several of these reported for the first time in Rioraja agassizii. In addition, a 100% agreement between the MALDI-TOF results and partial ITS region sequencing was noted, demonstrating that the MALDI-TOF MS is a rapid and effective alternative for yeast identification in Rioraja agassizii isolates and potentially in other elasmobranch species. These findings highlight the need for further research to determine the potential impact on elasmobranch health, ecology, and commercial fisheries. Furthermore, this research is paramount in a One Health framework and may be employed to predict elasmobranch responses to an evolving ocean, keep healthy populations in check, monitor species, and assess the public health consequences of consuming these species.
Collapse
Affiliation(s)
- Manoel Marques Evangelista Oliveira
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040360, RJ, Brazil
| | - Amanda Pontes Lopes
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040360, RJ, Brazil
| | - Tatiane Nobre Pinto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130100, MG, Brazil (A.G.-N.)
| | - Gisela Lara da Costa
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130100, MG, Brazil (A.G.-N.)
| | - Aristóteles Goes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130100, MG, Brazil (A.G.-N.)
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040360, RJ, Brazil
| |
Collapse
|
3
|
Costa GLD, Negri M, Miranda RPRD, Corrêa-Moreira D, Pinto TCA, Ramos LDS, Ferreira DG, Salomão B, Fumian TM, Mannarino CF, Prado T, Miagostovich MP, Santos ALSD, Oliveira MME. Candida palmioleophila: A New Emerging Threat in Brazil? J Fungi (Basel) 2023; 9:770. [PMID: 37504758 PMCID: PMC10381623 DOI: 10.3390/jof9070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Human activity directly or indirectly causes climate change, promoting changes in the composition of the atmosphere. This change is beyond the variation of the natural climate. In this manner, climate change could create an environmental pressure which is enough to trigger new fungal diseases. In addition to climate alterations, the onset of the COVID-19 pandemic has also been associated with the emergence of fungal pathogens. Fungi showed that an inability to grow at high temperatures limits the capacity of fungi to infect mammals. However, fungi can develop thermotolerance, gradually adapting to rising temperatures due to climate change, and generating a greater number of disease-causing organisms. In the present study, we reported the detection and identification of Candida palmioleophila isolates recovered from raw sewage samples in Niteroi city, Rio de Janeiro State, Brazil, during a monitoring program for measuring SARS-CoV-2 presence and concentration. Using polyphasic taxonomy to identify the species and evaluating some virulence aspects of this species, such as biofilm formation and extracellular enzyme production, our data highlight this species as a possible emerging pathogen in Brazil, especially in the pandemic context.
Collapse
Affiliation(s)
- Gisela Lara da Costa
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institution (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Melyssa Negri
- Medical Mycology Laboratory, Clinical Analysis Department, State University of Maringá, Maringá 87020-900, Brazil
| | - Rodrigo Prado Rodrigues de Miranda
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institution (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil
- Insect Biochemistry and Physiology Laboratory, Oswaldo Cruz Institution (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Danielly Corrêa-Moreira
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institution (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Tatiana Castro Abreu Pinto
- Laboratory of Pathogenic Cocci and Microbiota, Paulo de Goés Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Livia de Souza Ramos
- Laboratory for Advanced Studies of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Deisiany Gomes Ferreira
- Medical Mycology Laboratory, Clinical Analysis Department, State University of Maringá, Maringá 87020-900, Brazil
| | - Bruna Salomão
- Laboratory of Microbiology, Federal Hospital of Andaraí, Rio de Janeiro 20541-170, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Marise Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - André Luis Souza Dos Santos
- Laboratory for Advanced Studies of Emerging and Resistant Microorganisms, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Manoel Marques Evangelista Oliveira
- Laboratory of Taxonomy, Biochemistry and Bioprospecting of Fungi, Oswaldo Cruz Institution (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
4
|
Recent Studies on Advance Spectroscopic Techniques for the Identification of Microorganisms: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
5
|
Pinto TN, Kohn A, da Costa GL, Oliveira LMA, Pinto TCA, Oliveira MME. Candida guilliermondii as an agent of postpartum subacute mastitis in Rio de Janeiro, Brazil: Case report. Front Microbiol 2022; 13:964685. [PMID: 36212821 PMCID: PMC9537450 DOI: 10.3389/fmicb.2022.964685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Candida spp. can cause mild-to-severe human infections. Certain species have been described as the etiologic agent of human mastitis, inflammation of the breast tissue. Mastitis affects millions of lactating women and can be a source of disease transmission to the infant. In this work, we report the detection of the unusual etiologic agent of human mastitis, Candida guilliermondii, isolated from the milk of a puerperal woman with subacute mastitis in Rio de Janeiro, Brazil. Species identification was performed by MALDI-TOF MS and genetic sequencing. The patient had a full recovery after antifungal therapy.
Collapse
Affiliation(s)
- Tatiane Nobre Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alana Kohn
- Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Laura M. A. Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel M. E. Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Manoel M. E. Oliveira, ;
| |
Collapse
|
6
|
Etchecopaz A, Toscanini MA, Gisbert A, Mas J, Scarpa M, Iovannitti CA, Bendezú K, Nusblat AD, Iachini R, Cuestas ML. Sporothrix Brasiliensis: A Review of an Emerging South American Fungal Pathogen, Its Related Disease, Presentation and Spread in Argentina. J Fungi (Basel) 2021; 7:jof7030170. [PMID: 33652625 PMCID: PMC7996880 DOI: 10.3390/jof7030170] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sporotrichosis, caused by Sporothrix schenckii and related species, is the most frequent implantation mycosis in Latin America. In Argentina, over the last 8 years, there have been 0.16 new cases per month of feline sporotrichosis in 2011, increasing to 0.75 cases per month in 2019 and involving zoonotic transmission to humans. Molecular identification by polymerase chain reaction (PCR) detected Sporothrix brasiliensis in these feline and zoonotic outbreaks. This study will focus on different feline and human sporotrichosis outbreaks caused by S. brasiliensis in Argentina during 2011–2019. We will address the sources of infection and environmental hotspots, as well as the application of several treatment strategies for improving the pharmacotherapy of the different clinical forms of the disease. Finally, we will provide a detailed summary of the clinical aspects and new advances in host–pathogen interactions, virulence factors and immune response, focusing on state-of-the-art diagnostic tools and potential vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Etchecopaz
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - María A. Toscanini
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Amelia Gisbert
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Javier Mas
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Miguel Scarpa
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - Cristina A. Iovannitti
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Karla Bendezú
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Alejandro D. Nusblat
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Ricardo Iachini
- Instituto de Zoonosis «Luis Pasteur», Buenos Aires C1405 DCD, Argentina;
| | - María L. Cuestas
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
- Correspondence: ; Tel.: +54-11-59509500 (ext. 2176/77)
| |
Collapse
|
7
|
de Oliveira CS, Colombo AL, Francisco EC, de Lima B, Gandra RF, de Carvalho MCP, Carrilho CMDDM, Petinelli R, Pelison M, Helbel C, Czelusniak G, Paz Morales HM, Perozin JS, Pinheiro RL, Cognialli R, Breda GL, Queiroz-Telles F. Clinical and epidemiological aspects of Candidemia in eight medical centers in the state of Parana, Brazil: Parana Candidemia Network. Braz J Infect Dis 2020; 25:101041. [PMID: 33370563 PMCID: PMC9392142 DOI: 10.1016/j.bjid.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Objectives Candida spp. has been reported as one of the common agents of nosocomial bloodstream infections and is associated with a high mortality. Therefore, this study evaluated the clinical findings, local epidemiology, and microbiological aspects of candidemia in eight tertiary medical centers in the state of Parana, South of Brazil. Methods In this study, we reported 100 episodes of candidemia in patients admitted to eight different hospitals in five cities of the state of Parana, Brazil, using data collected locally (2016 and 2017) and tabulated online. Results The incidence was found to be 2.7 / 1000 patients / day and 1.2 / 1000 admissions. C. albicans was responsible for 49% of all candidemia episodes. Cancer and surgery were the two most common underlying conditions associated with candidemia. The mortality rate within 30 days was 48%, and removal of the central venous catheter (p = 0.029) as well as empirical or prophylactic exposure to antifungals were both related to improved survival (p = 0.033). Conclusions This study highlights the high burden and mortality rates of candidemia in hospitals from Parana as well as the need to enhance antifungal stewardship program in the enrolled medical centers.
Collapse
Affiliation(s)
| | - Arnaldo Lopes Colombo
- Universidade Federal de São Paulo, Laboratório Especial de Micologia, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | - Cesar Helbel
- Hospital Santa Casa de Maringá, Maringá, PR, Brazil
| | | | | | | | - Rosangela Lameira Pinheiro
- Hospital de Clínicas da Universidade Federal do Paraná, Setor de Micologia, Departamento de Saúde Coletiva, Curitiba, PR, Brazil
| | - Regielly Cognialli
- Hospital de Clínicas da Universidade Federal do Paraná, Setor de Micologia, Departamento de Saúde Coletiva, Curitiba, PR, Brazil
| | - Giovanni Luis Breda
- Hospital de Clínicas da Universidade Federal do Paraná, Setor de Micologia, Departamento de Saúde Coletiva, Curitiba, PR, Brazil
| | - Flávio Queiroz-Telles
- Hospital de Clínicas da Universidade Federal do Paraná, Setor de Micologia, Departamento de Saúde Coletiva, Curitiba, PR, Brazil
| |
Collapse
|
8
|
Carvalho-Pereira J, Fernandes F, Araújo R, Springer J, Loeffler J, Buitrago MJ, Pais C, Sampaio P. Multiplex PCR Based Strategy for Detection of Fungal Pathogen DNA in Patients with Suspected Invasive Fungal Infections. J Fungi (Basel) 2020; 6:E308. [PMID: 33238439 PMCID: PMC7712097 DOI: 10.3390/jof6040308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
A new and easy polymerase chain reaction (PCR) multiplex strategy, for the identification of the most common fungal species involved in invasive fungal infections (IFI) was developed in this work. Two panels with species-specific markers were designed, the Candida Panel for the identification of Candida species, and the Filamentous Fungi Panel for the identification of Aspergillus species and Rhizopusarrhizus. The method allowed the correct identification of all targeted pathogens using extracted DNA or by colony PCR, showed no cross-reactivity with nontargeted species and allowed identification of different species in mixed infections. Sensitivity reached 10 to 1 pg of DNA and was suitable for clinical samples from sterile sites, with a sensitivity of 89% and specificity of 100%. Overall, the study showed that the new method is suitable for the identification of the ten most important fungal species involved in IFI, not only from positive blood cultures but also from clinical samples from sterile sites. The method provides a unique characteristic, of seeing the peak in the specific region of the panel with the correct fluorescence dye, that aids the ruling out of unspecific amplifications. Furthermore, the panels can be further customized, selecting markers for different species and/or resistance genes.
Collapse
Affiliation(s)
- Joana Carvalho-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| | - Filipa Fernandes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| | - Ricardo Araújo
- Department Medical Biotechnology, Health Sciences, Flinders University, Adelaide 5042, Australia;
| | - Jan Springer
- Department of Internal Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.S.); (J.L.)
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.S.); (J.L.)
| | - María José Buitrago
- Mycology Reference Laboratory, National Centre of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| |
Collapse
|
9
|
Calla-Quispe E, Fuentes-Rivera HL, Ramírez P, Martel C, Ibañez AJ. Mass Spectrometry: A Rosetta Stone to Learn How Fungi Interact and Talk. Life (Basel) 2020; 10:E89. [PMID: 32575729 PMCID: PMC7345136 DOI: 10.3390/life10060089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Fungi are a highly diverse group of heterotrophic organisms that play an important role in diverse ecological interactions, many of which are chemically mediated. Fungi have a very versatile metabolism, which allows them to synthesize a large number of still little-known chemical compounds, such as soluble compounds that are secreted into the medium and volatile compounds that are chemical mediators over short and long distances. Mass spectrometry (MS) is currently playing a dominant role in mycological studies, mainly due to its inherent sensitivity and rapid identification capabilities of different metabolites. Furthermore, MS has also been used as a reliable and accurate tool for fungi identification (i.e., biotyping). Here, we introduce the readers about fungal specialized metabolites, their role in ecological interactions and provide an overview on the MS-based techniques used in fungal studies. We particularly present the importance of sampling techniques, strategies to reduce false-positive identification and new MS-based analytical strategies that can be used in mycological studies, further expanding the use of MS in broader applications. Therefore, we foresee a bright future for mass spectrometry-based research in the field of mycology.
Collapse
Affiliation(s)
- Erika Calla-Quispe
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| | - Hammerly Lino Fuentes-Rivera
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Pablo Ramírez
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Carlos Martel
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Jesús María 15072, Lima, Peru
| | - Alfredo J. Ibañez
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| |
Collapse
|
10
|
M. F. Matos A, M. Moreira L, F. Barczewski B, X. de Matos L, B. V. de Oliveira J, F. Pimentel MI, Almeida-Paes R, G. Oliveira M, C. A. Pinto T, Lima N, de O. Matos M, de M. e Costa LG, Santos C, Marques Evangelista Oliveira M. Identification by MALDI-TOF MS of Sporothrix brasiliensis Isolated from a Subconjunctival Infiltrative Lesion in an Immunocompetent Patient. Microorganisms 2019; 8:microorganisms8010022. [PMID: 31877698 PMCID: PMC7023001 DOI: 10.3390/microorganisms8010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
Sporotrichosis is a globally distributed subcutaneous fungal infection caused by dimorphic fungi belonging to the Sporothrix species complex that affects the skin of limbs predominantly, but not exclusively. A rare case of ocular sporotrichosis in an immunocompetent Brazilian patient from the countryside of Rio de Janeiro State is reported. A 68-year-old woman presented with a subconjunctival infiltrative lesion in the right eye with pre-auricular lymphadenopathy of onset 4 months ago that evolved to suppurative nodular lesions on the eyelids. Conjunctival secretion was evaluated by histopathological examination and inoculated on Sabouraud Dextrose Agar (SDA). Histopathology showed oval bodies within giant cells and other mononucleated histiocytes. Fungus grown on SDA was identified as Sporothrix sp. by morphological observations. The isolated strain was finally identified by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) associated with an in-house database enriched with reference Sporothrix complex spectra. The strain presented a MALDI spectrum with the ion peaks of the molecular mass profile of S. brasiliensis. The patient was adequately treated with amphotericin B subsequently replaced by itraconazole. Due to scars left by the suppurative process, the patient presented poor final visual acuity. The present work presents an overview of ocular sporotrichosis and discusses the diagnostic difficulty that can lead to visual sequelae in these cases.
Collapse
Affiliation(s)
- Aline M. F. Matos
- Department of Ophthalmology, University Hospital of the Federal University of Juiz de Fora, Juiz de Fora 36038-330, Brazil; (A.M.F.M.); (B.F.B.); (L.X.d.M.); (J.B.V.d.O.)
| | - Lucas M. Moreira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.M.M.); (R.A.-P.)
| | - Bianca F. Barczewski
- Department of Ophthalmology, University Hospital of the Federal University of Juiz de Fora, Juiz de Fora 36038-330, Brazil; (A.M.F.M.); (B.F.B.); (L.X.d.M.); (J.B.V.d.O.)
| | - Lucas X. de Matos
- Department of Ophthalmology, University Hospital of the Federal University of Juiz de Fora, Juiz de Fora 36038-330, Brazil; (A.M.F.M.); (B.F.B.); (L.X.d.M.); (J.B.V.d.O.)
| | - Jordane B. V. de Oliveira
- Department of Ophthalmology, University Hospital of the Federal University of Juiz de Fora, Juiz de Fora 36038-330, Brazil; (A.M.F.M.); (B.F.B.); (L.X.d.M.); (J.B.V.d.O.)
| | - Maria Ines F. Pimentel
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.M.M.); (R.A.-P.)
| | - Murilo G. Oliveira
- Department of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Nelson Lima
- CEB—Biological Engineering Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Magnum de O. Matos
- Imaging Department of Instituto Oncológico, Hospital Nove de Julho, Juiz de Fora 36010-510, Brazil;
| | - Louise G. de M. e Costa
- Department of Pathology, Faculty of Medicine of Federal University of Juiz de Fora, Juiz de Fora 36038-330, Brazil;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, BIOREN-UFRO, Universidad de La Frontera, 4811-230 Temuco, Chile
- Correspondence: (C.S.); (M.M.E.O.)
| | - Manoel Marques Evangelista Oliveira
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: (C.S.); (M.M.E.O.)
| |
Collapse
|
11
|
Taverna CG, Mazza M, Bueno NS, Alvarez C, Amigot S, Andreani M, Azula N, Barrios R, Fernández N, Fox B, Guelfand L, Maldonado I, Murisengo OA, Relloso S, Vivot M, Davel G. Development and validation of an extended database for yeast identification by MALDI-TOF MS in Argentina. Med Mycol 2019; 57:215-225. [PMID: 29762695 DOI: 10.1093/mmy/myy021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microorganisms in clinical laboratories because it is rapid, relatively simple to use, accurate, and can be used for a wide number of microorganisms. Several studies have demonstrated the utility of this technique in the identification of yeasts; however, its performance is usually improved by the extension of the database. Here we developed an in-house database of 143 strains belonging to 42 yeast species in the MALDI Biotyper platform, and we validated the extended database with 388 regional strains and 15 reference strains belonging to 55 yeast species. We also performed an intra- and interlaboratory study to assess reproducibility and analyzed the use of the cutoff values of 1.700 and 2.000 to correctly identify at species level. The creation of an in-house database that extended the manufacturer's database was successful in view of no incorrect identification was introduced. The best performance was observed by using the extended database and a cutoff value of 1.700 with a sensitivity of .94 and specificity of .96. A reproducibility study showed utility to detect deviations and could be used for external quality control. The extended database was able to differentiate closely related species and it has potential in distinguishing the molecular genotypes of Cryptococcus neoformans and Cryptococcus gattii.
Collapse
Affiliation(s)
- Constanza Giselle Taverna
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires
| | - Mariana Mazza
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires
| | - Nadia Soledad Bueno
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires
| | - Christian Alvarez
- División Micología, Laboratorio de Salud Pública de Tucumán, Tucumán
| | - Susana Amigot
- Centro de Especialidades Médicas Ambulatorias de Rosario, Santa Fe
| | - Mariana Andreani
- Hospital General de Agudos "Dr. Juan A. Fernández" Ciudad Autónoma de Buenos Aires
| | - Natalia Azula
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno," Ciudad Autónoma de Buenos Aires. Argentina
| | - Rubén Barrios
- BD Diagnostics Systems, Ciudad Autónoma de Buenos Aires
| | - Norma Fernández
- Hospital de Clínicas "José de San Martín," Ciudad Autónoma de Buenos Aires
| | - Barbara Fox
- Hospital Alemán, Ciudad Autónoma de Buenos Aires
| | - Liliana Guelfand
- Hospital General de Agudos "Dr. Juan A. Fernández" Ciudad Autónoma de Buenos Aires
| | | | - Omar Alejandro Murisengo
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires
| | - Silvia Relloso
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno," Ciudad Autónoma de Buenos Aires. Argentina
| | - Matias Vivot
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires
| | - Graciela Davel
- Departamento Micología, Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán," Ciudad Autónoma de Buenos Aires
| |
Collapse
|
12
|
Arastehfar A, Daneshnia F, Kord M, Roudbary M, Zarrinfar H, Fang W, Hashemi SJ, Najafzadeh MJ, Khodavaisy S, Pan W, Liao W, Badali H, Rezaie S, Zomorodian K, Hagen F, Boekhout T. Comparison of 21-Plex PCR and API 20C AUX, MALDI-TOF MS, and rDNA Sequencing for a Wide Range of Clinically Isolated Yeast Species: Improved Identification by Combining 21-Plex PCR and API 20C AUX as an Alternative Strategy for Developing Countries. Front Cell Infect Microbiol 2019; 9:21. [PMID: 30828570 PMCID: PMC6385604 DOI: 10.3389/fcimb.2019.00021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Occurrence of non-Candida albicans Candida (NCAC) species that are associated with elevated MIC values and therapeutic failures are increasing. As a result, timely and accurate means of identification to the species level is becoming an essential part of diagnostic practices in clinical settings. In this study, 301 clinically isolated yeast strains recovered from various anatomical sites [Blood (n = 145), other sites (n = 156)] were used to assess the accuracy and practicality of API 20C AUX and 21-plex PCR compared to MALDI-TOF MS and large subunit rDNA (LSU rDNA). MALDI-TOF MS correctly identified 98.33% of yeast isolates, 100% of top five Candida species, 95.7% of rare yeast species, while 1.3% of isolates were misidentified. API 20C AUX correctly identified 83.7% of yeast isolates, 97.2% of top five Candida species, 61.8% of rare yeast species, while 16.2% of yeast isolates were misidentified. The 21-plex PCR, accurately identified 87.3% of yeast isolates, 100% of top five Candida species, 72% of rare yeast species, but it misidentified 1.3% of rare yeast species while 9.9% of whole yeast isolates were not identified. The combination of rapidity of 21-plex PCR and comprehensiveness of API 20C AUX, led to correct identification of 92% of included yeast isolates. Due to expensiveness of MALDI-TOF MS and sequencing, this combination strategy could be the most accurate and inexpensive alternative identification strategy for developing countries. Moreover, by the advent and development of cost-effective, reliable, and rapid PCR machines that cost 130 US dollars, 21-plex could be integrated in routine laboratories of developing and resource-limited countries to specifically identify 95% causative agents of yeast-related infections in human. Databases of MALDI-TOF MS, API 20C AUX, and the number of target species identified by 21-plex require further improvement to keep up with the diverse spectrum of yeast species.
Collapse
Affiliation(s)
- Amir Arastehfar
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Farnaz Daneshnia
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Mohammad Kord
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Sayed Jamal Hashemi
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran.,Zoonoses Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hamid Badali
- Department of Medical Mycology, Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ferry Hagen
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Teun Boekhout
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,Yeast Biodiversity Department, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Delavy M, Dos Santos AR, Heiman CM, Coste AT. Investigating Antifungal Susceptibility in Candida Species With MALDI-TOF MS-Based Assays. Front Cell Infect Microbiol 2019; 9:19. [PMID: 30792970 PMCID: PMC6375026 DOI: 10.3389/fcimb.2019.00019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
Half of invasive fungal infections lead to death. Amongst pathogenic fungi, the most widespread species belong to the Candida genus and vary in their susceptibility to antifungal drugs. The emergence of antifungal resistance has become a major clinical problem. Therefore, the definition of susceptibility patterns is crucial for the survival of patients and the monitoring of resistance epidemiology. Although, most routinely used methods of AntiFungal Susceptibility Testing (AFST) have reached their limits, the rediscovery of Matrix Associated Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) in the field of mycology provides a promising alternative for the study of antifungal resistance. MALDI-TOF MS is already used in mycology for fungal identification, which permits to highlight inherent antifungal resistance. However, the main concern of clinicians is the rise of acquired antifungal resistance and the time needed for their detection. For this purpose, MALDI-TOF MS has been shown to be an accurate tool for AFST, presenting numerous advantages in comparison to commonly used techniques. Finally, MALDI-TOF MS could be used directly to detect resistance mechanisms through typing. Consequently, MALDI-TOF MS offers new perspectives in the context of healthcare associated outbreaks of emerging multi-drug resistant fungi, such as C. auris. As a proof of concept, we will illustrate the current and future benefits in using and adapting MALDI-TOF MS-based assays to define the susceptibility pattern of C. auris, by species identification, AFST, and typing.
Collapse
Affiliation(s)
- Margot Delavy
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Andrea R Dos Santos
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Clara M Heiman
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Candida tropicalis geographic population structure maintenance and dispersion in the coastal environment may be influenced by the climatic season and anthropogenic action. Microb Pathog 2018; 128:63-68. [PMID: 30550843 DOI: 10.1016/j.micpath.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/24/2022]
Abstract
Candida tropicalis is a pathogenic yeast with worldwide recognition as the second or third more frequently isolated species in Latin America, for both superficial and systemic infections. Because of its high prevalence, and growing clinical interest, it is essential to understand genetic variability patterns of this important Candida species in the tropics. Besides belonging to the human normal microbiota, C. tropicalis may be found in other warm blood animals and in the environment, including water and sand of beaches. The aims of the present study were to evaluate genotypic and phenotypic variability of 62 isolates of C. tropicalis obtained from the coastal environment in Northeast Brazil using microsatellite and MALDI-TOF/MS comparisons. There was a relatively low correspondence between these typing techniques employed. Therefore, further studies are needed to consolidate the use of MALDI-TOF/MS as a yeast typing tool. Nevertheless, the two methods employed demonstrated the heterogeneity of C. tropicalis in a coastal environment. We also found relative maintenance of the population structure within the same season, which may reinforce the idea that this species presents the potential to remain in the environment for a long period of time. In addition, highly related strains were found within different geographic points of collection, demonstrating that this strain may be dispersed at long distances, probably influenced by anthropogenic actions and driven by the sea tides and wind.
Collapse
|
15
|
A Comprehensive Analysis of MALDI-TOF MS and Ribosomal DNA Sequencing for Identification of Clinical Yeasts. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0297-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
17
|
Savage E, Chothe S, Lintner V, Pierre T, Matthews T, Kariyawasam S, Miller D, Tewari D, Jayarao B. Evaluation of Three Bacterial Identification Systems for Species Identification of Bacteria Isolated from Bovine Mastitis and Bulk Tank Milk Samples. Foodborne Pathog Dis 2017; 14:177-187. [DOI: 10.1089/fpd.2016.2222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Emily Savage
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Shubhada Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Valerie Lintner
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Traci Pierre
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Tammy Matthews
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Subhashinie Kariyawasam
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Dawn Miller
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - Bhushan Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
18
|
Carvalho B, Ávila C, Bernardes T, Pereira M, Santos C, Schwan R. Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. J Appl Microbiol 2017; 122:589-600. [DOI: 10.1111/jam.13371] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/23/2023]
Affiliation(s)
- B.F. Carvalho
- Department of Animal Science; Federal University of Lavras; Lavras MG Brazil
| | - C.L.S. Ávila
- Department of Animal Science; Federal University of Lavras; Lavras MG Brazil
| | - T.F. Bernardes
- Department of Animal Science; Federal University of Lavras; Lavras MG Brazil
| | - M.N. Pereira
- Department of Animal Science; Federal University of Lavras; Lavras MG Brazil
| | - C. Santos
- Department of Chemical Sciences and Natural Resources; Faculty of Engineering and Sciences; Universidad de La Frontera; Temuco Chile
| | - R.F. Schwan
- Department of Biology; Federal University of Lavras; Lavras MG Brazil
| |
Collapse
|
19
|
Zuza-Alves DL, de Medeiros SSTQ, de Souza LBFC, Silva-Rocha WP, Francisco EC, de Araújo MCB, Lima-Neto RG, Neves RP, Melo ASDA, Chaves GM. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Front Microbiol 2016; 7:1783. [PMID: 27895625 PMCID: PMC5108815 DOI: 10.3389/fmicb.2016.01783] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Abstract
Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may have pathogenic potential.
Collapse
Affiliation(s)
- Diana L Zuza-Alves
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Sayama S T Q de Medeiros
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Luanda B F C de Souza
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Walicyranison P Silva-Rocha
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| | - Elaine C Francisco
- Department of Mycology, Federal University of Pernambuco São Paulo, Brazil
| | - Maria C B de Araújo
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte Natal, Brazil
| | | | - Rejane P Neves
- Department of Mycology, Federal University of Pernambuco, Recife Pernambuco, Brazil
| | | | - Guilherme M Chaves
- Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
20
|
Cassagne C, Normand AC, L'Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016; 59:678-690. [DOI: 10.1111/myc.12506] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Carole Cassagne
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Anne-Cécile Normand
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
| | - Coralie L'Ollivier
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Stéphane Ranque
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Renaud Piarroux
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| |
Collapse
|
21
|
New Insights for Diagnosis of Pineapple Fusariosis by MALDI-TOF MS Technique. Curr Microbiol 2016; 73:206-13. [DOI: 10.1007/s00284-016-1041-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
|
22
|
A Comprehensive Evaluation of the Bruker Biotyper MS and Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Systems for Identification of Yeasts, Part of the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study, 2012 to 2013. J Clin Microbiol 2016; 54:1376-80. [PMID: 26912761 DOI: 10.1128/jcm.00162-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Among the 2,683 yeast isolates representing 41 different species (25 Candida and Candida-related species and 16 non-Candida yeast species) collected in the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) program (2012 to 2013), the Bruker Biotyper MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system exhibited significantly higher accuracy rates than the Vitek MS system for identification of all yeast isolates (98.8% versus 95.4%, P <0.001 by Pearson's chi-square test) and for all Candida and Candida-related species isolates (99.4% versus 95.5%, P < 0.001).
Collapse
|
23
|
Sanguinetti M, Posteraro B. Diagnostic of Fungal Infections Related to Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:63-82. [PMID: 27300347 DOI: 10.1007/5584_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fungal biofilm-related infections, most notably those caused by the Candida and Aspergillus genera, need to be diagnosed accurately and rapidly to avoid often unfavorable outcomes. Despite diagnosis of these infections is still based on the traditional histopathology and culture, the use of newer, rapid methods has enormously enhanced the diagnostic capability of a modern clinical mycology laboratory. Thus, while accurate species-level identification of fungal isolates can be achieved with turnaround times considerably shortened, nucleic acid-based or antigen-based detection methods can be considered useful adjuncts for the diagnosis of invasive forms of candidiasis and aspergillosis. Furthermore, simple, reproducible, and fast methods have been developed to quantify biofilm production by fungal isolates in vitro. In this end, isolates can be categorized as low, moderate, or high biofilm-forming, and this categorization may reflect their differential response to the conventional antifungal therapy. By means of drug susceptibility testing performed on fungal biofilm-growing isolates, it is now possible to evaluate not only the activity of conventional antifungal agents, but also of novel anti-biofilm agents. Despite this, future diagnostic methods need to target specific biofilm components/molecules, in order to provide a direct proof of the presence of this growth phenotype on the site of infection. In the meantime, our knowledge of the processes underlying the adaptive drug resistance within the biofilm has put into evidence biofilm-specific molecules that could be potentially helpful as therapeutic targets. Surely, the successful management of clinically relevant fungal biofilms will rely upon the advancement and/or refinement of these approaches.
Collapse
Affiliation(s)
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Cassagne C, Normand AC, Bonzon L, L'Ollivier C, Gautier M, Jeddi F, Ranque S, Piarroux R. Routine identification and mixed species detection in 6,192 clinical yeast isolates. Med Mycol 2015; 54:256-65. [DOI: 10.1093/mmy/myv095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/04/2015] [Indexed: 11/14/2022] Open
|
25
|
García-Agudo L, Galán F, García-Martos P, Carranza R, Rodríguez-Iglesias M. [Utility of mass spectrometry in the microbiological diagnosis of candiduria]. Rev Iberoam Micol 2015; 33:58-9. [PMID: 26561412 DOI: 10.1016/j.riam.2015.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/10/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- Lidia García-Agudo
- Helse Møre og Romsdal, Molde sykehus, Laboratorium for medisinsk mikrobiologi, Noruega.
| | - Fátima Galán
- Servicio de Microbiología, Hospital Puerta del Mar, Cádiz, España
| | | | - Rafael Carranza
- Servicio de Análisis Clínicos, Hospital General La Mancha-Centro, Alcázar de San Juan, Ciudad Real, España
| | | |
Collapse
|
26
|
Saracli M. MALDI-TOF MS: A Rapid and New Approach in Fungal Diagnosis and Susceptibility Testing. Med Mycol 2015. [DOI: 10.1201/b18707-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Galán F, García-Agudo L, Guerrero I, Marín P, García-Tapia A, García-Martos P, Rodríguez-Iglesias M. Evaluación de la espectrometría de masas en la identificación de levaduras de interés clínico. Enferm Infecc Microbiol Clin 2015; 33:372-8. [DOI: 10.1016/j.eimc.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/29/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
|
28
|
Sow D, Fall B, Ndiaye M, Ba BS, Sylla K, Tine R, Lô AC, Abiola A, Wade B, Dieng T, Dieng Y, Ndiaye JL, Hennequin C, Gaye O, Faye B. Usefulness of MALDI-TOF Mass Spectrometry for Routine Identification of Candida Species in a Resource-Poor Setting. Mycopathologia 2015; 180:173-9. [DOI: 10.1007/s11046-015-9905-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
29
|
Are the Conventional Commercial Yeast Identification Methods Still Helpful in the Era of New Clinical Microbiology Diagnostics? A Meta-Analysis of Their Accuracy. J Clin Microbiol 2015; 53:2439-50. [PMID: 25994160 DOI: 10.1128/jcm.00802-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/11/2015] [Indexed: 12/29/2022] Open
Abstract
Accurate identification of pathogenic species is important for early appropriate patient management, but growing diversity of infectious species/strains makes the identification of clinical yeasts increasingly difficult. Among conventional methods that are commercially available, the API ID32C, AuxaColor, and Vitek 2 systems are currently the most used systems in routine clinical microbiology. We performed a systematic review and meta-analysis to estimate and to compare the accuracy of the three systems, in order to assess whether they are still of value for the species-level identification of medically relevant yeasts. After adopting rigorous selection criteria, we included 26 published studies involving Candida and non-Candida yeasts that were tested with the API ID32C (674 isolates), AuxaColor (1,740 isolates), and Vitek 2 (2,853 isolates) systems. The random-effects pooled identification ratios at the species level were 0.89 (95% confidence interval [CI], 0.80 to 0.95) for the API ID32C system, 0.89 (95% CI, 0.83 to 0.93) for the AuxaColor system, and 0.93 (95% CI, 0.89 to 0.96) for the Vitek 2 system (P for heterogeneity, 0.255). Overall, the accuracy of studies using phenotypic analysis-based comparison methods was comparable to that of studies using molecular analysis-based comparison methods. Subanalysis of studies conducted on Candida yeasts showed that the Vitek 2 system was significantly more accurate (pooled ratio, 0.94 [95% CI, 0.85 to 0.99]) than the API ID32C system (pooled ratio, 0.84 [95% CI, 0.61 to 0.99]) and the AuxaColor system (pooled ratio, 0.76 [95% CI, 0.67 to 0.84]) with respect to uncommon species (P for heterogeneity, <0.05). Subanalysis of studies conducted on non-Candida yeasts (i.e., Cryptococcus, Rhodotorula, Saccharomyces, and Trichosporon) revealed pooled identification accuracies of ≥98% for the Vitek 2, API ID32C (excluding Cryptococcus), and AuxaColor (only Rhodotorula) systems, with significant low or null levels of heterogeneity (P > 0.05). Nonetheless, clinical microbiologists should reconsider the usefulness of these systems, particularly in light of new diagnostic tools such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, which allow for considerably shortened turnaround times and/or avoid the requirement for additional tests for species identity confirmation.
Collapse
|
30
|
da Silva FC, Chalfoun SM, Batista LR, Santos C, Lima N. Use of a polyphasic approach including MALDI-TOF MS for identification of Aspergillus section Flavi strains isolated from food commodities in Brazil. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1050-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
31
|
Helmel M, Marchetti-Deschmann M, Raus M, Posch AE, Herwig C, Šebela M, Allmaier G. Intact cell mass spectrometry as a progress tracking tool for batch and fed-batch fermentation processes. Anal Biochem 2015; 470:25-33. [PMID: 25447465 DOI: 10.1016/j.ab.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 11/25/2022]
Abstract
Penicillin production during a fermentation process using industrial strains of Penicillium chrysogenum is a research topic permanently discussed since the accidental discovery of the antibiotic. Intact cell mass spectrometry (ICMS) can be a fast and novel monitoring tool for the fermentation progress during penicillin V production in a nearly real-time fashion. This method is already used for the characterization of microorganisms and the differentiation of fungal strains; therefore, the application of ICMS to samples directly harvested from a fermenter is a promising possibility to get fast information about the progress of fungal growth. After the optimization of the ICMS method to penicillin V fermentation broth samples, the obtained ICMS data were evaluated by hierarchical cluster analysis or an in-house software solution written especially for ICMS data comparison. Growth stages of a batch and fed-batch fermentation of Penicillium chrysogenum are differentiated by one of those statistical approaches. The application of two matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instruments in the linear positive ion mode from different vendors demonstrated the universal applicability of the developed ICMS method. The base for a fast and easy-to-use method for monitoring the fermentation progress of P. chrysogenum is created with this ICMS method developed especially for fermentation broth samples.
Collapse
Affiliation(s)
- Michaela Helmel
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, A-1060 Vienna, Austria
| | | | - Martin Raus
- Department of Protein Biochemistry and Proteomics, Centrum of the Region Hana for Biotechnological and Agricultural Research, Faculty of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Andreas E Posch
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centrum of the Region Hana for Biotechnological and Agricultural Research, Faculty of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, A-1060 Vienna, Austria.
| |
Collapse
|
32
|
Oliveira MME, Santos C, Sampaio P, Romeo O, Almeida-Paes R, Pais C, Lima N, Zancopé-Oliveira RM. Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex. Res Microbiol 2015; 166:102-10. [PMID: 25561427 DOI: 10.1016/j.resmic.2014.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023]
Abstract
Accurate species identification of the Sporothrix schenckii complex is essential, since identification based only on phenotypic characteristics is often inconclusive due to phenotypic variability within the species. We used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for species identification of 70 environmental and clinical isolates of the Sporothrix complex. A reference database was established for MALDI-TOF MS-based species identification according to minor adjustments in the manufacturer's guidelines. The MALDI-TOF MS clearly distinguished strains of Sporothrix brasiliensis, Sporothrix globosa, Sporothrix mexicana, S. schenckii, Sporothrix luriei and Sporothrix pallida, enabling identification of all isolates at the species level, as confirmed by partial calmodulin gene sequence analyses. The present methodology is simple, reliable, rapid and highly suitable for routine identification in clinical mycology laboratories and culture collections, particularly for updating and reclassifying of deposited Sporothrix isolates.
Collapse
Affiliation(s)
- Manoel Marques Evangelista Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho, Universidade do Minho, Campus de Gualtar, Braga, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Universidade do Minho, Braga, Portugal.
| | - Cledir Santos
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho, Universidade do Minho, Campus de Gualtar, Braga, Portugal; Programa de Pós-Graduação em Microbiologia Agrícola, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Universidade do Minho, Braga, Portugal
| | - Orazio Romeo
- Department of Environmental and Biological Sciences, University of Messina, Messina, Italy
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Universidade do Minho, Braga, Portugal
| | - Nelson Lima
- CEB-Centre of Biological Engineering, Micoteca da Universidade do Minho, Universidade do Minho, Campus de Gualtar, Braga, Portugal; Programa de Pós-Graduação em Microbiologia Agrícola, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 2014; 117:1601-13. [DOI: 10.1111/jam.12652] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
Affiliation(s)
- L. Pereira
- CEB-Centre of Biological Engineering; University of Minho; Campus Gualtar; Braga Portugal
| | - N. Dias
- CEB-Centre of Biological Engineering; University of Minho; Campus Gualtar; Braga Portugal
| | - J. Carvalho
- CEB-Centre of Biological Engineering; University of Minho; Campus Gualtar; Braga Portugal
| | - S. Fernandes
- Shannon ABC; Limerick Institute of Technology; Moylish Park; Limerick Ireland
| | - C. Santos
- CEB-Centre of Biological Engineering; University of Minho; Campus Gualtar; Braga Portugal
| | - N. Lima
- CEB-Centre of Biological Engineering; University of Minho; Campus Gualtar; Braga Portugal
| |
Collapse
|
34
|
Rodrigues A, Maciel M, Santos C, Machado D, Sampaio J, Lima N, Carvalho MJ, Cabrita A, Martins M. Peritoneal dialysis infections: an opportunity for improvement. Am J Infect Control 2014; 42:1016-8. [PMID: 25179339 DOI: 10.1016/j.ajic.2014.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 10/24/2022]
Abstract
Peritoneal dialysis (PD) catheter-associated infections remain a challenging cause of technique failure. Patient training and preventive measures are key elements in the management of infection rates. Twenty-seven of the 167 PD catheter transfer sets analyzed (19%) yielded a positive microbial culture (58% gram-negative bacteria). These results show that subclinical contamination, particularly from environmental gram-negative bacteria, is a potential hazard, indicating the need for a protocol for regular transfer set changes.
Collapse
|
35
|
Lima-Neto R, Santos C, Lima N, Sampaio P, Pais C, Neves RP. Application of MALDI-TOF MS for requalification of a Candida clinical isolates culture collection. Braz J Microbiol 2014; 45:515-22. [PMID: 25242936 PMCID: PMC4166277 DOI: 10.1590/s1517-83822014005000044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Microbial culture collections underpin biotechnology applications and are important resources for clinical microbiology by supplying reference strains and/or performing microbial identifications as a service. Proteomic profiles by MALDI-TOF MS have been used for Candida spp. identification in clinical laboratories and demonstrated to be a fast and reliable technique for the routine identification of pathogenic yeasts. The main aim of this study was to apply MALDI-TOF MS combined with classical phenotypic and molecular approaches to identify Candida clinical isolates preserved from 1 up to 52 years in a Brazilian culture collection and assess its value for the identification of yeasts preserved in this type of collections. Forty Candida spp. clinical isolates were identified by morphological and biochemical analyses. Identifications were also performed by the new proteomic approach based on MALDI-TOF MS. Results demonstrated 15% discordance when compared with morphological and biochemical analyses. Discordant isolates were analysed by ITS sequencing, which confirmed the MALDI-TOF MS identifications and these strains were renamed in the culture collection catalogue. In conclusion, proteomic profiles by MALDI-TOF MS represents a rapid and reliable method for identifying clinical Candida species preserved in culture collections and may present clear benefits when compared with the performance of existing daily routine methods applied at health centres and hospitals.
Collapse
Affiliation(s)
- Reginaldo Lima-Neto
- Department of Mycology Centre of Biological Sciences Federal University of Pernambuco RecifePE Brazil Department of Mycology, Centre of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil. ; Micoteca da Universidade do Minho Centre of Biological Engineering University of Minho Braga Portugal Micoteca da Universidade do Minho, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Cledir Santos
- Micoteca da Universidade do Minho Centre of Biological Engineering University of Minho Braga Portugal Micoteca da Universidade do Minho, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nelson Lima
- Micoteca da Universidade do Minho Centre of Biological Engineering University of Minho Braga Portugal Micoteca da Universidade do Minho, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Paula Sampaio
- Department of Biology Centre of Molecular and Environmental Biology University of Minho Braga Portugal Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Célia Pais
- Department of Biology Centre of Molecular and Environmental Biology University of Minho Braga Portugal Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Rejane P Neves
- Department of Mycology Centre of Biological Sciences Federal University of Pernambuco RecifePE Brazil Department of Mycology, Centre of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
36
|
Affiliation(s)
- Oliver Bader
- Institute for Medical Microbiology; University Medical Center Göttingen; Göttingen, Germany
| |
Collapse
|
37
|
Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, Scheynius A, Cafarchia C, Iatta R, Montagna M, Youngchim S, Cabañes F, Hoopman P, Kraak B, Groenewald M, Boekhout T. Efficient identification ofMalasseziayeasts by matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS). Br J Dermatol 2014; 170:332-41. [DOI: 10.1111/bjd.12680] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2013] [Indexed: 12/15/2022]
Affiliation(s)
- A. Kolecka
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - K. Khayhan
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
- Department of Microbiology and Parasitology Faculty of Medical Sciences University of Phayao Phayao Thailand
| | - M. Arabatzis
- Research Mycology Laboratory (K.A. 70/3/6915) Microbiology Department Medical School of University of Athens Athens Greece
| | - A. Velegraki
- Research Mycology Laboratory (K.A. 70/3/6915) Microbiology Department Medical School of University of Athens Athens Greece
| | - M. Kostrzewa
- Bioanalytical Development Bruker Daltonics GmbH Bremen Germany
| | - A. Andersson
- Translational Immunology Unit Department of Medicine Solna Karolinska Institutet Stockholm Sweden
| | - A. Scheynius
- Translational Immunology Unit Department of Medicine Solna Karolinska Institutet Stockholm Sweden
| | - C. Cafarchia
- Department of Veterinary Medicine Aldo Moro University of Bari Bari Italy
| | - R. Iatta
- Department of Veterinary Medicine Aldo Moro University of Bari Bari Italy
| | - M.T. Montagna
- Department of Biomedical Science and Human Oncology Section of Hygiene Aldo Moro University of Bari Bari Italy
| | - S. Youngchim
- Department of Microbiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - F.J. Cabañes
- Department of Animal Health and Anatomy Universitat Autònoma de Barcelona Bellaterra Barcelona Spain
| | - P. Hoopman
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - B. Kraak
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - M. Groenewald
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - T. Boekhout
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
- Department of Internal Medicine and Infectious Diseases University Medical Center Utrecht the Netherlands
- Department of Dermatology Shanghai Key Laboratory of Molecular Medical Mycology Second Military Medical University Changzheng Hospital Institute of Dermatology and Medical Mycology Shanghai China
- Institute of Microbiology Chinese Academy of Sciences Beijing China
| |
Collapse
|
38
|
Pereira L, Dias N, Santos C, Lima N. The use of MALDI-TOF ICMS as an alternative tool for Trichophyton rubrum identification and typing. Enferm Infecc Microbiol Clin 2014; 32:11-7. [DOI: 10.1016/j.eimc.2013.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
39
|
Lau SKP, Tang BSF, Teng JLL, Chan TM, Curreem SOT, Fan RYY, Ng RHY, Chan JFW, Yuen KY, Woo PCY. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J Clin Pathol 2013; 67:361-6. [PMID: 24143023 DOI: 10.1136/jclinpath-2013-201818] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Although the revolutionary matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has been evaluated for identification of various groups of bacteria, its application in bacteria that are 'difficult-to-identify' by phenotypic tests has been less well studied. We aim to evaluate the usefulness of MALDI-TOF MS for identification of 'difficult-to-identify' bacterial isolates. METHODS We evaluated the performance of the Bruker MALDI-TOF MS system for a collection of 67 diverse clinically important bacterial isolates that were less commonly encountered, possessed ambiguous biochemical profiles or belonged to newly discovered species. The results were compared with 16S rRNA gene sequencing as a reference method for species identification. RESULTS Using 16S rRNA gene sequencing as the reference method, 30 (45%) isolates were identified correctly to species level (score ≥2.0), 20 (30%) were only identified to genus level (score ≥1.7), four (6%) were misidentified (incorrect species with score ≥2.0 or incorrect genus with score ≥1.7) and 13 (19%) showed 'no identification' (score <1.7). Aerobic Gram-positive bacteria showed the highest percentage of correct species identification, followed by aerobic Gram-negative, anaerobic Gram-positive and anaerobic Gram-negative bacteria. Sixteen isolates identified to genus level actually showed the correct species but with scores below the threshold for species identification. Most isolates which showed 'no identification' were due to the absence of the corresponding species in the Bruker database. CONCLUSIONS Expansion of commercial databases to include reference spectra of less commonly encountered and newly discovered species and to increase available spectra for each species is required to improve the accuracy of MALDI-TOF MS for identifying 'difficult-to-identify' bacteria.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, , Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Posteraro B, De Carolis E, Vella A, Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics 2013; 10:151-64. [PMID: 23573782 DOI: 10.1586/epr.13.8] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MALDI-TOF mass spectrometry (MS) is becoming essential in most clinical microbiology laboratories throughout the world. Its successful use is mainly attributable to the low operational costs, the universality and flexibility of detection, as well as the specificity and speed of analysis. Based on characteristic protein spectra obtained from intact cells - by means of simple, rapid and reproducible preanalytical and analytical protocols - MALDI-TOF MS allows a highly discriminatory identification of yeasts and filamentous fungi starting from colonies. Whenever used early, direct identification of yeasts from positive blood cultures has the potential to greatly shorten turnaround times and to improve laboratory diagnosis of fungemia. More recently, but still at an infancy stage, MALDI-TOF MS is used to perform strain typing and to determine antifungal drug susceptibility. In this article, the authors discuss how the MALDI-TOF MS technology is destined to become a powerful tool for routine mycological diagnostics.
Collapse
|
41
|
Comparison between the Biflex III-Biotyper and the Axima-SARAMIS systems for yeast identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51:1231-6. [PMID: 23390281 DOI: 10.1128/jcm.03268-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is emerging in laboratories as a new diagnostic tool for microorganism identification. We prospectively compared the performances of the Biflex III-Biotyper (Bruker Daltonics) and the Axima (Shimadzu)-SARAMIS (AnagnosTec) systems for the identification of 312 yeasts isolated from clinical specimens (249 Candida spp., including 19 C. albicans and 230 non-albicans species and 63 isolates belonging to different species of the genera Saccharomyces [20 isolates], Rhodotorula [8 isolates], Cryptococcus [8 isolates], Trichosporon [7 isolates], Pichia [7 isolates], Geotrichum [12 isolates], and Sporopachydermia cereana [1 isolate]). Species were identified by using routine conventional phenotypical methods and internal transcribed spacer (ITS) sequencing in case of discrepancy. We used expanded thresholds for species identification (log score of ≥1.7 with 3 identical consecutive propositions and no discrepancy between the duplicates for the Bruker Daltonics system and similitude of ≥40% with 5 successive identical propositions and no discrepancy between the duplicates for the Shimadzu system). Of the 312 isolates, 272 (87.2%) and 258 (82.7%) were successfully identified by the Bruker Daltonics and Shimadzu systems, respectively. All isolates were successfully identified within the most frequent and clinically relevant Candida species by the two systems. Nonvalid results corresponded mainly to species not or poorly represented in the databases. Major misidentifications were observed for 2 isolates (0.6%) by the Bruker Daltonics system and 4 isolates (1.3%) by the Shimadzu system. In conclusion, the performances of the Bruker Daltonics and the Shimadzu systems for yeast identification were good and comparable under routine clinical conditions, despite their differences in sample preparation, database content, and spectrum analysis.
Collapse
|
42
|
Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics 2013; 13:788-99. [DOI: 10.1002/pmic.201200468] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Oliver Bader
- Institute for Medical Microbiology and German National Reference Center for Systemic Mycoses; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
43
|
Kabir MA, Ahmad Z. Candida infections and their prevention. ISRN PREVENTIVE MEDICINE 2012; 2013:763628. [PMID: 24977092 PMCID: PMC4062852 DOI: 10.5402/2013/763628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/04/2012] [Indexed: 12/15/2022]
Abstract
Infections caused by Candida species have been increased dramatically worldwide due to the increase in immunocompromised patients. For the prevention and cure of candidiasis, several strategies have been adopted at clinical level. Candida infected patients are commonly treated with a variety of antifungal drugs such as fluconazole, amphotericin B, nystatin, and flucytosine. Moreover, early detection and speciation of the fungal agents will play a crucial role for administering appropriate drugs for antifungal therapy. Many modern technologies like MALDI-TOF-MS, real-time PCR, and DNA microarray are being applied for accurate and fast detection of the strains. However, during prolonged use of these drugs, many fungal pathogens become resistant and antifungal therapy suffers. In this regard, combination of two or more antifungal drugs is thought to be an alternative to counter the rising drug resistance. Also, many inhibitors of efflux pumps have been designed and tested in different models to effectively treat candidiasis. However, most of the synthetic drugs have side effects and biomedicines like antibodies and polysaccharide-peptide conjugates could be better alternatives and safe options to prevent and cure the diseases. Furthermore, availability of genome sequences of Candida
albicans and other non-albicans strains has made it feasible to analyze the genes for their roles in adherence, penetration, and establishment of diseases. Understanding the biology of Candida species by applying different modern and advanced technology will definitely help us in preventing and curing the diseases caused by fungal pathogens.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India
| | - Zulfiqar Ahmad
- Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA
| |
Collapse
|
44
|
Rosenvinge FS, Dzajic E, Knudsen E, Malig S, Andersen LB, Løvig A, Arendrup MC, Jensen TG, Gahrn-Hansen B, Kemp M. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates. Mycoses 2012; 56:229-35. [PMID: 22924975 DOI: 10.1111/myc.12000] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and fast yeast identification is important when treating patients with invasive fungal disease as susceptibility to antifungal agents is highly species related. Matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF-MS) provides a powerful tool with a clear potential to improve current diagnostic practice. Two MALDI-TOF-MS-systems (BioTyper/Bruker and Saramis/AXIMA) were evaluated using: (i) A collection of 102 archived, well characterised yeast isolates representing 14 different species and (ii) Prospectively collected isolates obtained from clinical samples at two participating laboratories. Of the 102 archived isolates, 81 (79%) and 92 (90%) were correctly identified by Saramis/AXIMA and BioTyper/Bruker respectively. Saramis/AXIMA was unable to separate Candida albicans, C. africana and C. dubliniensis in 13 of 32 isolates. After manual interpretation of the mass spectra output, all 13 isolates were correctly identified, resulting in an overall identification performance of 92%. No misidentifications occurred with the two systems. Of the routine isolates one laboratory identified 99/99 (100%) and 90/99 (91%) to species level by Saramis/Axima and conventional identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy that outperforms our conventional identification systems.
Collapse
Affiliation(s)
- Flemming S Rosenvinge
- Departments of Clinical Microbiology at Odense University Hospital, J. B. Winsløwsvej 21, Odense, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Accurate identification of Candida parapsilosis (sensu lato) by use of mitochondrial DNA and real-time PCR. J Clin Microbiol 2012; 50:2310-4. [PMID: 22535986 DOI: 10.1128/jcm.00303-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Candida parapsilosis is the Candida species isolated the second most frequently from blood cultures in South America and some European countries, such as Spain. Since 2005, this species has been considered a complex of 3 closely related species: C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis. Here, we describe a real-time TaqMan-MGB PCR assay, using mitochondrial DNA (mtDNA) as the target, which readily distinguishes these 3 species. We first used comparative genomics to locate syntenic regions between these 3 mitochondrial genomes and then selected NADH5 as the target for the real-time PCR assay. Probes were designed to include a combination of different single-nucleotide polymorphisms that are able to differentiate each species within the C. parapsilosis complex. This new methodology was first tested using mtDNA and then genomic DNA from 4 reference and 5 clinical strains. For assay validation, a total of 96 clinical isolates and 4 American Type Culture Collection (ATCC) isolates previously identified by internal transcribed spacer (ITS) ribosomal DNA (rDNA) sequencing were tested. Real-time PCR using genomic DNA was able to differentiate the 3 species with 100% accuracy. No amplification was observed when DNA from other species was used as the template. We observed 100% congruence with ITS rDNA sequencing identification, including for 30 strains used in blind testing. This novel method allows a quick and accurate intracomplex identification of C. parapsilosis and saves time compared with sequencing, which so far has been considered the "gold standard" for Candida yeast identification. In addition, this assay provides a useful tool for epidemiological and clinical studies of these emergent species.
Collapse
|