1
|
Alvarez C, Nastro M, Goyheneche B, Potente N, Ledesma M, Vay C, Naas T, Foccoli M, de Gregorio S, Famiglietti A, Dabos L, Rodriguez CH. NDM-5-producing Klebsiella pneumoniae ST258 in a university hospital in Argentina. J Antimicrob Chemother 2024; 79:3174-3177. [PMID: 39310949 DOI: 10.1093/jac/dkae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND A drastic increase in carbapenem resistance among Klebsiella pneumoniae isolates occurred during the period 2019-22. Three epidemiological changes could be evidenced: (i) NDM became the predominant carbapenemase; (ii) NDM-5 replaced NDM-1; and (iii) the emergence of NDM-producing K. pneumoniae ST258 (NDM-KpST258). MATERIALS AND METHODS Carbapenem-resistant K. pneumoniae isolates from patients on the ICU of a university hospital of Buenos Aires were studied during the period 2019-22. Identification was performed by MS and susceptibility by the Phoenix system (broth microdilution for colistin). Carbapenemase production was detected phenotypically. Molecular studies included PCR with specific primers and WGS (in some isolates). RESULTS NDM-producing K. pneumoniae was statistically associated with the use of ceftazidime/avibactam between 2019 and April 2021, whereas in the period from May 2021 to December 2022, it seemed to be related to the presence of NDM-5-KpST258. A gradual increase in the number of urease-negative NDM-Kp-ST258 during 2019-22 was observed. The plasmid origin of NDM-5 was supported by its presence on the IncFII incompatibility group plasmid. CONCLUSIONS Our study describes the first outbreak of NDM5-KpST258 at an ICU in Argentina, remarkably associated with considerable changes in the carbapenemase epidemiology. The intrinsic characteristics of ST258 may contribute to increased spread of NDM in hospital settings, resembling KPC-2 dissemination.
Collapse
Affiliation(s)
- Carla Alvarez
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Marcela Nastro
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Beatriz Goyheneche
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Nicolás Potente
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Martin Ledesma
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Carlos Vay
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Thierry Naas
- Team ReSIST, UMR1184, INSERM, Université Paris-Saclay, CEA, School of Medicine, LabEx LERMIT, Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene unit, Bicêtre Hospital, APHP Paris-Saclay, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacterales, Le Kremlin-Bicêtre, France
| | - Mónica Foccoli
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Stella de Gregorio
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Angela Famiglietti
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| | - Laura Dabos
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón (Madrid), Campus de Montegancedo UPM, Madrid 28223, Spain
| | - Carlos Hernán Rodriguez
- Universidad de Buenos Aires, Departamento de Bioquímica Clínica, Avenida Córdoba 2351, Buenos Aires City 1120, Argentina
| |
Collapse
|
2
|
Piña-Iturbe A, Hoppe-Elsholz G, Suazo ID, Kalergis AM, Bueno SM. Subinhibitory antibiotic concentrations promote the excision of a genomic island carried by the globally spread carbapenem-resistant Klebsiella pneumoniae sequence type 258. Microb Genom 2023; 9:001138. [PMID: 38079200 PMCID: PMC10763509 DOI: 10.1099/mgen.0.001138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The ICEKp258.2 genomic island (GI) has been proposed as an important factor for the emergence and success of the globally spread carbapenem-resistant Klebsiella pneumoniae sequence type (ST) 258. However, a characterization of this horizontally acquired element is lacking. Using bioinformatic and experimental approaches, we found that ICEKp258.2 is not confined to ST258 and ST512, but also carried by ST3795 strains and emergent invasive multidrug-resistant pathogens from ST1519. We also identified several ICEKp258.2-like GIs spread among different K. pneumoniae STs, other Klebsiella species and even other pathogen genera, uncovering horizontal gene transfer events between different STs and bacterial genera. Also, the comparative and phylogenetic analyses of the ICEKp258.2-like GIs revealed that the most closely related ICEKp258.2-like GIs were harboured by ST11 strains. Importantly, we found that subinhibitory concentrations of antibiotics used in treating K. pneumoniae infections can induce the excision of this GI and modulate its gene expression. Our findings provide the basis for the study of ICEKp258.2 and its role in the success of K. pneumoniae ST258. They also highlight the potential role of antibiotics in the spread of ICEKp258.2-like GIs among bacterial pathogens.
Collapse
Affiliation(s)
- Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Present address: Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Guillermo Hoppe-Elsholz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
3
|
Liao W, Huang N, Zhang Y, Sun Y, Chen T, Zeng W, Chen L, Wen H, Cao J, Zhou T. Comparison of Carbapenem-Resistant Klebsiella pneumoniae Strains Causing Intestinal Colonization and Extraintestinal Infections: Clinical, Virulence, and Molecular Epidemiological Characteristics. Front Public Health 2021; 9:783124. [PMID: 34926395 PMCID: PMC8678278 DOI: 10.3389/fpubh.2021.783124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumonia (CRKP) infections has become a concerning threat. However, knowledge regarding the characteristics of intestinal CRKP isolates is limited. This study aimed to investigate and compare the clinical, virulence and molecular epidemiological characteristics of intestinal colonization and extraintestinal infections CRKP strains. The clinical characteristics were investigated retrospectively. Polymerase chain reaction was used to investigate the capsular serotype, virulence genes and carbapenemase genes. Capsular polysaccharide quantification assay, serum resistance assay, biofilm formation assay, and infection model of Galleria mellonella larvae were performed to compare the virulence and pathogenicity. Besides, multilocus-sequence-typing (MLST) and pulsed-field-gel-electrophoresis (PFGE) were conducted to explore the homology of intestinal CRKP isolates. A total of 54 intestinal CRKP isolates were included. The main capsular serotypes were K14, K64, and K19. C-reactive protein and the proportion of ICU isolation of the infection group were significantly higher than that of the colonization group (P < 0.05). The carrier rates of various virulence genes of CRKP in the infection group were mostly higher than those in the colonization group, wherein the carrier rates of peg-344 and rmpA were significantly different (P < 0.05). There was no significant difference in capsular polysaccharides, antiserum ability, biofilm formation ability between the two group (P > 0.05), but the lethality of the infection group to Galleria mellonella was significantly higher than that of the colonization group (P < 0.05). The MLST categorized the 54 isolates into 13 different sequence types. PFGE revealed that homology among the 54 CRKP strains was <80%. This study suggested that the CRKP strains in the infection group had higher virulence than those in the colonization group. The development of CRKP isolates colonizing in the intestine should be addressed in future clinical surveillance.
Collapse
Affiliation(s)
- Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Laboratory, Yongzhou Central Hospital, Yongzhou, China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqiong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Wen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Within patient genetic diversity of bla KPC harboring Klebsiella pneumoniae in a Colombian hospital and identification of a new NTE KPC platform. Sci Rep 2021; 11:21409. [PMID: 34725422 PMCID: PMC8560879 DOI: 10.1038/s41598-021-00887-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Resistance to carbapenems in Klebsiellapneumoniae has been mostly related with the worldwide dissemination of KPC, largely due to the pandemic clones belonging to the complex clonal (CC) 258. To unravel blaKPC post-endemic clinical impact, here we describe clinical characteristics of 68 patients from a high complexity hospital, and the molecular and genetic characteristics of their 139 blaKPC—K.pneumoniae (KPC-Kp) isolates. Of the 26 patients that presented relapses or reinfections, 16 had changes in the resistance profiles of the isolates recovered from the recurrent episodes. In respect to the genetic diversity of KPC-Kp isolates, PFGE revealed 45 different clonal complexes (CC). MLST for 12 representative clones showed ST258 was present in the most frequent CC (23.0%), however, remaining 11 representative clones belonged to non-CC258 STs (77.0%). Interestingly, 16 patients presented within-patient genetic diversity of KPC-Kp clones. In one of these, three unrelated KPC-Kp clones (ST258, ST504, and ST846) and a blaKPC—K.variicola isolate (ST182) were identified. For this patient, complete genome sequence of one representative isolate of each clone was determined. In K.pneumoniae isolates blaKPC was mobilized by two Tn3-like unrelated platforms: Tn4401b (ST258) and Tn6454 (ST504 and ST846), a new NTEKPC-IIe transposon for first time characterized also determined in the K.variicola isolate of this study. Genome analysis showed these transposons were harbored in different unrelated but previously reported plasmids and in the chromosome of a K.pneumoniae (for Tn4401b). In conclusion, in the blaKPC post-endemic dissemination in Colombia, different KPC-Kp clones (mostly non-CC258) have emerged due to integration of the single blaKPC gene in new genetic platforms. This work also shows the intra-patient resistant and genetic diversity of KPC-Kp isolates. This circulation dynamic could impact the effectiveness of long-term treatments.
Collapse
|
5
|
Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital. Microorganisms 2021; 9:microorganisms9040720. [PMID: 33807212 PMCID: PMC8066831 DOI: 10.3390/microorganisms9040720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.
Collapse
|
6
|
Reyes J, Cárdenas P, Tamayo R, Villavicencio F, Aguilar A, Melano RG, Trueba G. Characterization of blaKPC-2-Harboring Klebsiella pneumoniae Isolates and Mobile Genetic Elements from Outbreaks in a Hospital in Ecuador. Microb Drug Resist 2020; 27:752-759. [PMID: 33217245 DOI: 10.1089/mdr.2019.0433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: To investigate the mobile genetic elements harboring blaKPC gene in carbapenem-resistant Klebsiella pneumoniae recovered during a 6-month outbreak in a high-complexity hospital from Ecuador. Results: A total of 62 isolates belonging to ST258 pilv-I-positive (n = 45), ST25 serotype K2 (n = 8), ST348 (n = 6), ST42 (n = 1), ST196 (n = 1), and ST1758 (n = 1) were collected from intensive care unit (ICU), neurosurgery, burn unit, internal medicine, pneumology, and neurology. Pulsed-field gel electrophoresis analysis showed two major clusters of ST258 and ST25 related to bloodstream infections and pneumonia circulating in ICU. The PCR assay showed that in non-ST258 isolates, the blaKPC-2 gene were located on the Tn4401a transposon inserted in the transferable pKpQIL-like IncFIIK2 plasmid; the whole-genome sequencing of ST258 clone showed two plasmids, the blaKPC-2 gene was located on nonconjugative IncR plasmid, whereas the IncFIB/IncFII plasmid lacked ß-lactamase genes. We found an IncM plasmid in blaKPC-2-harboring Klebsiella pneumoniae ST1758 clone. Conclusions: These findings highlight the presence of pKpQIL-like plasmids in non-ST258 and nonconjugative plasmids in ST258 isolates causing hospital outbreaks.
Collapse
Affiliation(s)
- Jorge Reyes
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.,Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Rafael Tamayo
- Centro de Referencia Nacional de Resistencia a los antimicrobianos "LIP," Quito, Ecuador
| | - Fernando Villavicencio
- Centro de Referencia Nacional de Resistencia a los antimicrobianos "LIP," Quito, Ecuador
| | - Ana Aguilar
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.,Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Universidad San Francisco de Quito, Quito, Ecuador
| | - Roberto G Melano
- Public Health Ontario Laboratory, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
7
|
Lai YC, Lu MC, Hsueh PR. Hypervirulence and carbapenem resistance: two distinct evolutionary directions that led high-risk Klebsiella pneumoniae clones to epidemic success. Expert Rev Mol Diagn 2019; 19:825-837. [PMID: 31343934 DOI: 10.1080/14737159.2019.1649145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Over the past few decades, Klebsiella pneumoniae has become a significant threat to public health and is now listed as an ESKAPE pathogen. Evolving with versatile capabilities, K. pneumoniae is a population composed of genetically and phenotypically diverse bacteria. However, epidemic K. pneumoniae are restricted to specific clonal lineages. The clonal group CG23 comprises hypervirulent K. pneumoniae displaying limited resistance to antimicrobials and is frequently associated with the community-acquired invasive syndrome. On the other hand, CG258 is another clonal group of K. pneumoniae that has evolved resistance to carbapenems, primarily by acquiring the carbapenemase-encoding genes through nosocomial carriage. Areas covered: With a focus on the high-risk K. pneumoniae clonal lineages CG23 and CG258, we review recent advances including the newly discovered lineage-specific genomic features, and the molecular basis of K. pneumoniae-associated epidemiology, antimicrobial resistance, and hypervirulence. Expert opinion: Both CG23 and CG258 can establish reservoirs in susceptible individuals. Empirical antimicrobial regimens that are prescribed for immediate treatments frequently create selective pressures that favor the high-risk lineages to develop into prominent colonizers. This dilemma reinforces the need for effective therapies that require rapid and accurate diagnosis of epidemic K. pneumoniae.
Collapse
Affiliation(s)
- Yi-Chyi Lai
- Department of Internal Medicine, Chung Shan Medical University Hospital , Taichung , Taiwan.,Department of Microbiology and Immunology, Chung Shan Medical University , Taichung , Taiwan
| | - Min-Chi Lu
- Department of Microbiology and Immunology, School of Medicine, China Medical University , Taichung , Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital , Taichung , Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei , Taiwan.,Department Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
8
|
Sun YJ, Chen GF, Zhang CY, Guo CL, Wang YY, Sun R. Development of a multiplex polymerase chain reaction assay for the parallel detection of harmful algal bloom-forming species distributed along the Chinese coast. HARMFUL ALGAE 2019; 84:36-45. [PMID: 31128811 DOI: 10.1016/j.hal.2019.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/16/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Harmful algal blooms (HABs) have adverse effects on the marine ecological environment, public health, and marine economy. Thus, methods for the accurate and rapid identification of harmful algal species are urgently needed for the effective monitoring of the occurrence of HABS. A method for the parallel detection of harmful algal species must be established because various HAB-forming algal species coexist in the marine environment. This work developed a multiplex PCR (mPCR) method that can simultaneously detect six common HAB-forming microalgal species distributed along the coast of China: Karlodinium veneficum (Kv), Chattonella marina (Cm), Skeletonema spp., Scrippsiella trochoidea (St), Karenia mikimotoi (Km), and Prorocentrum donghaiense (Pd). Specific mPCR primers were designed from the internal transcribed spacer rDNA or large subunit rDNA gene of the target algal species. The mPCR conditions were optimized. Each mPCR primer was subjected to a cross-reactivity test with other microalgae to confirm the specificity of the developed mPCR system. The results of the system stability test indicated that the background concentration of DNA tested did not affect the performance of the established mPCR system. The results of the sensitivity test showed that the detection limit of the proposed mPCR system for Kv, Cm, Km, and Pd was 0.6 ng μL-1 and that for Skeletonema spp. and St was 0.06 ng μL-1. Additional mPCR analysis with spiked field samples revealed that the detection limit of the mPCR system for Km, Pd, and Kv was 60 cells, whereas that for Cm, Skeletonema spp., and St was 6 cells. The convenience and accuracy of the established mPCR assay were further validated through tests with field samples. The proposed mPCR assay is characterized by parallel analysis, strong specificity, and stability and can be used to supplement morphology-based detection methods for algal species.
Collapse
Affiliation(s)
- Yan-Jie Sun
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Guo-Fu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Chun-Yun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Chang-Lu Guo
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Yuan-Yuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Rui Sun
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| |
Collapse
|
9
|
MALDI-TOF MS based procedure to detect KPC-2 directly from positive blood culture bottles and colonies. J Microbiol Methods 2019; 159:120-127. [PMID: 30849422 DOI: 10.1016/j.mimet.2019.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/22/2022]
Abstract
In this study, we identified specific carbapenemase-producing isolates applying an easy and rapid protocol for the detection of mature KPC-2 β-lactamase by MALDI-TOF MS from colony and positive blood culture bottles. In addition, we evaluated the correlation of the ~11,109 Da signal as a biomarker associated with KPC-2 production. A collection of 126 well-characterized clinical isolates were evaluated (including 60 KPC-2-producing strains). Presence of KPC-2 was assessed by MALDI-TOF MS on protein extracts. Samples were prepared using the double layer sinapinic acid technique. In order to identify mature KPC-2, raw spectra were analyzed focusing on the range between m/z 25,000-30,000 Da. A single distinctive peak, at approximately m/z 28,544 Da was found in all clinical and control KPC-2-producing strains, and consistently absent in the control groups (ESBL producers and susceptible strains). This peak was detected in all species independently of where the gene blaKPC-2 was embedded. Statistical results showed 100% sensitivity, CI95%: [94.0%; 100%] and 100% specificity, CI95%: [94.6%; 100%], indicating a promising test with a high discriminative power. KPC-2 β-lactamase could be directly detected from both colonies and blood culture bottles. On the other hand, the m/z 11,109 Da signal determinant was only associated with 32% of Klebsiella pneumoniae and Escherichia coli KPC positive isolates. This MALDI-TOF MS methodology has the potential to detect directly the widespread and clinically relevant carbapenemase, KPC-2, in Enterobacterales with a straightforward, low cost process, assuming MALDI-TOF MS is already adopted as the main identification tool, with clear clinical implications on antibiotic stewardship for early infection treatment.
Collapse
|
10
|
Álvarez VE, Campos J, Galiana A, Borthagaray G, Centrón D, Márquez Villalba C. Genomic analysis of the first isolate of KPC-2-producing Klebsiella pneumoniae from Uruguay. J Glob Antimicrob Resist 2018; 15:109-110. [DOI: 10.1016/j.jgar.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022] Open
|
11
|
Dou Y, Li L, Du J, He Y, Chen R, Li Y, Ma C, Liu H. Development of a multiplex two-gene real-time PCR assay for accurate detection of Klebsiella pneumoniae. Br J Biomed Sci 2018; 76:42-45. [PMID: 29991336 DOI: 10.1080/09674845.2018.1499167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Y Dou
- a Department of Clinical Laboratory , Shenzhen Shajing Hospital affiliated to Guangzhou Medical University , Shenzhen , China
| | - L Li
- b Dongguan Research Center, Traditional Chinese Medicine and New Drug Research Institute, Guangdong Medical University , Dongguan , China
| | - J Du
- a Department of Clinical Laboratory , Shenzhen Shajing Hospital affiliated to Guangzhou Medical University , Shenzhen , China
| | - Y He
- a Department of Clinical Laboratory , Shenzhen Shajing Hospital affiliated to Guangzhou Medical University , Shenzhen , China
| | - R Chen
- c Department of Clinical Laboratory , The Second People's Hospital of Futian District , Shenzhen , China
| | - Y Li
- a Department of Clinical Laboratory , Shenzhen Shajing Hospital affiliated to Guangzhou Medical University , Shenzhen , China
| | - C Ma
- a Department of Clinical Laboratory , Shenzhen Shajing Hospital affiliated to Guangzhou Medical University , Shenzhen , China
| | - H Liu
- a Department of Clinical Laboratory , Shenzhen Shajing Hospital affiliated to Guangzhou Medical University , Shenzhen , China
| |
Collapse
|
12
|
Outbreak of ST395 KPC-Producing Klebsiella pneumoniae in a Neonatal Intensive Care Unit in Palermo, Italy. Infect Control Hosp Epidemiol 2018; 39:496-498. [PMID: 29444730 DOI: 10.1017/ice.2017.267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Cheruvanky A, Stoesser N, Sheppard AE, Crook DW, Hoffman PS, Weddle E, Carroll J, Sifri CD, Chai W, Barry K, Ramakrishnan G, Mathers AJ. Enhanced Klebsiella pneumoniae Carbapenemase Expression from a Novel Tn 4401 Deletion. Antimicrob Agents Chemother 2017; 61:e00025-17. [PMID: 28373185 PMCID: PMC5444142 DOI: 10.1128/aac.00025-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
The Klebsiella pneumoniae carbapenemase gene (blaKPC) is typically located within mobile transposon Tn4401 Enhanced KPC expression has been associated with deletions in the putative promoter region upstream of blaKPC Illumina sequences from blaKPC-positive clinical isolates from a single institution were mapped to a Tn4401b reference sequence, which carries no deletions. The novel isoform Tn4401h (188-bp deletion [between istB and blaKPC]) was present in 14% (39/281) of clinical isolates. MICs showed that Escherichia coli strains containing plasmids with Tn4401a and Tn4401h were more resistant to meropenem (≥16 and ≥16, respectively), ertapenem (≥8 and 4, respectively), and cefepime (≥64 and 4, respectively) than E. coli strains with Tn4401b (0.5, ≤0.5, and ≤1, respectively). Quantitative real-time PCR (qRT-PCR) demonstrated that Tn4401a had a 16-fold increase and Tn4401h a 4-fold increase in blaKPC mRNA levels compared to the reference Tn4401b. A lacZ reporter plasmid was used to test the activity of the promoter regions from the different variants, and the results showed that the Tn4401a and Tn4401h promoter sequences generated higher β-galactosidase activity than the corresponding Tn4401b sequence. Further dissection of the promoter region demonstrated that putative promoter P1 was not functional. The activity of the isolated P2 promoter was greatly enhanced by inclusion of the P1-P2 intervening sequence. These studies indicated that gene expression could be an important consideration in understanding resistance phenotypes predicted by genetic signatures in the context of sequencing-based rapid diagnostics.
Collapse
Affiliation(s)
- Anita Cheruvanky
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Nicole Stoesser
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Anna E Sheppard
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Derrick W Crook
- Modernizing Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Paul S Hoffman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Erin Weddle
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
- Department of Biologic Sciences, Shenandoah University, Winchester, Virginia, USA
| | - Joanne Carroll
- Clinical Microbiology, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Costi D Sifri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Weidong Chai
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Katie Barry
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Girija Ramakrishnan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Amy J Mathers
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
- Clinical Microbiology, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Forde C, Stierman B, Ramon-Pardo P, dos Santos T, Singh N. Carbapenem-resistant Klebsiella pneumoniae in Barbados: Driving change in practice at the national level. PLoS One 2017; 12:e0176779. [PMID: 28542162 PMCID: PMC5444594 DOI: 10.1371/journal.pone.0176779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/17/2017] [Indexed: 12/02/2022] Open
Abstract
Introduction Carbapenem-resistant Klebsiella pneumoniae (CRKP) is of growing concern globally. The risk for transmission of antimicrobial resistant organisms across several continents to the Caribbean is a real one given its tourism industry. After a cluster of cases of CRKP were detected, several studies detailed in this report were initiated to better characterize the problem. Methods A hospital-wide point prevalence study and active surveillance were performed at Queen Elizabeth Hospital (QEH) in Barbados in 2013 to assess the prevalence of CRKP infection/colonization. Following this, a 1-year longitudinal study measured the prevalence of CRKP isolates in the hospital and across all healthcare facilities in the country. Results In 2013, eleven viable isolates of CRKP from cluster of cases were sent for molecular epidemiology studies. When sequenced, they were found to be the ST-258 clone. Identification of a cluster of cases of CRKP ST-258/512 clones indicated person-to-person transmission. In September 2013, the hospital-wide point prevalence study revealed 18% of patients (53/299) at the hospital were either colonized or infected with CRKP. The infection to colonization ratio was 1:7. Patients who were infected/colonized vs. non-colonized were older (64.7 vs. 48.7 years, p<0.0001), were hospitalized longer (42.5 days vs. 27 days, p = 0.0042), were more likely to have an invasive device (66% vs. 32%, p<0.0001), especially urinary catheters (55% vs. 24%, p<0.0001), and were more likely to have used antimicrobials within the prior 14 days (91% vs. 46%, p<0.0001). Specific antimicrobials, including fluoroquinolones and piperacillin-tazobactam, were significantly associated with infection/colonization. In 2014, the 12-month period prevalence of CRKP in Barbados was 49.6 per 100,000 population and of blood stream infections was 3.2 per 100,000 population. Conclusions This point prevalence study identified patients at-risk of acquisition of CRKP and allowed QEH to implement interventions aimed at decreasing the prevalence of CRKP. Organization of a National and regional Infection Prevention and Control Committee in 2014 aimed to strengthen antimicrobial resistance surveillance programs across the English-speaking Caribbean were established.
Collapse
Affiliation(s)
- Corey Forde
- Queen Elizabeth Hospital, Bridgetown, Barbados
- * E-mail: (NS); (CF)
| | - Bryan Stierman
- Children’s National Health System, Washington DC, United States of America
| | - Pilar Ramon-Pardo
- Pan American Health Organization, Washington DC, United States of America
| | - Thais dos Santos
- Pan American Health Organization, Washington DC, United States of America
| | - Nalini Singh
- Children’s National Health System, Washington DC, United States of America
- George Washington University, Washington DC, United States of America
- * E-mail: (NS); (CF)
| |
Collapse
|
15
|
Adler A, Lifshitz Z, Gordon M, Ben-David D, Khabra E, Masarwa S, Zion O, Schwaber MJ, Carmeli Y. Evolution and dissemination of the Klebsiella pneumoniae clonal group 258 throughout Israeli post-acute care hospitals, 2008–13. J Antimicrob Chemother 2017; 72:2219-2224. [DOI: 10.1093/jac/dkx135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/07/2017] [Indexed: 11/12/2022] Open
|
16
|
Baraniak A, Izdebski R, Żabicka D, Bojarska K, Górska S, Literacka E, Fiett J, Hryniewicz W, Gniadkowski M. Multiregional dissemination of KPC-producing Klebsiella pneumoniae ST258/ST512 genotypes in Poland, 2010–14. J Antimicrob Chemother 2017; 72:1610-1616. [DOI: 10.1093/jac/dkx054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/29/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Katarzyna Bojarska
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Sandra Górska
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Janusz Fiett
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Center for Susceptibility Testing, National Medicines Institute, Warsaw 00-725, Poland
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw 00-725, Poland
| | | |
Collapse
|
17
|
Gomez S, Rapoport M, Piergrossi N, Faccone D, Pasteran F, De Belder D, ReLAVRA-Group, Petroni A, Corso A. Performance of a PCR assay for the rapid identification of the Klebsiella pneumoniae ST258 epidemic clone in Latin American clinical isolates. INFECTION GENETICS AND EVOLUTION 2016; 44:145-146. [DOI: 10.1016/j.meegid.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
|
18
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
19
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 462] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
20
|
Adler A, Khabra E, Paikin S, Carmeli Y. Dissemination of theblaKPCgene by clonal spread and horizontal gene transfer: comparative study of incidence and molecular mechanisms. J Antimicrob Chemother 2016; 71:2143-6. [DOI: 10.1093/jac/dkw106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/04/2016] [Indexed: 11/12/2022] Open
|
21
|
The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015; 28:565-91. [PMID: 25926236 DOI: 10.1128/cmr.00116-14] [Citation(s) in RCA: 568] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131) and Klebsiella pneumoniae ST258 emerged in the 2000s as important human pathogens, have spread extensively throughout the world, and are responsible for the rapid increase in antimicrobial resistance among E. coli and K. pneumoniae strains, respectively. E. coli ST131 causes extraintestinal infections and is often fluoroquinolone resistant and associated with extended-spectrum β-lactamase production, especially CTX-M-15. K. pneumoniae ST258 causes urinary and respiratory tract infections and is associated with carbapenemases, most often KPC-2 and KPC-3. The most prevalent lineage within ST131 is named fimH30 because it contains the H30 variant of the type 1 fimbrial adhesin gene, and recent molecular studies have demonstrated that this lineage emerged in the early 2000s and was then followed by the rapid expansion of its sublineages H30-R and H30-Rx. K. pneumoniae ST258 comprises 2 distinct lineages, namely clade I and clade II. Moreover, it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Epidemic plasmids with blaCTX-M and blaKPC belonging to incompatibility group F have contributed significantly to the success of these clones. E. coli ST131 and K. pneumoniae ST258 are the quintessential examples of international multidrug-resistant high-risk clones.
Collapse
|
22
|
Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C, Lemmer D, de Man T, Rasheed JK, Engelthaler DM, Keim P, Limbago BM. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic. PLoS One 2015; 10:e0133727. [PMID: 26196384 PMCID: PMC4510304 DOI: 10.1371/journal.pone.0133727] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/01/2015] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae producing the KPC carbapenemase have rapidly spread throughout the world, causing severe healthcare-associated infections with limited antimicrobial treatment options. Dissemination of KPC-producing K. pneumoniae is largely attributed to expansion of a single dominant strain, ST258. In this study, we explore phylogenetic relationships and evolution within ST258 and its clonal group, CG258, using whole genome sequence analysis of 167 isolates from 20 countries collected over 17 years. Our results show a common ST258 ancestor emerged from its diverse parental clonal group around 1995 and likely acquired blaKPC prior to dissemination. Over the past two decades, ST258 has remained highly clonal despite diversity in accessory elements and divergence in the capsule polysaccharide synthesis locus. Apart from the large recombination event that gave rise to ST258, few mutations set it apart from its clonal group. However, one mutation occurs in a global transcription regulator. Characterization of outer membrane protein sequences revealed a profile in ST258 that includes a truncated OmpK35 and modified OmpK37. Our work illuminates potential genomic contributors to the pathogenic success of ST258, helps us better understand the global dissemination of this strain, and identifies genetic markers unique to ST258.
Collapse
Affiliation(s)
- Jolene R. Bowers
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Brandon Kitchel
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Elizabeth M. Driebe
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Duncan R. MacCannell
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Chandler Roe
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Tom de Man
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J. Kamile Rasheed
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David M. Engelthaler
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Paul Keim
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Brandi M. Limbago
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
23
|
Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother 2015; 59:5873-84. [PMID: 26169401 DOI: 10.1128/aac.01019-15] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The management of infections due to Klebsiella pneumoniae has been complicated by the emergence of antimicrobial resistance, especially to carbapenems. Resistance to carbapenems in K. pneumoniae involves multiple mechanisms, including the production of carbapenemases (e.g., KPC, NDM, VIM, OXA-48-like), as well as alterations in outer membrane permeability mediated by the loss of porins and the upregulation of efflux systems. The latter two mechanisms are often combined with high levels of other types of β-lactamases (e.g., AmpC). K. pneumoniae sequence type 258 (ST258) emerged during the early to mid-2000s as an important human pathogen and has spread extensively throughout the world. ST258 comprises two distinct lineages, namely, clades I and II, and it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Incompatibility group F plasmids with blaKPC have contributed significantly to the success of ST258. The optimal treatment of infections due to carbapenemase-producing K. pneumoniae remains unknown. Some newer agents show promise for treating infections due to KPC producers; however, effective options for the treatment of NDM producers remain elusive.
Collapse
|
24
|
Effect of Resistance Mechanisms on the Inoculum Effect of Carbapenem in Klebsiella pneumoniae Isolates with Borderline Carbapenem Resistance. Antimicrob Agents Chemother 2015; 59:5014-7. [PMID: 25987630 DOI: 10.1128/aac.00533-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
We aimed to examine the effects of resistance mechanisms on several resistance phenotypes among carbapenem-resistant Klebsiella pneumoniae isolates with borderline carbapenem MICs. We compared carbapenemase-negative K. pneumoniae with carbapenemase-producing K. pneumoniae (CPKP) isolates with similar MICs. CPKP isolates exhibited a marked inoculum effect and were more resistant to the bactericidal effect of meropenem. This suggests that MIC measurements alone may not be sufficient in predicting the therapeutic efficacy of carbapenems against CPKP.
Collapse
|
25
|
Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:752930. [PMID: 25879036 PMCID: PMC4387947 DOI: 10.1155/2015/752930] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 03/04/2015] [Indexed: 12/25/2022]
Abstract
Multidrug-resistant Klebsiella pneumoniae (MRKP) has steadily grown beyond antibiotic control. However, a bacteriophage is considered to be a potential antibiotic alternative for treating bacterial infections. In this study, a lytic bacteriophage, phage 1513, was isolated using a clinical MRKP isolate KP 1513 as the host and was characterized. It produced a clear plaque with a halo and was classified as Siphoviridae. It had a short latent period of 30 min, a burst size of 264 and could inhibit KP 1513 growth in vitro with a dose-dependent pattern. Intranasal administration of a single dose of 2 × 109 PFU/mouse 2 h after KP 1513 inoculation was able to protect mice against lethal pneumonia. In a sublethal pneumonia model, phage-treated mice exhibited a lower level of K. pneumoniae burden in the lungs as compared to the untreated control. These mice lost less body weight and exhibited lower levels of inflammatory cytokines in their lungs. Lung lesion conditions were obviously improved by phage therapy. Therefore, phage 1513 has a great effect in vitro and in vivo, which has potential to be used as an alternative to an antibiotic treatment of pneumonia that is caused by the multidrug-resistant K. pneumoniae.
Collapse
|
26
|
Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother 2015; 59:1656-63. [PMID: 25561339 PMCID: PMC4325807 DOI: 10.1128/aac.04292-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global emergence of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) multilocus sequence type ST258 is widely recognized. Less is known about the molecular and epidemiological details of non-ST258 K. pneumoniae in the setting of an outbreak mediated by an endemic plasmid. We describe the interplay of blaKPC plasmids and K. pneumoniae strains and their relationship to the location of acquisition in a U.S. health care institution. Whole-genome sequencing (WGS) analysis was applied to KPC-Kp clinical isolates collected from a single institution over 5 years following the introduction of blaKPC in August 2007, as well as two plasmid transformants. KPC-Kp from 37 patients yielded 16 distinct sequence types (STs). Two novel conjugative blaKPC plasmids (pKPC_UVA01 and pKPC_UVA02), carried by the hospital index case, accounted for the presence of blaKPC in 21/37 (57%) subsequent cases. Thirteen (35%) isolates represented an emergent lineage, ST941, which contained pKPC_UVA01 in 5/13 (38%) and pKPC_UVA02 in 6/13 (46%) cases. Seven (19%) isolates were the epidemic KPC-Kp strain, ST258, mostly imported from elsewhere and not carrying pKPC_UVA01 or pKPC_UVA02. Using WGS-based analysis of clinical isolates and plasmid transformants, we demonstrate the unexpected dispersal of blaKPC to many non-ST258 lineages in a hospital through spread of at least two novel blaKPC plasmids. In contrast, ST258 KPC-Kp was imported into the institution on numerous occasions, with other blaKPC plasmid vectors and without sustained transmission. Instead, a newly recognized KPC-Kp strain, ST941, became associated with both novel blaKPC plasmids and spread locally, making it a future candidate for clinical persistence and dissemination.
Collapse
|
27
|
Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 2014; 1323:22-42. [PMID: 25195939 DOI: 10.1111/nyas.12537] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduced in the 1980s, carbapenem antibiotics have served as the last line of defense against multidrug-resistant Gram-negative organisms. Over the last decade, carbapenem-resistant Enterobacteriaceae (CRE) have emerged as a significant public health threat. This review summarizes the molecular genetics, natural history, and epidemiology of CRE and discusses approaches to prevention and treatment.
Collapse
Affiliation(s)
- Elizabeth Temkin
- Division of Epidemiology and Preventive Medicine, Tel Aviv Sourasky Medical Center, Israel
| | | | | | | |
Collapse
|
28
|
Adler A, Hussein O, Ben-David D, Masarwa S, Navon-Venezia S, Schwaber MJ, Carmeli Y, Setton E, Golan S, Brill S, Lipkin V, Frodin E, Mendelson G, Rave R, Yehuda N, Aizen I, Kaganski M, Gershkovich P, Sasson A, Yosef H, Stessman J, Zlatkin S, Or I, Lazary A, Weinberg I, Madjar J, Taichman S, Ben-Israel J, Vigder C, Bar'el C, Davidovitch Y, Charish L. Persistence of Klebsiella pneumoniae ST258 as the predominant clone of carbapenemase-producing Enterobacteriaceae in post-acute-care hospitals in Israel, 2008-13. J Antimicrob Chemother 2014; 70:89-92. [DOI: 10.1093/jac/dku333] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Abstract
UNLABELLED Carbapenem-resistant Enterobacteriaceae (CRE), especially Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, pose an urgent threat in health facilities in the United States and worldwide. K. pneumoniae isolates classified as sequence type 258 (ST258) by multilocus sequence typing are largely responsible for the global spread of KPC. A recent comparative genome study revealed that ST258 K. pneumoniae strains are two distinct genetic clades; however, the molecular origin of ST258 largely remains unknown, and our understanding of the evolution of the two genetic clades is incomplete. Here we compared the genetic structures and single-nucleotide polymorphism (SNP) distributions in the core genomes of strains from two ST258 clades and other STs (ST11, ST442, and ST42). We identified an ~1.1-Mbp region on ST258 genomes that is homogeneous to that of ST442, while the rest of the ST258 genome resembles that of ST11. Our results suggest ST258 is a hybrid clone--80% of the genome originated from ST11-like strains and 20% from ST442-like strains. Meanwhile, we sequenced an ST42 strain that carries the same K-antigen-encoding capsule polysaccharide biosynthesis gene (cps) region as ST258 clade I strains. Comparison of the cps-harboring regions between the ST42 and ST258 strains (clades I and II) suggests the ST258 clade I strains evolved from a clade II strain as a result of cps region replacement. Our findings unravel the molecular evolution history of ST258 strains, an important first step toward the development of diagnostic, therapeutic, and vaccine strategies to combat infections caused by multidrug-resistant K. pneumoniae. IMPORTANCE Recombination events and replacement of chromosomal regions have been documented in various bacteria, and these events have given rise to successful pathogenic clones. Here we used comparative genomic analyses to discover that the ST258 K. pneumoniae genome is a hybrid--80% of the chromosome is homologous to ST11 strains, while the remaining 20% is homologous to that of ST442. Meanwhile, a recent study indicated that ST258 strains can be segregated into two ST258 clades, with distinct capsule polysaccharide gene (cps) regions. Our analysis suggests ST258 clade I strains evolved from clade II through homologous recombination of cps region. Horizontal transfer of the cps region appears to be a key element driving the molecular diversification in K. pneumoniae strains. These findings not only extend our understanding of the molecular evolution of ST258 but are an important step toward the development of effective control and treatment strategies for multidrug-resistant K. pneumoniae.
Collapse
|