1
|
Nichols WW, Bradford PA, Lahiri SD, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vitro translational biology. J Antimicrob Chemother 2022; 77:2321-2340. [PMID: 35665807 DOI: 10.1093/jac/dkac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous reviews of ceftazidime/avibactam have focused on in vitro molecular enzymology and microbiology or the clinically associated properties of the combination. Here we take a different approach. We initiate a series of linked reviews that analyse research on the combination that built the primary pharmacology data required to support the clinical and business risk decisions to perform randomized controlled Phase 3 clinical trials, and the additional microbiological research that was added to the above, and the safety and chemical manufacturing and controls data, that constituted successful regulatory licensing applications for ceftazidime/avibactam in multiple countries, including the USA and the EU. The aim of the series is to provide both a source of reference for clinicians and microbiologists to be able to use ceftazidime/avibactam to its best advantage for patients, but also a case study of bringing a novel β-lactamase inhibitor (in combination with an established β-lactam) through the microbiological aspects of clinical development and regulatory applications, updated finally with a review of resistance occurring in patients under treatment. This first article reviews the biochemistry, structural biology and basic microbiology of the combination, showing that avibactam inhibits the great majority of serine-dependent β-lactamases in Enterobacterales and Pseudomonas aeruginosa to restore the in vitro antibacterial activity of ceftazidime. Translation to efficacy against infections in vivo is reviewed in the second co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac172).
Collapse
|
2
|
Antimicrobial activity of ceftazidime-avibactam and comparators against Pseudomonas aeruginosa and Enterobacterales collected in Croatia, Czech Republic, Hungary, Poland, Latvia and Lithuania: ATLAS Surveillance Program, 2019. Eur J Clin Microbiol Infect Dis 2022; 41:989-996. [PMID: 35596097 PMCID: PMC9135846 DOI: 10.1007/s10096-022-04452-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
Abstract
Antimicrobial susceptibility of clinical isolates collected from sites in central Europe in 2019 was tested by CLSI broth microdilution method and EUCAST breakpoints. Most active were amikacin, ceftazidime-avibactam and colistin; respectively, susceptibility rates among P. aeruginosa (n = 701) were 89.2%, 92.2% and 99.9%; difficult-to-treat (DTR) isolates, 62.5%, 37.5% and 100%; multidrug-resistant (MDR) isolates, 68.3%, 72.9% and 99.5%; meropenem-resistant (MEM-R), metallo-β-lactamase-negative (MBL-negative) isolates, 72.8%, 78.6% and 100%. Among Enterobacterales (n = 1639), susceptibility to ceftazidime-avibactam, colistin and tigecycline was ≥ 97.9%; MDR Enterobacterales, 96.8%, 94.4% and 100%, respectively; DTR isolates, ≥ 76.2% to ceftazidime-avibactam and colistin; MEM-R, MBL-negative isolates, ≥ 90.0% to ceftazidime-avibactam and colistin.
Collapse
|
3
|
Stone GG, Hackel MA. Antimicrobial activity of ceftazidime-avibactam and comparators against levofloxacin-resistant Escherichia coli collected from four geographic regions, 2012-2018. Ann Clin Microbiol Antimicrob 2022; 21:13. [PMID: 35313912 PMCID: PMC8939136 DOI: 10.1186/s12941-022-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increases in resistance to fluoroquinolones have been correlated with the use of levofloxacin in the treatment of infections caused by Escherichia coli. The analysis presents the in vitro activity of ceftazidime-avibactam and comparator agents against 10,840 levofloxacin-resistant E. coli isolates collected from four geographic regions (Africa/Middle East, Europe, Asia/South Pacific, Latin America) between 2012 and 2018. METHODS Non-duplicate clinical isolates of E. coli were collected from participating centres and shipped to IHMA, Inc., (Schaumburg, IL, USA). Susceptibility testing was performed with frozen broth microdilution panels manufactured by IHMA, according to CLSI guidelines. Levofloxacin-resistance was defined at a minimum inhibitory concentration of ≥ 2 mg/L. Isolates collected between 2012 and 2015 were tested for extended-spectrum β-lactamase (ESBL) activity by determining susceptibility to cefotaxime, cefotaxime-clavulanate, ceftazidime, and ceftazidime-clavulanate as recommended by CLSI guidelines. Isolates collected between 2016 and 2018 were identified as ESBL-positive by genotype using multiplex polymerase chain reaction assays. RESULTS A total of 74.8% of levofloxacin-resistant E. coli isolates in the analysis were from three culture sources: urinary tract infections (N = 3229; 29.8%), skin and skin structure infections (N = 2564; 23.7%) and intra-abdominal infections (N = 2313; 21.3%). Susceptibility rates to ceftazidime-avibactam were consistently high in all regions against both ESBL-positive (97.0% in Asia/South Pacific to 99.7% in Africa/Middle East and Latin America) and ESBL-negative isolates (99.4% in Asia/South Pacific to 100% in Latin America). Susceptibility was also high in each region among ESBL-positive and ESBL-negative isolates to colistin (≥ 98.5%), imipenem (≥ 96.5%), meropenem (≥ 96.5%) and tigecycline (≥ 94.1%). CONCLUSIONS Antimicrobial susceptibility to ceftazidime-avibactam among levofloxacin-resistant E. coli isolates, including ESBL-positive isolates, collected from four geographical regions between 2012 and 2018 was consistently high. Susceptibility to the comparator agents colistin, tigecycline, imipenem and meropenem was also high.
Collapse
Affiliation(s)
- Gregory G Stone
- Hospital Business Unit, Global Products Development, Groton Laboratories, 558 Eastern Point Road, Groton, CT, 06340, USA.
| | | |
Collapse
|
4
|
Karlowsky JA, Kazmierczak KM, Valente MLNDF, Luengas EL, Baudrit M, Quintana A, Irani P, Stone GG, Sahm DF. In vitro activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa isolates collected in Latin America as part of the ATLAS global surveillance program, 2017-2019. Braz J Infect Dis 2021; 25:101647. [PMID: 34774471 PMCID: PMC9392196 DOI: 10.1016/j.bjid.2021.101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022] Open
Abstract
The Antimicrobial Testing Leadership and Surveillance (ATLAS) global surveillance program collected clinical isolates of Enterobacterales (n = 8416) and Pseudomonas aeruginosa (n = 2521) from 41 medical centers in 10 Latin American countries from 2017 to 2019. In vitro activities of ceftazidime-avibactam and comparators were determined using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Overall, 98.1% of Enterobacterales and 86.9% of P. aeruginosa isolates were susceptible to ceftazidime-avibactam. When isolates were analyzed by country of origin, susceptibility to ceftazidime-avibactam for Enterobacterales ranged from 97.8% to 100% for nine of 10 countries (except Guatemala, 86.3% susceptible) and from 75.9% to 98.4% for P. aeruginosa in all 10 countries. For Enterobacterales, 100% of AmpC-positive, ESBL- and AmpC-positive, GES-type carbapenemase-positive, and OXA-48-like-positive isolates were ceftazidime-avibactam-susceptible as were 99.8%, 91.8%, and 74.7% of ESBL-positive, multidrug-resistant (MDR), and meropenem-nonsusceptible isolates. Among meropenem-nonsusceptible isolates of Enterobacterales, 24.4% (139/570) carried a metallo-β-lactamase (MBL); 83.3% of the remaining meropenem-nonsusceptible isolates carried another class of carbapenemase and 99.4% of those isolates were ceftazidime-avibactam-susceptible. Among meropenem-non-susceptible isolates of P. aeruginosa (n = 835), 25.6% carried MBLs; no acquired β-lactamase was identified in the majority of isolates (64.8%; 87.2% of those isolates were ceftazidime-avibactam-susceptible). Overall, clinical isolates of Enterobacterales collected in Latin America from 2017 to 2019 were highly susceptible to ceftazidime-avibactam, including isolates carrying ESBLs, AmpCs, and KPCs. Country-specific variation in susceptibility to ceftazidime-avibactam was more common among isolates of P. aeruginosa than Enterobacterales. The frequency of MBL-producers among Enterobacterales from Latin America was low (1.7% of all isolates; 146/8,416), but higher than reported in previous surveillance studies.
Collapse
Affiliation(s)
- James A Karlowsky
- University of Manitoba, Max Rady College of Medicine, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada
| | | | | | | | | | | | - Paurus Irani
- Pfizer UK ltd, Walton Oaks, Tadworth, Surrey, UK
| | | | | |
Collapse
|
5
|
Kristóf K, Adámková V, Adler A, Gospodarek-Komkowska E, Rafila A, Billová S, Możejko-Pastewka B, Kiss F. In vitro activity of ceftazidime-avibactam and comparators against Enterobacterales and Pseudomonas aeruginosa isolates from Central Europe and Israel, 2014-2017 and 2018. Diagn Microbiol Infect Dis 2021; 101:115420. [PMID: 34091111 DOI: 10.1016/j.diagmicrobio.2021.115420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Between 2014 and 2017, 6,662 Enterobacterales and 1,953 P. aeruginosa isolates were collected by 19 centers in four central European countries and Israel. A further 2,585 Enterobacterales and 707 P. aeruginosa isolates were collected in 2018 by 28 centers in seven European countries and Israel as part of the Antimicrobial Testing Leadership and Surveillance (ATLAS) study. A central laboratory performed antimicrobial susceptibility testing using broth microdilution panels according to Clinical Laboratory Standards Institute (CLSI) guidelines. Susceptibility rates among Enterobacterales were highest to ceftazidime-avibactam (≥98.5%), colistin (≥97.3%), and meropenem (≥95.8%). Ceftazidime-resistant and multidrug-resistant (MDR) Enterobacterales subsets were highly susceptible to ceftazidime-avibactam (≥94.9%) and colistin (≥94.7%). Susceptibility rates to colistin among all P. aeruginosa were ≥97.4% and were ≥96.3% among ceftazidime-resistant and MDR subsets. Susceptibility rates to ceftazidime-avibactam were 91.9% (2014-2017), 86.3% (2018) and, in common with comparator agents, were lower among ceftazidime-resistant (≥51.7%) and MDR isolates (≥57.1%).
Collapse
Affiliation(s)
- Katalin Kristóf
- Institute of Laboratory Medicine, Clinical Microbiology Laboratory, Semmelweis University, Budapest, Hungary
| | - Václava Adámková
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital, Prague, Czech Republic
| | - Amos Adler
- Clinical Microbiology Laboratory, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Alexandru Rafila
- National Institute of Infectious Diseases 'Matei Bals', Bucharest, Romania
| | | | | | | |
Collapse
|
6
|
Xu E, Pérez-Torres D, Fragkou PC, Zahar JR, Koulenti D. Nosocomial Pneumonia in the Era of Multidrug-Resistance: Updates in Diagnosis and Management. Microorganisms 2021; 9:534. [PMID: 33807623 PMCID: PMC8001201 DOI: 10.3390/microorganisms9030534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Nosocomial pneumonia (NP), including hospital-acquired pneumonia in non-intubated patients and ventilator-associated pneumonia, is one of the most frequent hospital-acquired infections, especially in the intensive care unit. NP has a significant impact on morbidity, mortality and health care costs, especially when the implicated pathogens are multidrug-resistant ones. This narrative review aims to critically review what is new in the field of NP, specifically, diagnosis and antibiotic treatment. Regarding novel imaging modalities, the current role of lung ultrasound and low radiation computed tomography are discussed, while regarding etiological diagnosis, recent developments in rapid microbiological confirmation, such as syndromic rapid multiplex Polymerase Chain Reaction panels are presented and compared with conventional cultures. Additionally, the volatile compounds/electronic nose, a promising diagnostic tool for the future is briefly presented. With respect to NP management, antibiotics approved for the indication of NP during the last decade are discussed, namely, ceftobiprole medocaril, telavancin, ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam.
Collapse
Affiliation(s)
- Elena Xu
- Burns, Trauma and Critical Care Research Centre, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - David Pérez-Torres
- Servicio de Medicina Intensiva, Hospital Universitario Río Hortega, 47012 Valladolid, Spain;
| | - Paraskevi C. Fragkou
- Fourth Department of Internal Medicine, Attikon University Hospital, 12462 Athens, Greece;
| | - Jean-Ralph Zahar
- Microbiology Department, Infection Control Unit, Hospital Avicenne, 93000 Bobigny, France;
| | - Despoina Koulenti
- Burns, Trauma and Critical Care Research Centre, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
- Second Critical Care Department, Attikon University Hospital, 12462 Athens, Greece
| |
Collapse
|
7
|
Estabrook M, Kazmierczak KM, Wise M, Arhin FF, Stone GG, Sahm DF. Molecular characterization of clinical isolates of Enterobacterales with elevated MIC values for aztreonam-avibactam from the INFORM global surveillance study, 2012-2017. J Glob Antimicrob Resist 2021; 24:316-320. [PMID: 33524556 DOI: 10.1016/j.jgar.2021.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/23/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES While aztreonam-avibactam is a potent β-lactam-β-lactamase-inhibitor combination, reduced in vitro activity against some Enterobacterales isolates has been reported. In this study, globally collected clinical isolates of Enterobacterales with elevated minimum inhibitory concentrations (MICs) for aztreonam-avibactam were examined for potential resistance mechanisms. METHODS Isolates with aztreonam-avibactam MICs ≥8 μg/mL (n = 55: Escherichia coli, n = 38; Enterobacter cloacae, n = 10; Klebsiella pneumoniae, n = 3; others, n = 4) and <8 μg/mL (n = 18) collected for the INFORM global surveillance programme were characterized by short read whole-genome sequencing. Sequences were inspected for the presence of β-lactamase genes, penicillin-binding protein (PBP) mutations, and disruptions in the coding sequences of porin genes. RESULTS All isolates of E. coli testing with aztreonam-avibactam MIC values ≥8 μg/mL carried a previously documented four-amino-acid insertion in PBP3 at position 333 of YRI(K/N/P). Such mutations were absent in isolates with MICs <2 μg/mL (n = 6). Among other species, carriage of PER- or VEB-type β-lactamases was identified in 10/17 (58.8%) of isolates testing with aztreonam-avibactam MICs ≥8 μg/mL, but no isolates with lower MIC values (n = 11). CONCLUSIONS PBP3 mutations are known to confer resistance to aztreonam in E. coli, providing a rationale for the elevated MIC values for aztreonam-avibactam in these isolates. Elevated MICs in other isolates were associated with the carriage of PER-type β-lactamases, which have been previously shown to be inhibited less effectively by avibactam than other Class A β-lactamases and may contribute to this phenotype. Other resistance mechanisms contributing to poor in vitro activity for aztreonam-avibactam in some of these isolates are not yet elucidated.
Collapse
Affiliation(s)
- Mark Estabrook
- International Health Management Associates, Inc., Schaumburg, IL, USA.
| | | | - Mark Wise
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | | | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| |
Collapse
|
8
|
In Vitro Activities and Inoculum Effects of Ceftazidime-Avibactam and Aztreonam-Avibactam against Carbapenem-Resistant Enterobacterales Isolates from South Korea. Antibiotics (Basel) 2020; 9:antibiotics9120912. [PMID: 33334045 PMCID: PMC7765481 DOI: 10.3390/antibiotics9120912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ceftazidime-avibactam (CAZ-AVI) and aztreonam-avibactam (AZT-AVI) are novel antibiotic combinations active against multidrug-resistant Gram-negative pathogens. This study aimed to evaluate their in vitro activities and inoculum effects in carbapenem-resistant Enterobacterales (CRE), including carbapenemase-producing (CP)-CRE and non-CP-CRE. A total of 81 independent clinical isolates of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae were collected. CAZ-AVI and AZT-AVI minimal inhibitory concentrations (MICs) were evaluated by broth microdilution using standard and high inocula. The inoculum effect was defined as an ≥8-fold increase in MIC with high inoculum. Phenotypic determination of β-lactam resistance mechanism and PCR for carbapenemase genes were performed. Of the 81 CRE isolates, 35 (43%) were CP-CRE. Overall, 73% of the isolates were susceptible to CAZ-AVI, and 95% had low AZT-AVI MICs (≤8 µg/mL). The MIC50/MIC90s of CAZ-AVI and AZT-AVI were 4/≥512 µg/mL and 0.5/4 µg/mL, respectively. CAZ-AVI was more active against non-CP-CRE than against CP-CRE (susceptibility 80% vs. 63%, p = 0.08; MIC50/MIC90, 2/16 μg/mL vs. 4/≥512 μg/mL), whereas AZT-AVI was more active against CP-CRE (MIC50/MIC90, 0.25/1 μg/mL vs. 0.5/8 μg/mL). All four isolates with high AZT-AVI MIC (≥16 μg/mL) were resistant to CAZ-AVI, but only 18% (4/22) of CAZ-AVI-resistant isolates had high AZT-AVI MIC. The rates of the inoculum effect for CAZ-AVI and AZT-AVI were 18% and 47%, respectively (p < 0.001). Interestingly, the frequency of the AZT-AVI inoculum effect was higher in K. pneumoniae than E. coli (64% vs. 8%, p < 0.001). AZT-AVI is more active against CRE than CAZ-AVI, even in CP-CRE and CAZ-AVI-resistant isolates. The presence of a substantial inoculum effect may contribute to clinical failure in high-inoculum infections treated with AZT-AVI.
Collapse
|
9
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
10
|
Hujer AM, Long SW, Olsen RJ, Taracila MA, Rojas LJ, Musser JM, Bonomo RA. Predicting β-lactam resistance using whole genome sequencing in Klebsiella pneumoniae: the challenge of β-lactamase inhibitors. Diagn Microbiol Infect Dis 2020; 98:115149. [PMID: 32858260 DOI: 10.1016/j.diagmicrobio.2020.115149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 07/18/2020] [Indexed: 11/25/2022]
Abstract
Although multiple antimicrobial resistance (AMR) determinants can confer the same in vitro antimicrobial susceptibility testing (AST) phenotype, their differing effect on optimal therapeutic choices is uncertain. Using a large population-based collection of clinical strains spanning a 3.5-year period, we applied WGS to detect inhibitor resistant (IR), extended-spectrum β-lactamase (ESBL), and carbapenem resistant (CR) β-lactamase (bla) genes and compared the genotype to the AST phenotype in select isolates. All blaNDM-1 (9/9) and the majority of blaNDM-1/OXA-48 (3/4) containing isolates were resistant to CAZ/AVI as predicted by WGS. The combination of ATM and CAZ/AVI restored susceptibility by disk diffusion assay. Unexpectedly, clinical Kp isolates bearing blaKPC-8 (V240G) and blaKPC-14 (G242 and T243 deletion) did not test fully resistant to CAZ/AVI. Lastly, despite the complexity of the β-lactamase background, CAZ/AVI retained potency. Presumed phenotypes conferred by AMR determinants need to be tested if therapeutic decisions are being guided by their presence or absence.
Collapse
Affiliation(s)
- Andrea M Hujer
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - S Wesley Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - Laura J Rojas
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, OH; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Department of Molecular Biology and Microbiology, Pharmacology, Biochemistry, and the Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH; CWRU-Cleveland VAMC, Center, for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH.
| |
Collapse
|
11
|
Stone GG, Ponce-de-Leon A. In vitro activity of ceftazidime/avibactam and comparators against Gram-negative bacterial isolates collected from Latin American centres between 2015 and 2017. J Antimicrob Chemother 2020; 75:1859-1873. [PMID: 32277820 PMCID: PMC7303818 DOI: 10.1093/jac/dkaa089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/07/2020] [Accepted: 02/20/2020] [Indexed: 11/12/2022] Open
Abstract
Objectives We report the in vitro activity of ceftazidime/avibactam and comparators against 7729 Enterobacterales isolates and 2053 Pseudomonas aeruginosa isolates collected from six Latin American countries between 2015 and 2017. Methods A central reference laboratory performed antimicrobial susceptibility testing using broth microdilution panels according to CLSI guidelines. The presence of β-lactamases was confirmed using multiplex PCR assays. Results Susceptibility rates among Enterobacterales were highest for ceftazidime/avibactam (99.3%, MIC90 = 0.5 mg/L), meropenem (95.4%, MIC90 = 0.12 mg/L) and amikacin (93.5%, MIC90 = 8 mg/L). High susceptibility rates were observed for ceftazidime/avibactam in all six countries. The majority of carbapenemase-positive isolates among Enterobacterales (N = 366, 4.7%) were susceptible to ceftazidime/avibactam (86.9%), colistin (76.8%) and amikacin (60.9%); MBL-positive isolates (N = 49, 0.6%) were susceptible only to colistin (79.6%), with a minority susceptible to amikacin (49.0%), aztreonam and levofloxacin (both 30.6%). Highest rates of susceptibility among P. aeruginosa isolates were for colistin (99.2%) and ceftazidime/avibactam (86.6%), with rates of susceptibility to all other agents being <80.0%. MDR P. aeruginosa isolates (N = 712, 34.7%) had a high rate of susceptibility to colistin (98.9%); the rate of susceptibility to ceftazidime/avibactam was 61.4% and <50.0% to all other comparator agents. A total of 235 (11.4%) isolates of P. aeruginosa were carbapenemase positive and 148 (7.2%) were MBL positive; both subsets had high rates of susceptibility to colistin (98.3% and 100%, respectively). Conclusions Ceftazidime/avibactam susceptibility rates in Latin American countries are stable and high; ceftazidime/avibactam can be an appropriate treatment for patients with infections caused by Enterobacterales or P. aeruginosa and for whom treatment options may be limited.
Collapse
Affiliation(s)
| | - Alfredo Ponce-de-Leon
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
12
|
Pontefract BA, Ho HT, Crain A, Kharel MK, Nybo SE. Drugs for Gram-Negative Bugs From 2010-2019: A Decade in Review. Open Forum Infect Dis 2020; 7:ofaa276. [PMID: 32760748 PMCID: PMC7393798 DOI: 10.1093/ofid/ofaa276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 11/14/2022] Open
Abstract
A literature review spanning January 1, 2010, to December 31, 2019, was conducted using the PubMed and ISI Web of Science databases to determine the breadth of publication activity in the area of gram-negative bacteria antimicrobial therapy. The number of articles was used as a reflection of scholarly activity. First, PubMed was searched using the following Medical Subject Headings (MeSH): antibacterial agents, Enterobacteriaceae, Acinetobacter, and Pseudomonas. A total of 12 643 articles were identified within PubMed, and 77 862 articles were identified within ISI Web of Science that included these terms. Second, these articles were categorized by antibiotic class to identify relative contributions to the literature by drug category. Third, these studies were used to identify key trends in the treatment of gram-negative bacterial infections from the past decade. This review highlights advances made in the past 10 years in antibacterial pharmacotherapy and some of the challenges that await the next decade of practice.
Collapse
Affiliation(s)
| | - Hong T Ho
- Ferris State University, College of Pharmacy, Big Rapids, Michigan, USA
| | - Alexandria Crain
- Ferris State University, College of Pharmacy, Big Rapids, Michigan, USA
| | - Madan K Kharel
- University of Maryland Eastern Shore, Department of Pharmaceutical Sciences, Princess Anne, Maryland, USA
| | - S Eric Nybo
- Ferris State University, College of Pharmacy, Big Rapids, Michigan, USA
| |
Collapse
|
13
|
Spectrum of Beta-Lactamase Inhibition by the Cyclic Boronate QPX7728, an Ultrabroad-Spectrum Beta-Lactamase Inhibitor of Serine and Metallo-Beta-Lactamases: Enhancement of Activity of Multiple Antibiotics against Isogenic Strains Expressing Single Beta-Lactamases. Antimicrob Agents Chemother 2020; 64:AAC.00212-20. [PMID: 32229489 PMCID: PMC7269471 DOI: 10.1128/aac.00212-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
QPX7728 is an ultrabroad-spectrum boronic acid beta-lactamase inhibitor, with potent inhibition of key serine and metallo-beta-lactamases being observed in biochemical assays. Microbiological studies using characterized strains were used to provide a comprehensive characterization of the spectrum of beta-lactamase inhibition by QPX7728. The MICs of multiple antibiotics administered intravenously only (ceftazidime, piperacillin, cefepime, ceftolozane, and meropenem) and orally bioavailable antibiotics (ceftibuten, cefpodoxime, tebipenem) alone and in combination with QPX7728 (4 μg/ml), as well as comparator agents, were determined against panels of laboratory strains of Pseudomonas aeruginosa and Klebsiella pneumoniae expressing over 55 diverse serine and metallo-beta-lactamases. QPX7728 is an ultrabroad-spectrum boronic acid beta-lactamase inhibitor, with potent inhibition of key serine and metallo-beta-lactamases being observed in biochemical assays. Microbiological studies using characterized strains were used to provide a comprehensive characterization of the spectrum of beta-lactamase inhibition by QPX7728. The MICs of multiple antibiotics administered intravenously only (ceftazidime, piperacillin, cefepime, ceftolozane, and meropenem) and orally bioavailable antibiotics (ceftibuten, cefpodoxime, tebipenem) alone and in combination with QPX7728 (4 μg/ml), as well as comparator agents, were determined against panels of laboratory strains of Pseudomonas aeruginosa and Klebsiella pneumoniae expressing over 55 diverse serine and metallo-beta-lactamases. QPX7728 significantly enhanced the potency of antibiotics against strains expressing class A extended-spectrum beta-lactamases (CTX-M, SHV, TEM, VEB, PER) and carbapenemases (KPC, SME, NMC-A, BKC-1), consistent with the beta-lactamase inhibition demonstrated in biochemical assays. It also inhibited both plasmidic (CMY, FOX, MIR, DHA) and chromosomally encoded (P99, PDC, ADC) class C beta-lactamases and class D enzymes, including carbapenemases, such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/72/58). QPX7728 is also a potent inhibitor of many class B metallo-beta-lactamases (NDM, VIM, CcrA, IMP, and GIM but not SPM or L1). Addition of QPX7728 (4 μg/ml) reduced the MICs for a majority of the strains to the level observed for the control with the vector alone, indicative of complete beta-lactamase inhibition. The ultrabroad-spectrum beta-lactamase inhibition profile makes QPX7728 a viable candidate for further development.
Collapse
|
14
|
Yang X, Wang D, Zhou Q, Nie F, Du H, Pang X, Fan Y, Bai T, Xu Y. Antimicrobial susceptibility testing of Enterobacteriaceae: determination of disk content and Kirby-Bauer breakpoint for ceftazidime/avibactam. BMC Microbiol 2019; 19:240. [PMID: 31675928 PMCID: PMC6824082 DOI: 10.1186/s12866-019-1613-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/15/2019] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Detection of ceftazidime/avibactam (CAZ/AVI) antibacterial activity is absolutely vital with the rapid growth of carbapenem resistant Enterobacteriaceae (CRE). But now, there is no available automated antimicrobial susceptibility testing card for CAZ/AVI, so Kirby-Bauer has become an economical and practical method for detecting CAZ/AVI antibacterial activity against Enterobacteriaceae. RESULT In this study, antimicrobial susceptibility testing of CAZ/AVI against 386 Enterobacteriaceae (188 Klebsiella pneumoniae, 122 Escherichia coli, 76 Enterobacter cloacae) isolated from clinical patients was performed by broth microdilution. Of the 386 strains, 54 extended spectrum β lactamases negative (ESBL(-)), 104 extended spectrum β lactamases positive (ESBL(+)), 228 CRE. 287 isolates were susceptible to CAZ/AVI and 99 isolates were resistant to CAZ/AVI. At the same time, to obtain optimal content avibactam (AVI) disk containing ceftazidime (30 μg), inhibition zone diameter of four kinds of ceftazidime (30 μg) disk containing different AVI content (0 μg, 10 μg, 25 μg, 50 μg) were tested by Kirby-Bauer method. The microdilution broth method interpretation was used as the standard to estimate susceptible or resistance and then coherence analysis was carried out between Kirby-Bauer and broth microdilution. The result shows the inhibition zone diameter of 30 μg/50 μg disk, susceptible isolates: 20.5 mm-31.5 mm, resistance isolates: 8.25 mm-21.5 mm. The inhibition zone diameter of 30 μg/25 μg disk, susceptible isolates: 19.7 mm-31.3 mm, resistance isolates: 6.5 mm-19.2 mm. The inhibition zone diameter of 30 μg/10 μg disk, susceptible isolates: 19.5 mm-31 mm, resistance isolates: 6.5 mm-11 mm. The inhibition zone diameter of ceftazidime (30 μg), susceptible isolates: 6.5 mm-27.5 mm, resistance isolates 6.5 mm. CONCLUSION Our results show that 30 μg/50 μg, 30 μg/25 μg, 30 μg/10 μg CAZ/AVI disk have significant statistical differences to determinate CAZ/AVI antibacterial activity, but for 30 μg/50 μg disk, there has a cross section between susceptible isolates (minimum 20.5 mm) and resistance isolates (maximum 21.5 mm). For 30 μg/25 μg disk, it is hard to distinguish the difference between susceptible isolates (minimum 19.7 mm) and resistance isolates (maximum 19.2 mm), so 30 μg/10 μg CAZ/AVI disk is more conducive to determinate antibacterial activity.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Dan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Qin Zhou
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Fang Nie
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Hongfei Du
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xueli Pang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yingzi Fan
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Tingting Bai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ying Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Road, Xindu, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
15
|
Structural Insights into the Inhibition of the Extended-Spectrum β-Lactamase PER-2 by Avibactam. Antimicrob Agents Chemother 2019; 63:AAC.00487-19. [PMID: 31235626 DOI: 10.1128/aac.00487-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
The diazabicyclooctane (DBO) avibactam (AVI) reversibly inactivates most serine-β-lactamases. Previous investigations showed that inhibition constants of AVI toward class A PER-2 are reminiscent of values observed for class C and D β-lactamases (i.e., k 2/K of ≈103 M-1 s-1) but lower than other class A β-lactamases (i.e., k 2/K = 104 to 105 M-1 s-1). Herein, biochemical and structural studies were conducted with PER-2 and AVI to explore these differences. Furthermore, biochemical studies on Arg220 and Thr237 variants with AVI were conducted to gain deeper insight into the mechanism of PER-2 inactivation. The main biochemical and structural observations revealed the following: (i) both amino-acid substitutions in Arg220 and the rich hydrophobic content in the active site hinder the binding of catalytic waters and acylation, impairing AVI inhibition; (ii) movement of Ser130 upon binding of AVI favors the formation of a hydrogen bond with the sulfate group of AVI; and (iii) the Thr237Ala substitution alters the AVI inhibition constants. The acylation constant (k 2/K) of PER-2 by AVI is primarily influenced by stabilizing hydrogen bonds involving AVI and important residues such as Thr237 and Arg220. (Variants in Arg220 demonstrate a dramatic reduction in k 2/K) We also observed that displacement of Ser130 side chain impairs AVI acylation, an observation not made in other extended-spectrum β-lactamases (ESBLs). Comparatively, relebactam combined with a β-lactam is more potent against Escherichia coli producing PER-2 variants than β-lactam-AVI combinations. Our findings provide a rationale for evaluating the utility of the currently available DBO inhibitors against unique ESBLs like PER-2 and anticipate the effectiveness of these inhibitors toward variants that may eventually be selected upon AVI usage.
Collapse
|
16
|
Ramalheira E, Stone GG. Longitudinal analysis of the in vitro activity of ceftazidime/avibactam versus Enterobacteriaceae, 2012-2016. J Glob Antimicrob Resist 2019; 19:106-115. [PMID: 31295583 DOI: 10.1016/j.jgar.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/01/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The in vitro activities of ceftazidime/avibactam and comparator antimicrobial agents were analysed against 59 828 Enterobacteriaceae isolates collected by 190 centres from all global regions except North America from 2012-2016 as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance programme. METHODS Antimicrobial susceptibility testing was performed using Clinical and Laboratory Standards Institute broth microdilution panels at a central reference laboratory, except for isolates collected in China that were tested using frozen, dehydrated broth microdilution panels at a central laboratory in China. The presence of extended-spectrum β-lactamases (ESBLs) was confirmed by multiplex PCR assays. RESULTS Ceftazidime/avibactam was the most active agent against all Enterobacteriaceae (MIC90, ≤1mg/L, ≥98.4% susceptibility). High rates of susceptibility (>88%) were observed amongst Citrobacter freundii, Citrobacter spp., Enterobacter spp., Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca to colistin, meropenem, amikacin and tigecycline. Ceftazidime/avibactam showed consistent in vitro activity against ESBL-positive isolates of E. coli (n=5674; MIC90, 0.5mg/L, 99.5% susceptible), K. pneumoniae (n=7097; MIC90, 2mg/L, 97.0% susceptible) and K. oxytoca (n = 565; MIC90, 1mg/L, 96.8% susceptible). Isolates identified as metallo-β-lactamase-positive (n=242) were not susceptible to ceftazidime/avibactam but were susceptible to tigecycline (76.9%) and colistin (n=194 isolates tested; 92.8%). CONCLUSIONS Clinical Enterobacteriaceae isolates, including ESBL-positive phenotypes, collected globally (excluding North America) from 2012-2016 were highly susceptible to ceftazidime/avibactam, suggesting it is a useful agent for serious infections caused by multidrug-resistant organisms belonging to the family Enterobacteriaceae when therapeutic options are limited.
Collapse
Affiliation(s)
- Elmano Ramalheira
- Hospital Infante D. Pedro, Av. Universidade, Aveiro 3814-501, Portugal.
| | | |
Collapse
|
17
|
Papp-Wallace KM, Bethel CR, Caillon J, Barnes MD, Potel G, Bajaksouzian S, Rutter JD, Reghal A, Shapiro S, Taracila MA, Jacobs MR, Bonomo RA, Jacqueline C. Beyond Piperacillin-Tazobactam: Cefepime and AAI101 as a Potent β-Lactam-β-Lactamase Inhibitor Combination. Antimicrob Agents Chemother 2019; 63:e00105-19. [PMID: 30858223 PMCID: PMC6496078 DOI: 10.1128/aac.00105-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Impeding, as well as reducing, the burden of antimicrobial resistance in Gram-negative pathogens is an urgent public health endeavor. Our current antibiotic armamentarium is dwindling, while major resistance determinants (e.g., extended-spectrum β-lactamases [ESBLs]) continue to evolve and disseminate around the world. One approach to attack this problem is to develop novel therapies that will protect our current agents. AAI101 is a novel penicillanic acid sulfone β-lactamase inhibitor similar in structure to tazobactam, with one important difference. AAI101 possesses a strategically placed methyl group that gives the inhibitor a net neutral charge, enhancing bacterial cell penetration. AAI101 paired with cefepime, also a zwitterion, is in phase III of clinical development for the treatment of serious Gram-negative infections. Here, AAI101 was found to restore the activity of cefepime against class A ESBLs (e.g., CTX-M-15) and demonstrated increased potency compared to that of piperacillin-tazobactam when tested against an established isogenic panel. The enzymological properties of AAI101 further revealed that AAI101 possessed a unique mechanism of β-lactamase inhibition compared to that of tazobactam. Additionally, upon reaction with AAI101, CTX-M-15 was modified to an inactive state. Notably, the in vivo efficacy of cefepime-AAI101 was demonstrated using a mouse septicemia model, indicating the ability of AAI101 to bolster significantly the therapeutic efficacy of cefepime in vivo The combination of AAI101 with cefepime represents a potential carbapenem-sparing treatment regimen for infections suspected to be caused by Enterobacteriaceae expressing ESBLs.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Jocelyne Caillon
- EA 3826 (Thérapeutiques Anti-Infectieuses), IRS2 Nantes Biotech, Université de Nantes, France
- Atlangram, IRS2 Nantes Biotech, Nantes, France
| | - Melissa D Barnes
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Gilles Potel
- EA 3826 (Thérapeutiques Anti-Infectieuses), IRS2 Nantes Biotech, Université de Nantes, France
- Atlangram, IRS2 Nantes Biotech, Nantes, France
| | - Saralee Bajaksouzian
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, University Hospitals, Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph D Rutter
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | | | | | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael R Jacobs
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, University Hospitals, Cleveland Medical Center, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Cédric Jacqueline
- EA 3826 (Thérapeutiques Anti-Infectieuses), IRS2 Nantes Biotech, Université de Nantes, France
- Atlangram, IRS2 Nantes Biotech, Nantes, France
| |
Collapse
|
18
|
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson APR. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother 2019. [PMID: 29514274 DOI: 10.1093/jac/dky027] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Working Party makes more than 100 tabulated recommendations in antimicrobial prescribing for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB) and suggest further research, and algorithms for hospital and community antimicrobial usage in urinary infection. The international definition of MDR is complex, unsatisfactory and hinders the setting and monitoring of improvement programmes. We give a new definition of multiresistance. The background information on the mechanisms, global spread and UK prevalence of antibiotic prescribing and resistance has been systematically reviewed. The treatment options available in hospitals using intravenous antibiotics and in primary care using oral agents have been reviewed, ending with a consideration of antibiotic stewardship and recommendations. The guidance has been derived from current peer-reviewed publications and expert opinion with open consultation. Methods for systematic review were NICE compliant and in accordance with the SIGN 50 Handbook; critical appraisal was applied using AGREE II. Published guidelines were used as part of the evidence base and to support expert consensus. The guidance includes recommendations for stakeholders (including prescribers) and antibiotic-specific recommendations. The clinical efficacy of different agents is critically reviewed. We found there are very few good-quality comparative randomized clinical trials to support treatment regimens, particularly for licensed older agents. Susceptibility testing of MDR GNB causing infection to guide treatment needs critical enhancements. Meropenem- or imipenem-resistant Enterobacteriaceae should have their carbapenem MICs tested urgently, and any carbapenemase class should be identified: mandatory reporting of these isolates from all anatomical sites and specimens would improve risk assessments. Broth microdilution methods should be adopted for colistin susceptibility testing. Antimicrobial stewardship programmes should be instituted in all care settings, based on resistance rates and audit of compliance with guidelines, but should be augmented by improved surveillance of outcome in Gram-negative bacteraemia, and feedback to prescribers. Local and national surveillance of antibiotic use, resistance and outcomes should be supported and antibiotic prescribing guidelines should be informed by these data. The diagnosis and treatment of both presumptive and confirmed cases of infection by GNB should be improved. This guidance, with infection control to arrest increases in MDR, should be used to improve the outcome of infections with such strains. Anticipated users include medical, scientific, nursing, antimicrobial pharmacy and paramedical staff where they can be adapted for local use.
Collapse
Affiliation(s)
- Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Cliodna A M McNulty
- Microbiology Department, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK
| | - David A Enoch
- Public Health England, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - A Peter R Wilson
- Department of Microbiology and Virology, University College London Hospitals, London, UK
| |
Collapse
|
19
|
In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Latin American Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 2019; 63:AAC.01814-18. [PMID: 30670424 DOI: 10.1128/aac.01814-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 02/02/2023] Open
Abstract
The International Network for Optimal Resistance Monitoring (INFORM) global surveillance program collected clinical isolates of Enterobacteriaceae (n = 7,665) and Pseudomonas aeruginosa (n = 1,794) from 26 medical centers in six Latin American countries from 2012 to 2015. The in vitro activity of ceftazidime-avibactam and comparators was determined for the isolates using the Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution method. Enterobacteriaceae were highly susceptible (99.7%) to ceftazidime-avibactam, including 99.9% of metallo-β-lactamase (MBL)-negative isolates; 87.4% of all P. aeruginosa isolates and 92.8% of MBL-negative isolates were susceptible to ceftazidime-avibactam. Susceptibility to ceftazidime-avibactam ranged from 99.4% to 100% for Enterobacteriaceae and from 79.1% to 94.7% for P. aeruginosa when isolates were analyzed by country of origin. Ceftazidime-avibactam inhibited 99.6% to 100% of Enterobacteriaceae isolates that carried serine β-lactamases, including extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases (KPC and OXA-48-like) as well as 99.7%, 99.6%, 99.5%, and 99.2% of MBL-negative isolates demonstrating ceftazidime-nonsusceptible, multidrug-resistant (MDR), meropenem-nonsusceptible, and colistin-resistant phenotypes, respectively. Among carbapenem-nonsusceptible isolates of P. aeruginosa (n = 750), 14.7% carried MBLs with or without additional acquired serine β-lactamases, while in the majority of isolates (70.0%), no acquired β-lactamase was identified. Ceftazidime-avibactam inhibited 89.5% of carbapenem-nonsusceptible P. aeruginosa isolates in which no acquired β-lactamase was detected. Overall, clinical isolates of Enterobacteriaceae collected in Latin America from 2012 to 2015 were highly susceptible to ceftazidime-avibactam, including isolates that exhibited resistance to ceftazidime, meropenem, colistin, or an MDR phenotype. Country-specific variations were noted in the susceptibility of P. aeruginosa isolates to ceftazidime-avibactam.
Collapse
|
20
|
Karaiskos I, Galani I, Souli M, Giamarellou H. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol 2019; 15:133-149. [PMID: 30626244 DOI: 10.1080/17425255.2019.1563071] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The burden of antimicrobial resistance among Gram-negative bacteria is increasing and growing into a major threat of public health. Treatment options for carbapenem-resistant Enterobacteriaceae are limited and resistance rates to existing compounds are mounting. The pipeline includes only a small number of novel anti-infective agents in development or in the market with promising results against multidrug-resistant (MDR) Gram-negative. Areas covered: Herein the authors present the modern available knowledge regarding novel β-lactam-β-lactamase inhibitors, i.e. mechanisms of action, in vitro activity, current PK/PDs, clinical trials and clinical efficacy against MDR and XDR Gram-negatives, as well as toxicity issues. Expert opinion: Ceftazidime-avibactam and meropenem-vaborbactam are promising therapeutic options as both are active against Enterobacteriaceae producing ESBL, AmpC, and KPC, whereas only avibactam inhibits certain class D β-lactamases, mainly OXA-48. New drugs active against Gram-negative MDR isolates including imipenem/cilastatin with relebactam and avibactam combined with aztreonam or ceftaroline are in different stages of development. However, the disadvantage to be seriously considered by the clinician is that β-lactam/β-lactamase inhibitors are ineffective against metallo-β-lactamases (with the exception of aztreonam-avibactam) as well as Acinetobacter baumannii.
Collapse
Affiliation(s)
- Ilias Karaiskos
- a 1st Department of Internal Medicine-Infectious Diseases , Hygeia General Hospital , Athens , Greece
| | - Irene Galani
- b 4th Department of Internal Medicine , University General Hospital ATTIKON, National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Souli
- b 4th Department of Internal Medicine , University General Hospital ATTIKON, National and Kapodistrian University of Athens , Athens , Greece
| | - Helen Giamarellou
- a 1st Department of Internal Medicine-Infectious Diseases , Hygeia General Hospital , Athens , Greece
| |
Collapse
|
21
|
In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Asia-Pacific Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 2018; 62:AAC.02569-17. [PMID: 29760124 DOI: 10.1128/aac.02569-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/25/2018] [Indexed: 01/13/2023] Open
Abstract
The in vitro activities of ceftazidime-avibactam and comparators against 9,149 isolates of Enterobacteriaceae and 2,038 isolates of Pseudomonas aeruginosa collected by 42 medical centers in nine countries in the Asia-Pacific region from 2012 to 2015 were determined as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance program. Antimicrobial susceptibility testing was conducted by Clinical and Laboratory Standards Institute (CLSI) broth microdilution, and isolate subset analysis was performed on the basis of the resistant phenotypes and β-lactamase content. Ceftazidime-avibactam demonstrated potent in vitro activity (MIC, ≤8 μg/ml) against all Enterobacteriaceae tested (99.0% susceptible) and was the most active against isolates that were metallo-β-lactamase (MBL) negative (99.8% susceptible). Against P. aeruginosa, 92.6% of all isolates and 96.1% of MBL-negative isolates were susceptible to ceftazidime-avibactam (MIC, ≤8 μg/ml). The rates of susceptibility to ceftazidime-avibactam ranged from 97.0% (Philippines) to 100% (Hong Kong, South Korea) for Enterobacteriaceae and from 83.1% (Thailand) to 100% (Hong Kong) among P. aeruginosa isolates, with lower susceptibilities being observed in countries where MBLs were more frequently encountered (Philippines, Thailand). Ceftazidime-avibactam inhibited 97.2 to 100% of Enterobacteriaceae isolates, per country, that carried serine β-lactamases, including extended-spectrum β-lactamases, AmpC cephalosporinases, and carbapenemases (KPC, GES, OXA-48-like). It also inhibited 91.3% of P. aeruginosa isolates that were carbapenem nonsusceptible in which no acquired β-lactamase was detected. Among MBL-negative Enterobacteriaceae isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 96.1, 87.7, 100, and 98.8% of isolates, respectively, and among MBL-negative P. aeruginosa isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 79.6, 83.6, 83.3, and 68.2% of isolates, respectively. Overall, clinical isolates of Enterobacteriaceae and P. aeruginosa collected in nine Asia-Pacific countries from 2012 to 2015 were highly susceptible to ceftazidime-avibactam.
Collapse
|
22
|
Defining Substrate Specificity in the CTX-M Family: the Role of Asp240 in Ceftazidime Hydrolysis. Antimicrob Agents Chemother 2018; 62:AAC.00116-18. [PMID: 29632016 DOI: 10.1128/aac.00116-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The natural diversification of CTX-M β-lactamases led to the emergence of Asp240Gly variants in the clinic that confer reduced susceptibility to ceftazidime (CAZ). In this study, we compared the impact of this substitution on CAZ and ceftazidime-avibactam (CZA) MICs against isogenic Escherichia coli strains with different porin deficiencies. Our results show a noticeable increase in CAZ resistance in clones expressing Asp240Gly-harboring CTX-M when combined with OmpF porin deficiency. Kinetic analysis revealed that the kcat/Km for CAZ was 5- to 15-fold higher for all Asp240Gly variants but remained 200- to 725-fold lower than that for cefotaxime (CTX). In vitro selection of CAZ-resistant clones yielded nonsusceptible CTX-M producers (MIC of >16 μg/ml) only after overnight incubation; the addition of avibactam (AVI) decreased MICs to a susceptible range against these variants. In contrast, the use of CZA as a selective agent did not yield resistant clones. AVI inactivated both CTX-M-12 and CTX-M-96, with an apparent inhibition constant comparable to that of SHV-2 and 1,000-fold greater than that of PER-2 and CMY-2, and k2/K for CTX-M-12 was 24- and 35-fold higher than that for CTX-M-96 and CTX-M-15, respectively. Molecular modeling suggests that AVI interacts similarly with CTX-M-96 and CTX-M-15. We conclude that the impact of Asp240Gly in resistance may arise when other mechanisms are also present (i.e., OmpF deficiency). Additionally, CAZ selection could favor the emergence of CAZ-resistant subpopulations. These results define the role of Asp240 and the impact of the -Gly substitution and allow us to hypothesize that the use of CZA is an effective preventive strategy to delay the development of resistance in this family of extended-spectrum β-lactamases.
Collapse
|
23
|
Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018; 78:675-692. [DOI: 10.1007/s40265-018-0902-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Analysis of Potential β-Lactam Surrogates To Predict In Vitro Susceptibility and Resistance to Ceftaroline for Clinical Isolates of Enterobacteriaceae. J Clin Microbiol 2018; 56:JCM.01892-17. [PMID: 29436424 DOI: 10.1128/jcm.01892-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
Ceftaroline fosamil was approved by the United States Food and Drug Administration in 2010 and by the European Medicines Agency in 2012. As of April 2017, only one commercial antimicrobial susceptibility testing device offered a Gram-negative panel that included ceftaroline. This circumstance is unfortunate, as many clinical microbiology laboratories rely solely on commercial devices to generate in vitro antimicrobial susceptibility testing results for common bacterial pathogens. In lieu of device-based testing of clinical isolates of Enterobacteriaceae, laboratories wishing to test ceftaroline must either opt for disk diffusion testing or use a gradient strip; however, both alternatives interrupt laboratory workflow and require additional labor and expense. Identification of a reliable surrogate β-lactam to predict in vitro susceptibility to ceftaroline may offer another interim solution as laboratories await availability of ceftaroline for testing on their commercial devices. We tested six β-lactams (aztreonam, ceftazidime, ceftriaxone, cefotaxime, cefoxitin, and cefpodoxime) as potential surrogates for ceftaroline against a collection of 543 clinical isolates of Enterobacteriaceae selected to approximate the distribution of ceftaroline MICs observed in AWARE global surveillance studies conducted in 2013. All six potential surrogates generated very major error rates of 16.3% to 56.6%, far exceeding the accepted limit of 1.5% set by the Clinical and Laboratory Standards Institute (CLSI) and the United States Food and Drug Administration (FDA) Center for Devices and Radiological Health. Failure to identify a reliable surrogate to predict in vitro susceptibility and resistance to ceftaroline for clinical isolates of Enterobacteriaceae underscores the need for expedited addition of newer antimicrobial agents to commercial antimicrobial susceptibility testing devices.
Collapse
|
25
|
Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev 2018; 31:31/2/e00079-17. [PMID: 29444952 DOI: 10.1128/cmr.00079-17] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapy of invasive infections due to multidrug-resistant Enterobacteriaceae (MDR-E) is challenging, and some of the few active drugs are not available in many countries. For extended-spectrum β-lactamase and AmpC producers, carbapenems are the drugs of choice, but alternatives are needed because the rate of carbapenem resistance is rising. Potential active drugs include classic and newer β-lactam-β-lactamase inhibitor combinations, cephamycins, temocillin, aminoglycosides, tigecycline, fosfomycin, and, rarely, fluoroquinolones or trimethoprim-sulfamethoxazole. These drugs might be considered in some specific situations. AmpC producers are resistant to cephamycins, but cefepime is an option. In the case of carbapenemase-producing Enterobacteriaceae (CPE), only some "second-line" drugs, such as polymyxins, tigecycline, aminoglycosides, and fosfomycin, may be active; double carbapenems can also be considered in specific situations. Combination therapy is associated with better outcomes for high-risk patients, such as those in septic shock or with pneumonia. Ceftazidime-avibactam was recently approved and is active against KPC and OXA-48 producers; the available experience is scarce but promising, although development of resistance is a concern. New drugs active against some CPE isolates are in different stages of development, including meropenem-vaborbactam, imipenem-relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam-avibactam. Overall, therapy of MDR-E infection must be individualized according to the susceptibility profile, type, and severity of infection and the features of the patient.
Collapse
|
26
|
Sleger T, Gangl E, Pop-Damkov P, Krause KM, Laud PJ, Slee AM, Nichols WW. Efficacy of ceftazidime-avibactam in a rat intra-abdominal abscess model against a ceftazidime- and meropenem-resistant isolate of Klebsiella pneumoniae carrying bla KPC-2. J Chemother 2017; 30:95-100. [PMID: 29191131 DOI: 10.1080/1120009x.2017.1405609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Efficacies of ceftazidime-avibactam (4:1 w/w) and ceftazidime were tested against ceftazidime-susceptible (blaKPC-2-negative), and meropenem- and ceftazidime-resistant (blaKPC-2-positive), Klebsiella pneumoniae in a 52-h, multiple dose, abdominal abscess model in the rat. Efficacies corresponded to minimum inhibitory concentrations (MICs) measured in vitro and were consistent with drug exposures modelled from pharmacokinetics in infected animals. The ceftazidime, ceftazidime-avibactam and meropenem control treatments were effective in the rat abscess model against the susceptible strain, whereas only ceftazidime-avibactam was effective against K. pneumoniae harbouring blaKPC-2.
Collapse
Affiliation(s)
- Taryn Sleger
- a Avastus Preclinical Services , Cambridge , MA , USA
| | - Eric Gangl
- b AstraZeneca Pharmaceuticals , Waltham , MA , USA
| | | | | | - Peter J Laud
- d Statistical Services Unit , University of Sheffield , Sheffield , UK
| | - Andrew M Slee
- a Avastus Preclinical Services , Cambridge , MA , USA
| | | |
Collapse
|
27
|
Tuon FF, Rocha JL, Formigoni-Pinto MR. Pharmacological aspects and spectrum of action of ceftazidime-avibactam: a systematic review. Infection 2017; 46:165-181. [PMID: 29110143 DOI: 10.1007/s15010-017-1096-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Ceftazidime-avibactam is an antimicrobial association active against several Enterobacteriaceae species, including those resistant to carbapenem. Considering the importance of this drug in the current panorama of multidrug-resistant bacteria, we performed a systematic review about ceftazidime-avibactam with emphasis on clinical and pharmacological published data. METHODS A systematic search of the medical literature was performed. The databases searched included MEDLINE, EMBASE and Web of Science (until September 2017). The search terms used were 'avibactam', 'NXL104' and 'AVE1330A'. Bibliographies from those studies were also reviewed. Ceftazidime was not included as a search term, once relevant studies about avibactam in association with other drugs could be excluded. Only articles in English were selected. No statistical analysis or quality validation was included in this review. RESULTS A total of 151 manuscripts were included. Ceftazidime-avibactam has limited action against anaerobic bacteria. Avibactam is a potent inhibitor of class A, class C, and some class D enzymes, which includes KPC-2. The best pharmacodynamic profile of ceftazidime-avibactam is ƒT > MIC, validated in an animal model of soft tissue infection. Three clinical trials showed the efficacy of ceftazidime-avibactam in patients with intra-abdominal and urinary infections. Ceftazidime-avibactam has been evaluated versus meropenem/doripenem in hospitalized adults with nosocomial pneumonia, neutropenic patients and pediatric patients. CONCLUSION Ceftazidime-avibactam has a favorable pharmacokinetic profile for severe infections and highly active against carbapenemases of KPC-2 type.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Department of Medicine, School of Health and Biosciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil. .,Hospital de Clínicas-Serviço de Infectologia, 3º. andar, Rua General Carneiro, 180-Alto da Glória, Curitiba, PR, 80060-900, Brazil.
| | - Jaime L Rocha
- Department of Medicine, School of Health and Biosciences, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | | |
Collapse
|
28
|
|
29
|
Exploring the Landscape of Diazabicyclooctane (DBO) Inhibition: Avibactam Inactivation of PER-2 β-Lactamase. Antimicrob Agents Chemother 2017; 61:AAC.02476-16. [PMID: 28348157 DOI: 10.1128/aac.02476-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/21/2017] [Indexed: 01/14/2023] Open
Abstract
PER β-lactamases are an emerging family of extended-spectrum β-lactamases (ESBL) found in Gram-negative bacteria. PER β-lactamases are unique among class A enzymes as they possess an inverted omega (Ω) loop and extended B3 β-strand. These singular structural features are hypothesized to contribute to their hydrolytic profile against oxyimino-cephalosporins (e.g., cefotaxime and ceftazidime). Here, we tested the ability of avibactam (AVI), a novel non-β-lactam β-lactamase inhibitor to inactivate PER-2. Interestingly, the PER-2 inhibition constants (i.e., k2/K = 2 × 103 ± 0.1 × 103 M-1 s-1, where k2 is the rate constant for acylation (carbamylation) and K is the equilibrium constant) that were obtained when AVI was tested were reminiscent of values observed testing the inhibition by AVI of class C and D β-lactamases (i.e., k2/K range of ≈103 M-1 s-1) and not class A β-lactamases (i.e., k2/K range, 104 to 105 M-1 s-1). Once AVI was bound, a stable complex with PER-2 was observed via mass spectrometry (e.g., 31,389 ± 3 atomic mass units [amu] → 31,604 ± 3 amu for 24 h). Molecular modeling of PER-2 with AVI showed that the carbonyl of AVI was located in the oxyanion hole of the β-lactamase and that the sulfate of AVI formed interactions with the β-lactam carboxylate binding site of the PER-2 β-lactamase (R220 and T237). However, hydrophobic patches near the PER-2 active site (by Ser70 and B3-B4 β-strands) were observed and may affect the binding of necessary catalytic water molecules, thus slowing acylation (k2/K) of AVI onto PER-2. Similar electrostatics and hydrophobicity of the active site were also observed between OXA-48 and PER-2, while CTX-M-15 was more hydrophilic. To demonstrate the ability of AVI to overcome the enhanced cephalosporinase activity of PER-2 β-lactamase, we tested different β-lactam-AVI combinations. By lowering MICs to ≤2 mg/liter, the ceftaroline-AVI combination could represent a favorable therapeutic option against Enterobacteriaceae expressing blaPER-2 Our studies define the inactivation of the PER-2 ESBL by AVI and suggest that the biophysical properties of the active site contribute to determining the efficiency of inactivation.
Collapse
|
30
|
Ourghanlian C, Soroka D, Arthur M. Inhibition by Avibactam and Clavulanate of the β-Lactamases KPC-2 and CTX-M-15 Harboring the Substitution N 132G in the Conserved SDN Motif. Antimicrob Agents Chemother 2017; 61:e02510-16. [PMID: 28069651 PMCID: PMC5328567 DOI: 10.1128/aac.02510-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
Abstract
The substitution N132G in the SDN motif of class A β-lactamases from rapidly growing mycobacteria was previously shown to impair their inhibition by avibactam but to improve the stability of acyl-enzymes formed with clavulanate. The same substitution was introduced in KPC-2 and CTX-M-15 to assess its impact on β-lactamases from Enterobacteriaceae and evaluate whether it may lead to resistance to the ceftazidime-avibactam combination. Kinetic parameters for the inhibition of the β-lactamases by avibactam and clavulanate were determined by spectrophotometry using nitrocefin as the substrate. The substitution N132G impaired (>1,000-fold) the efficacy of carbamylation of KPC-2 and CTX-M-15 by avibactam. The substitution improved the inhibition of KPC-2 by clavulanate due to reduced deacylation, whereas the presence or absence of N132G resulted in the inhibition of CTX-M-15 by clavulanate. The hydrolysis of amoxicillin and nitrocefin by KPC-2 and CTX-M-15 was moderately affected by the substitution N132G, but that of ceftazidime, ceftaroline, and aztreonam was drastically reduced. Isogenic strains producing KPC-2 and CTX-M-15 were constructed to assess the impact of the substitution N132G on the antibacterial activities of β-lactam-inhibitor combinations. For amoxicillin, the substitution resulted in resistance and susceptibility for avibactam and clavulanate, respectively. For ceftazidime, ceftaroline, and aztreonam, the negative impact of the substitution on β-lactamase activity prevented resistance to the β-lactam-avibactam combinations. In conclusion, the N132G substitution has profound effects on the substrate and inhibition profiles of class A β-lactamases, which are largely conserved in distantly related enzymes. Fortunately, the substitution does not lead to resistance to the ceftazidime-avibactam combination.
Collapse
Affiliation(s)
- Clément Ourghanlian
- INSERM, U1138, LRMA, Equipe 12 du Centre de Recherche des Cordeliers, Paris, France, Université Pierre et Marie Curie, UMR S 1138, Paris, France, and Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| | - Daria Soroka
- INSERM, U1138, LRMA, Equipe 12 du Centre de Recherche des Cordeliers, Paris, France, Université Pierre et Marie Curie, UMR S 1138, Paris, France, and Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| | - Michel Arthur
- INSERM, U1138, LRMA, Equipe 12 du Centre de Recherche des Cordeliers, Paris, France, Université Pierre et Marie Curie, UMR S 1138, Paris, France, and Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| |
Collapse
|
31
|
Bush K, Page MGP. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J Pharmacokinet Pharmacodyn 2017; 44:113-132. [DOI: 10.1007/s10928-017-9506-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022]
|
32
|
Giani T, Cannatelli A, Di Pilato V, Testa R, Nichols WW, Rossolini GM. Inhibitory activity of avibactam against selected β-lactamases expressed in an isogenic Escherichia coli strain. Diagn Microbiol Infect Dis 2016; 86:83-5. [PMID: 27394638 DOI: 10.1016/j.diagmicrobio.2016.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 11/30/2022]
Abstract
Avibactam restored the in-vitro antibacterial activity of ceftazidime, ceftaroline, and aztreonam against isogenic Escherichia coli expressing class A, class C, and class D β-lactamases. The enzymes included TEM and CTX-M extended spectrum β-lactamases, ACT, CMY and FOX AmpC-type enzymes, and carbapenemases including rarer KPC variants and OXA-139.
Collapse
Affiliation(s)
- Tommaso Giani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Antonio Cannatelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Raymond Testa
- Formerly of AstraZeneca Pharmaceuticals, Waltham, USA
| | | | - Gian Maria Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy; Don Carlo Gnocchi Foundation, Florence, Italy.
| |
Collapse
|
33
|
Lahiri SD, Bradford PA, Nichols WW, Alm RA. Structural and sequence analysis of class A β-lactamases with respect to avibactam inhibition: impact of Ω-loop variations. J Antimicrob Chemother 2016; 71:2848-55. [DOI: 10.1093/jac/dkw248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/22/2016] [Indexed: 11/14/2022] Open
|
34
|
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem 2016; 8:1063-84. [PMID: 27327972 DOI: 10.4155/fmc-2016-0078] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Avibactam, which is the first non-β-lactam β-lactamase inhibitor to be introduced for clinical use, is a broad-spectrum serine β-lactamase inhibitor with activity against class A, class C, and, some, class D β-lactamases. We provide an overview of efforts, which extend to the period soon after the discovery of the penicillins, to develop clinically useful non-β-lactam compounds as antibacterials, and, subsequently, penicillin-binding protein and β-lactamase inhibitors. Like the β-lactam inhibitors, avibactam works via a mechanism involving covalent modification of a catalytically important nucleophilic serine residue. However, unlike the β-lactam inhibitors, avibactam reacts reversibly with its β-lactamase targets. We discuss chemical factors that may account for the apparently special nature of β-lactams and related compounds as antibacterials and β-lactamase inhibitors, including with respect to resistance. Avenues for future research including non-β-lactam antibacterials acting similarly to β-lactams are discussed.
Collapse
Affiliation(s)
| | | | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, UK
| | | |
Collapse
|
35
|
Identification of Novel VEB β-Lactamase Enzymes and Their Impact on Avibactam Inhibition. Antimicrob Agents Chemother 2016; 60:3183-6. [PMID: 26926646 DOI: 10.1128/aac.00047-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/21/2016] [Indexed: 11/20/2022] Open
Abstract
Ceftazidime-avibactam has activity against Pseudomonas aeruginosa and Enterobacteriaceae expressing numerous class A and class C β-lactamases, although the ability to inhibit many minor enzyme variants has not been established. Novel VEB class A β-lactamases were identified during characterization of surveillance isolates. The cloned novel VEB β-lactamases possessed an extended-spectrum β-lactamase phenotype and were inhibited by avibactam in a concentration-dependent manner. The residues that comprised the avibactam binding pocket were either identical or functionally conserved. These data demonstrate that avibactam can inhibit VEB β-lactamases.
Collapse
|
36
|
In Vitro Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob Agents Chemother 2016; 60:3163-9. [PMID: 26926648 DOI: 10.1128/aac.03042-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
The activity of ceftazidime-avibactam was assessed against 961 isolates of meropenem-nonsusceptible Enterobacteriaceae Most meropenem-nonsusceptible metallo-β-lactamase (MBL)-negative isolates (97.7%) were susceptible to ceftazidime-avibactam. Isolates that carried KPC or OXA-48-like β-lactamases, both alone and in combination with extended-spectrum β-lactamases (ESBLs) and/or AmpC β-lactamases, were 98.7% and 98.5% susceptible to ceftazidime-avibactam, respectively. Meropenem-nonsusceptible, carbapenemase-negative isolates demonstrated 94.7% susceptibility to ceftazidime-avibactam. Ceftazidime-avibactam activity was compromised only in isolates for which carbapenem resistance was mediated through metallo-β-lactamases.
Collapse
|
37
|
Pagès JM, Peslier S, Keating TA, Lavigne JP, Nichols WW. Role of the Outer Membrane and Porins in Susceptibility of β-Lactamase-Producing Enterobacteriaceae to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2015; 60:1349-59. [PMID: 26666933 PMCID: PMC4775948 DOI: 10.1128/aac.01585-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/05/2015] [Indexed: 01/21/2023] Open
Abstract
This study examined the activity of the novel antimicrobial combination ceftazidime-avibactam against Enterobacteriaceae exhibiting different outer membrane permeability profiles, specifically with or without porins and with or without expression of the main efflux pump (AcrAB-TolC). The addition of the outer membrane permeabilizer polymyxin B nonapeptide increased the antibacterial activities of avibactam alone, ceftazidime alone, and ceftazidime-avibactam against the characterized clinical isolates of Escherichia coli, Enterobacter aerogenes, and Klebsiella pneumoniae. This enhancement of activities was mainly due to increased passive penetration of compounds since inhibition of efflux by the addition of phenylalanine-arginine β-naphthylamide affected the MICs minimally. OmpF (OmpK35) or OmpC (OmpK36) pores were not the major route by which avibactam crossed the outer membranes of E. coli and K. pneumoniae. In contrast, Omp35 and Omp36 allowed diffusion of avibactam across the outer membrane of E. aerogenes, although other diffusion channels for avibactam were also present in that species. It was clear that outer membrane permeability and outer membrane pore-forming proteins play a key role in the activity of ceftazidime-avibactam. Nevertheless, the MICs of ceftazidime-avibactam (with 4 mg/liter avibactam) against the ceftazidime-resistant clinical isolates of the three species of Enterobacteriaceae studied were ≤ 8 mg/liter, regardless of outer membrane permeability changes resulting from an absence of defined porin proteins or upregulation of efflux.
Collapse
Affiliation(s)
- Jean-Marie Pagès
- UMR_MD-1, Aix-Marseille Université, IRBA, Transporteurs Membranaires, Chimiorésistance et Drug Design, Marseille, France
| | - Sabine Peslier
- UMR_MD-1, Aix-Marseille Université, IRBA, Transporteurs Membranaires, Chimiorésistance et Drug Design, Marseille, France
| | - Thomas A Keating
- AstraZeneca Infection Innovative Medicines, Waltham, Massachusetts, USA
| | - Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier 1, Nîmes, France Department of Microbiology, University Hospital Caremeau, Nîmes, France
| | - Wright W Nichols
- AstraZeneca Infection Innovative Medicines, Waltham, Massachusetts, USA
| |
Collapse
|
38
|
Bush K. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents 2015; 46:483-93. [DOI: 10.1016/j.ijantimicag.2015.08.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|