1
|
Belwal P, Singh S. Deep Learning techniques to detect and analysis of multiple sclerosis through MRI: A systematic literature review. Comput Biol Med 2025; 185:109530. [PMID: 39693692 DOI: 10.1016/j.compbiomed.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Deep learning (DL) techniques represent a rapidly advancing field within artificial intelligence, gaining significant prominence in the detection and analysis of various medical conditions through the analysis of medical data. This study presents a systematic literature review (SLR) focused on deep learning methods for the detection and analysis of multiple sclerosis (MS) using magnetic resonance imaging (MRI). The initial search identified 401 articles, which were rigorously screened, a selection of 82 highly relevant studies. These selected studies primarily concentrate on key areas such as multiple sclerosis, deep learning, convolutional neural networks (CNN), lesion segmentation, and classification, reflecting their alignment with the current state of the art. This review comprehensively examines diverse deep-learning approaches for MS detection and analysis, offering a valuable resource for researchers. Additionally, it presents key insights by summarizing these DL techniques for MS detection and analysis using MRI in a structured tabular format.
Collapse
Affiliation(s)
- Priyanka Belwal
- Department of Computer Science and Engineering, NIT Uttarakhand, India.
| | - Surendra Singh
- Department of Computer Science and Engineering, NIT Uttarakhand, India.
| |
Collapse
|
2
|
Szekely-Kohn AC, Castellani M, Espino DM, Baronti L, Ahmed Z, Manifold WGK, Douglas M. Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241052. [PMID: 39845718 PMCID: PMC11750376 DOI: 10.1098/rsos.241052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.
Collapse
Affiliation(s)
- Adam C. Szekely-Kohn
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Marco Castellani
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Daniel M. Espino
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Luca Baronti
- School of Computer Science, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Zubair Ahmed
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | | | - Michael Douglas
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
- Department of Neurology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, BirminghamDY1 2HQ, UK
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
3
|
Sorby-Adams AJ, Guo J, Laso P, Kirsch JE, Zabinska J, Garcia Guarniz AL, Schaefer PW, Payabvash S, de Havenon A, Rosen MS, Sheth KN, Gomez-Isla T, Iglesias JE, Kimberly WT. Portable, low-field magnetic resonance imaging for evaluation of Alzheimer's disease. Nat Commun 2024; 15:10488. [PMID: 39622805 PMCID: PMC11612292 DOI: 10.1038/s41467-024-54972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Portable, low-field magnetic resonance imaging (LF-MRI) of the brain may facilitate point-of-care assessment of patients with Alzheimer's disease (AD) in settings where conventional MRI cannot. However, image quality is limited by a lower signal-to-noise ratio. Here, we optimize LF-MRI acquisition and develop a freely available machine learning pipeline to quantify brain morphometry and white matter hyperintensities (WMH). We validate the pipeline and apply it to outpatients presenting with mild cognitive impairment or dementia due to AD. We find hippocampal volumes from ≤ 3 mm isotropic LF-MRI scans have agreement with conventional MRI and are more accurate than anisotropic counterparts. We also show WMH volume has agreement between manual segmentation and the automated pipeline. The increased availability and reduced cost of LF-MRI, in combination with our machine learning pipeline, has the potential to increase access to neuroimaging for dementia.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer Guo
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pablo Laso
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Julia Zabinska
- Department of Neurology, Center for Brain & Mind Health, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Ana-Lucia Garcia Guarniz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pamela W Schaefer
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyedmehdi Payabvash
- Division of Neuroradiology, Department of Radiology and Biomedical Imaging, Yale New Haven Hospital and Yale University School of Medicine, New Haven, CT, USA
| | - Adam de Havenon
- Department of Neurology, Center for Brain & Mind Health, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin N Sheth
- Department of Neurology, Center for Brain & Mind Health, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Teresa Gomez-Isla
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - J Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Raj A, Gass A, Eisele P, Dabringhaus A, Kraemer M, Zöllner FG. A generalizable deep voxel-guided morphometry algorithm for the detection of subtle lesion dynamics in multiple sclerosis. Front Neurosci 2024; 18:1326108. [PMID: 38332857 PMCID: PMC10850259 DOI: 10.3389/fnins.2024.1326108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic neurological disorder characterized by the progressive loss of myelin and axonal structures in the central nervous system. Accurate detection and monitoring of MS-related changes in brain structures are crucial for disease management and treatment evaluation. We propose a deep learning algorithm for creating Voxel-Guided Morphometry (VGM) maps from longitudinal MRI brain volumes for analyzing MS disease activity. Our approach focuses on developing a generalizable model that can effectively be applied to unseen datasets. Methods Longitudinal MS patient high-resolution 3D T1-weighted follow-up imaging from three different MRI systems were analyzed. We employed a 3D residual U-Net architecture with attention mechanisms. The U-Net serves as the backbone, enabling spatial feature extraction from MRI volumes. Attention mechanisms are integrated to enhance the model's ability to capture relevant information and highlight salient regions. Furthermore, we incorporate image normalization by histogram matching and resampling techniques to improve the networks' ability to generalize to unseen datasets from different MRI systems across imaging centers. This ensures robust performance across diverse data sources. Results Numerous experiments were conducted using a dataset of 71 longitudinal MRI brain volumes of MS patients. Our approach demonstrated a significant improvement of 4.3% in mean absolute error (MAE) against the state-of-the-art (SOTA) method. Furthermore, the algorithm's generalizability was evaluated on two unseen datasets (n = 116) with an average improvement of 4.2% in MAE over the SOTA approach. Discussion Results confirm that the proposed approach is fast and robust and has the potential for broader clinical applicability.
Collapse
Affiliation(s)
- Anish Raj
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, Germany
| | - Achim Gass
- Department of Neurology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, Germany
- Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Baden Württemberg, Germany
| | - Philipp Eisele
- Department of Neurology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, Germany
- Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Baden Württemberg, Germany
| | | | - Matthias Kraemer
- VGMorph GmbH, Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
- NeuroCentrum, Grevenbroich, Nordrhein-Westfalen, Germany
| | - Frank G. Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden Württemberg, Germany
| |
Collapse
|
5
|
Gao C, Landman BA, Prince JL, Carass A. Reproducibility evaluation of the effects of MRI defacing on brain segmentation. J Med Imaging (Bellingham) 2023; 10:064001. [PMID: 38074632 PMCID: PMC10704191 DOI: 10.1117/1.jmi.10.6.064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last 5 years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in the previous works, the potential impact of defacing on neuroimage processing has yet to be explored. Approach We qualitatively evaluate eight MR defacing algorithms on 179 subjects from the OASIS-3 cohort and 21 subjects from the Kirby-21 dataset. We also evaluate the effects of defacing on two neuroimaging pipelines-SLANT and FreeSurfer-by comparing the segmentation consistency between the original and defaced images. Results Defacing can alter brain segmentation and even lead to catastrophic failures, which are more frequent with some algorithms, such as Quickshear, MRI_Deface, and FSL_deface. Compared to FreeSurfer, SLANT is less affected by defacing. On outputs that pass the quality check, the effects of defacing are less pronounced than those of rescanning, as measured by the Dice similarity coefficient. Conclusions The effects of defacing are noticeable and should not be disregarded. Extra attention, in particular, should be paid to the possibility of catastrophic failures. It is crucial to adopt a robust defacing algorithm and perform a thorough quality check before releasing defaced datasets. To improve the reliability of analysis in scenarios involving defaced MRIs, it is encouraged to include multiple brain segmentation pipelines.
Collapse
Affiliation(s)
- Chenyu Gao
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Jerry L. Prince
- The Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| | - Aaron Carass
- The Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Zuo L, Liu Y, Xue Y, Dewey BE, Remedios SW, Hays SP, Bilgel M, Mowry EM, Newsome SD, Calabresi PA, Resnick SM, Prince JL, Carass A. HACA3: A unified approach for multi-site MR image harmonization. Comput Med Imaging Graph 2023; 109:102285. [PMID: 37657151 PMCID: PMC10592042 DOI: 10.1016/j.compmedimag.2023.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023]
Abstract
The lack of standardization and consistency of acquisition is a prominent issue in magnetic resonance (MR) imaging. This often causes undesired contrast variations in the acquired images due to differences in hardware and acquisition parameters. In recent years, image synthesis-based MR harmonization with disentanglement has been proposed to compensate for the undesired contrast variations. The general idea is to disentangle anatomy and contrast information from MR images to achieve cross-site harmonization. Despite the success of existing methods, we argue that major improvements can be made from three aspects. First, most existing methods are built upon the assumption that multi-contrast MR images of the same subject share the same anatomy. This assumption is questionable, since different MR contrasts are specialized to highlight different anatomical features. Second, these methods often require a fixed set of MR contrasts for training (e.g., both T1-weighted and T2-weighted images), limiting their applicability. Lastly, existing methods are generally sensitive to imaging artifacts. In this paper, we present Harmonization with Attention-based Contrast, Anatomy, and Artifact Awareness (HACA3), a novel approach to address these three issues. HACA3 incorporates an anatomy fusion module that accounts for the inherent anatomical differences between MR contrasts. Furthermore, HACA3 can be trained and applied to any combination of MR contrasts and is robust to imaging artifacts. HACA3 is developed and evaluated on diverse MR datasets acquired from 21 sites with varying field strengths, scanner platforms, and acquisition protocols. Experiments show that HACA3 achieves state-of-the-art harmonization performance under multiple image quality metrics. We also demonstrate the versatility and potential clinical impact of HACA3 on downstream tasks including white matter lesion segmentation for people with multiple sclerosis and longitudinal volumetric analyses for normal aging subjects. Code is available at https://github.com/lianruizuo/haca3.
Collapse
Affiliation(s)
- Lianrui Zuo
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Yihao Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yuan Xue
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Blake E Dewey
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Samuel W Remedios
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Savannah P Hays
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Scott D Newsome
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Gao C, Landman BA, Prince JL, Carass A. A reproducibility evaluation of the effects of MRI defacing on brain segmentation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.15.23289995. [PMID: 37293070 PMCID: PMC10246049 DOI: 10.1101/2023.05.15.23289995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose Recent advances in magnetic resonance (MR) scanner quality and the rapidly improving nature of facial recognition software have necessitated the introduction of MR defacing algorithms to protect patient privacy. As a result, there are a number of MR defacing algorithms available to the neuroimaging community, with several appearing in just the last five years. While some qualities of these defacing algorithms, such as patient identifiability, have been explored in previous works, the potential impact of defacing on neuroimage processing has yet to be explored. Approach We qualitatively evaluate eight MR defacing algorithms on 179 subjects from the OASIS-3 cohort and the 21 subjects from the Kirby-21 dataset. We also evaluate the effects of defacing on two neuroimaging pipelines-SLANT and FreeSurfer-by comparing the segmentation consistency between the original and defaced images. Results Defacing can alter brain segmentation and even lead to catastrophic failures, which are more frequent with some algorithms such as Quickshear, MRI_Deface, and FSL_deface. Compared to FreeSurfer, SLANT is less affected by defacing. On outputs that pass the quality check, the effects of defacing are less pronounced than those of rescanning, as measured by the Dice similarity coefficient. Conclusions The effects of defacing are noticeable and should not be disregarded. Extra attention, in particular, should be paid to the possibility of catastrophic failures. It is crucial to adopt a robust defacing algorithm and perform a thorough quality check before releasing defaced datasets. To improve the reliability of analysis in scenarios involving defaced MRIs, it's encouraged to include multiple brain segmentation pipelines.
Collapse
Affiliation(s)
- Chenyu Gao
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, 37235
| | - Bennett A. Landman
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, 37235
| | - Jerry L. Prince
- The Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, 21218
| | - Aaron Carass
- The Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, 21218
| |
Collapse
|
8
|
Hindsholm AM, Andersen FL, Cramer SP, Simonsen HJ, Askløf MG, Magyari M, Madsen PN, Hansen AE, Sellebjerg F, Larsson HBW, Langkilde AR, Frederiksen JL, Højgaard L, Ladefoged CN, Lindberg U. Scanner agnostic large-scale evaluation of MS lesion delineation tool for clinical MRI. Front Neurosci 2023; 17:1177540. [PMID: 37274207 PMCID: PMC10235534 DOI: 10.3389/fnins.2023.1177540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Patients with MS are MRI scanned continuously throughout their disease course resulting in a large manual workload for radiologists which includes lesion detection and size estimation. Though many models for automatic lesion segmentation have been published, few are used broadly in clinic today, as there is a lack of testing on clinical datasets. By collecting a large, heterogeneous training dataset directly from our MS clinic we aim to present a model which is robust to different scanner protocols and artefacts and which only uses MRI modalities present in routine clinical examinations. Methods We retrospectively included 746 patients from routine examinations at our MS clinic. The inclusion criteria included acquisition at one of seven different scanners and an MRI protocol including 2D or 3D T2-w FLAIR, T2-w and T1-w images. Reference lesion masks on the training (n = 571) and validation (n = 70) datasets were generated using a preliminary segmentation model and subsequent manual correction. The test dataset (n = 100) was manually delineated. Our segmentation model https://github.com/CAAI/AIMS/ was based on the popular nnU-Net, which has won several biomedical segmentation challenges. We tested our model against the published segmentation models HD-MS-Lesions, which is also based on nnU-Net, trained with a more homogenous patient cohort. We furthermore tested model robustness to data from unseen scanners by performing a leave-one-scanner-out experiment. Results We found that our model was able to segment MS white matter lesions with a performance comparable to literature: DSC = 0.68, precision = 0.90, recall = 0.70, f1 = 0.78. Furthermore, the model outperformed HD-MS-Lesions in all metrics except precision = 0.96. In the leave-one-scanner-out experiment there was no significant change in performance (p < 0.05) between any of the models which were only trained on part of the dataset and the full segmentation model. Conclusion In conclusion we have seen, that by including a large, heterogeneous dataset emulating clinical reality, we have trained a segmentation model which maintains a high segmentation performance while being robust to data from unseen scanners. This broadens the applicability of the model in clinic and paves the way for clinical implementation.
Collapse
Affiliation(s)
- Amalie Monberg Hindsholm
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Stig Præstekjær Cramer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Helle Juhl Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Mathias Gæde Askløf
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Melinda Magyari
- Department of Neurology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Poul Nørgaard Madsen
- Center for IT and Medical Technology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Adam Espe Hansen
- Department of Radiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jette Lautrup Frederiksen
- Department of Neurology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
9
|
Commowick O, Combès B, Cervenansky F, Dojat M. Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation. Front Neurosci 2023; 17:1176625. [PMID: 36998735 PMCID: PMC10043498 DOI: 10.3389/fnins.2023.1176625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Affiliation(s)
- Olivier Commowick
- Empenn INSERM U1228, CNRS UMR6074, Inria, University of Rennes I, Rennes, France
| | - Benoît Combès
- Empenn INSERM U1228, CNRS UMR6074, Inria, University of Rennes I, Rennes, France
| | - Frédéric Cervenansky
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Michel Dojat
- Univ Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| |
Collapse
|
10
|
Cerri S, Greve DN, Hoopes A, Lundell H, Siebner HR, Mühlau M, Van Leemput K. An open-source tool for longitudinal whole-brain and white matter lesion segmentation. Neuroimage Clin 2023; 38:103354. [PMID: 36907041 PMCID: PMC10024238 DOI: 10.1016/j.nicl.2023.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
In this paper we describe and validate a longitudinal method for whole-brain segmentation of longitudinal MRI scans. It builds upon an existing whole-brain segmentation method that can handle multi-contrast data and robustly analyze images with white matter lesions. This method is here extended with subject-specific latent variables that encourage temporal consistency between its segmentation results, enabling it to better track subtle morphological changes in dozens of neuroanatomical structures and white matter lesions. We validate the proposed method on multiple datasets of control subjects and patients suffering from Alzheimer's disease and multiple sclerosis, and compare its results against those obtained with its original cross-sectional formulation and two benchmark longitudinal methods. The results indicate that the method attains a higher test-retest reliability, while being more sensitive to longitudinal disease effect differences between patient groups. An implementation is publicly available as part of the open-source neuroimaging package FreeSurfer.
Collapse
Affiliation(s)
- Stefano Cerri
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Radiology, Harvard Medical School, USA
| | - Andrew Hoopes
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark
| | - Mark Mühlau
- Department of Neurology and TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Germany
| | - Koen Van Leemput
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Health Technology, Technical University of Denmark, Denmark
| |
Collapse
|
11
|
Clèrigues A, Valverde S, Salvi J, Oliver A, Lladó X. Minimizing the effect of white matter lesions on deep learning based tissue segmentation for brain volumetry. Comput Med Imaging Graph 2023; 103:102157. [PMID: 36535217 DOI: 10.1016/j.compmedimag.2022.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Automated methods for segmentation-based brain volumetry may be confounded by the presence of white matter (WM) lesions, which introduce abnormal intensities that can alter the classification of not only neighboring but also distant brain tissue. These lesions are common in pathologies where brain volumetry is also an important prognostic marker, such as in multiple sclerosis (MS), and thus reducing their effects is critical for improving volumetric accuracy and reliability. In this work, we analyze the effect of WM lesions on deep learning based brain tissue segmentation methods for brain volumetry and introduce techniques to reduce the error these lesions produce on the measured volumes. We propose a 3D patch-based deep learning framework for brain tissue segmentation which is trained on the outputs of a reference classical method. To deal more robustly with pathological cases having WM lesions, we use a combination of small patches and a percentile-based input normalization. To minimize the effect of WM lesions, we also propose a multi-task double U-Net architecture performing end-to-end inpainting and segmentation, along with a training data generation procedure. In the evaluation, we first analyze the error introduced by artificial WM lesions on our framework as well as in the reference segmentation method without the use of lesion inpainting techniques. To the best of our knowledge, this is the first analysis of WM lesion effect on a deep learning based tissue segmentation approach for brain volumetry. The proposed framework shows a significantly smaller and more localized error introduced by WM lesions than the reference segmentation method, that displays much larger global differences. We also evaluated the proposed lesion effect minimization technique by comparing the measured volumes before and after introducing artificial WM lesions to healthy images. The proposed approach performing end-to-end inpainting and segmentation effectively reduces the error introduced by small and large WM lesions in the resulting volumetry, obtaining absolute volume differences of 0.01 ± 0.03% for GM and 0.02 ± 0.04% for WM. Increasing the accuracy and reliability of automated brain volumetry methods will reduce the sample size needed to establish meaningful correlations in clinical studies and allow its use in individualized assessments as a diagnostic and prognostic marker for neurodegenerative pathologies.
Collapse
Affiliation(s)
- Albert Clèrigues
- Institute of Computer Vision and Robotics, University of Girona, Spain.
| | | | - Joaquim Salvi
- Institute of Computer Vision and Robotics, University of Girona, Spain
| | - Arnau Oliver
- Institute of Computer Vision and Robotics, University of Girona, Spain
| | - Xavier Lladó
- Institute of Computer Vision and Robotics, University of Girona, Spain
| |
Collapse
|
12
|
Kamraoui RA, Mansencal B, Manjon JV, Coupé P. Longitudinal detection of new MS lesions using deep learning. FRONTIERS IN NEUROIMAGING 2022; 1:948235. [PMID: 37555158 PMCID: PMC10406205 DOI: 10.3389/fnimg.2022.948235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 08/10/2023]
Abstract
The detection of new multiple sclerosis (MS) lesions is an important marker of the evolution of the disease. The applicability of learning-based methods could automate this task efficiently. However, the lack of annotated longitudinal data with new-appearing lesions is a limiting factor for the training of robust and generalizing models. In this study, we describe a deep-learning-based pipeline addressing the challenging task of detecting and segmenting new MS lesions. First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points. Therefore, we exploit knowledge from an easier task and for which more annotated datasets are available. Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions using single time-point scans. In this way, we pretrain our detection model on large synthetic annotated datasets. Finally, we use a data-augmentation technique designed to simulate data diversity in MRI. By doing that, we increase the size of the available small annotated longitudinal datasets. Our ablation study showed that each contribution lead to an enhancement of the segmentation accuracy. Using the proposed pipeline, we obtained the best score for the segmentation and the detection of new MS lesions in the MSSEG2 MICCAI challenge.
Collapse
Affiliation(s)
| | - Boris Mansencal
- PICTURA, Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, Talence, France
| | - José V. Manjon
- ITACA, Universitat Politècnica de València, Valencia, Spain
| | - Pierrick Coupé
- PICTURA, Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, Talence, France
| |
Collapse
|
13
|
Bercea CI, Wiestler B, Rueckert D, Albarqouni S. Federated disentangled representation learning for unsupervised brain anomaly detection. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Balwant M. A Review on Convolutional Neural Networks for Brain Tumor Segmentation: Methods, Datasets, Libraries, and Future Directions. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kontopodis EE, Papadaki E, Trivizakis E, Maris TG, Simos P, Papadakis GZ, Tsatsakis A, Spandidos DA, Karantanas A, Marias K. Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review). Exp Ther Med 2021; 22:1149. [PMID: 34504594 PMCID: PMC8393268 DOI: 10.3892/etm.2021.10583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Computer-aided diagnosis systems aim to assist clinicians in the early identification of abnormal signs in order to optimize the interpretation of medical images and increase diagnostic precision. Multiple sclerosis (MS) and clinically isolated syndrome (CIS) are chronic inflammatory, demyelinating diseases affecting the central nervous system. Recent advances in deep learning (DL) techniques have led to novel computational paradigms in MS and CIS imaging designed for automatic segmentation and detection of areas of interest and automatic classification of anatomic structures, as well as optimization of neuroimaging protocols. To this end, there are several publications presenting artificial intelligence-based predictive models aiming to increase diagnostic accuracy and to facilitate optimal clinical management in patients diagnosed with MS and/or CIS. The current study presents a thorough review covering DL techniques that have been applied in MS and CIS during recent years, shedding light on their current advances and limitations.
Collapse
Affiliation(s)
- Eleftherios E Kontopodis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Radiology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Efrosini Papadaki
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Radiology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Eleftherios Trivizakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Radiology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Thomas G Maris
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Radiology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Psychiatry and Behavioral Sciences, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Georgios Z Papadakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Radiology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Karantanas
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Radiology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.,Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
16
|
Shoeibi A, Khodatars M, Jafari M, Moridian P, Rezaei M, Alizadehsani R, Khozeimeh F, Gorriz JM, Heras J, Panahiazar M, Nahavandi S, Acharya UR. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review. Comput Biol Med 2021; 136:104697. [PMID: 34358994 DOI: 10.1016/j.compbiomed.2021.104697] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/18/2022]
Abstract
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed so far; among them, magnetic resonance imaging (MRI) has received considerable attention among physicians. MRI modalities provide physicians with fundamental information about the structure and function of the brain, which is crucial for the rapid diagnosis of MS lesions. Diagnosing MS using MRI is time-consuming, tedious, and prone to manual errors. Research on the implementation of computer aided diagnosis system (CADS) based on artificial intelligence (AI) to diagnose MS involves conventional machine learning and deep learning (DL) methods. In conventional machine learning, feature extraction, feature selection, and classification steps are carried out by using trial and error; on the contrary, these steps in DL are based on deep layers whose values are automatically learn. In this paper, a complete review of automated MS diagnosis methods performed using DL techniques with MRI neuroimaging modalities is provided. Initially, the steps involved in various CADS proposed using MRI modalities and DL techniques for MS diagnosis are investigated. The important preprocessing techniques employed in various works are analyzed. Most of the published papers on MS diagnosis using MRI modalities and DL are presented. The most significant challenges facing and future direction of automated diagnosis of MS using MRI modalities and DL techniques are also provided.
Collapse
Affiliation(s)
- Afshin Shoeibi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran, Iran.
| | - Marjane Khodatars
- Faculty of Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Rezaei
- Electrical and Computer Engineering Dept., Tarbiat Modares University, Tehran, Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Spain; Department of Psychiatry. University of Cambridge, UK
| | - Jónathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | | | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - U Rajendra Acharya
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Dept. of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
| |
Collapse
|
17
|
Gordon S, Kodner B, Goldfryd T, Sidorov M, Goldberger J, Raviv TR. An atlas of classifiers-a machine learning paradigm for brain MRI segmentation. Med Biol Eng Comput 2021; 59:1833-1849. [PMID: 34313921 DOI: 10.1007/s11517-021-02414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/21/2021] [Indexed: 11/25/2022]
Abstract
We present the Atlas of Classifiers (AoC)-a conceptually novel framework for brain MRI segmentation. The AoC is a spatial map of voxel-wise multinomial logistic regression (LR) functions learned from the labeled data. Upon convergence, the resulting fixed LR weights, a few for each voxel, represent the training dataset. It can, therefore, be considered as a light-weight learning machine, which despite its low capacity does not underfit the problem. The AoC construction is independent of the actual intensities of the test images, providing the flexibility to train it on the available labeled data and use it for the segmentation of images from different datasets and modalities. In this sense, it does not overfit the training data, as well. The proposed method has been applied to numerous publicly available datasets for the segmentation of brain MRI tissues and is shown to be robust to noise and outreach commonly used methods. Promising results were also obtained for multi-modal, cross-modality MRI segmentation. Finally, we show how AoC trained on brain MRIs of healthy subjects can be exploited for lesion segmentation of multiple sclerosis patients.
Collapse
Affiliation(s)
- Shiri Gordon
- The School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Boris Kodner
- The School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Goldfryd
- The School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Sidorov
- The School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jacob Goldberger
- The Faculty of Electrical Engineering, Ber-Ilan University, Ramat-Gan, Israel
| | - Tammy Riklin Raviv
- The School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
18
|
Billot B, Cerri S, Van Leemput K, Dalca AV, Iglesias JE. JOINT SEGMENTATION OF MULTIPLE SCLEROSIS LESIONS AND BRAIN ANATOMY IN MRI SCANS OF ANY CONTRAST AND RESOLUTION WITH CNNs. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2021; 2021:1971-1974. [PMID: 34367472 PMCID: PMC8340983 DOI: 10.1109/isbi48211.2021.9434127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present the first deep learning method to segment Multiple Sclerosis lesions and brain structures from MRI scans of any (possibly multimodal) contrast and resolution. Our method only requires segmentations to be trained (no images), as it leverages the generative model of Bayesian segmentation to generate synthetic scans with simulated lesions, which are then used to train a CNN. Our method can be retrained to segment at any resolution by adjusting the amount of synthesised partial volume. By construction, the synthetic scans are perfectly aligned with their labels, which enables training with noisy labels obtained with automatic methods. The training data are generated on the fly, and aggressive augmentation (including artefacts) is applied for improved generalisation. We demonstrate our method on two public datasets, comparing it with a state-of-the-art Bayesian approach implemented in FreeSurfer, and dataset specific CNNs trained on real data. The code is available at https://github.com/BBillot/SynthSeg.
Collapse
Affiliation(s)
- Benjamin Billot
- Center for Medical Image Computing, University College London, UK
| | - Stefano Cerri
- Department of Health Technology, Technical University of Denmark, Denmark
| | - Koen Van Leemput
- Department of Health Technology, Technical University of Denmark, Denmark
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
| | - Adrian V Dalca
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
| | - Juan Eugenio Iglesias
- Center for Medical Image Computing, University College London, UK
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
| |
Collapse
|
19
|
Shaul R, David I, Shitrit O, Riklin Raviv T. Subsampled brain MRI reconstruction by generative adversarial neural networks. Med Image Anal 2020; 65:101747. [PMID: 32593933 DOI: 10.1016/j.media.2020.101747] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 01/27/2023]
Abstract
A main challenge in magnetic resonance imaging (MRI) is speeding up scan time. Beyond improving patient experience and reducing operational costs, faster scans are essential for time-sensitive imaging, such as fetal, cardiac, or functional MRI, where temporal resolution is important and target movement is unavoidable, yet must be reduced. Current MRI acquisition methods speed up scan time at the expense of lower spatial resolution and costlier hardware. We introduce a practical, software-only framework, based on deep learning, for accelerating MRI acquisition, while maintaining anatomically meaningful imaging. This is accomplished by MRI subsampling followed by estimating the missing k-space samples via generative adversarial neural networks. A generator-discriminator interplay enables the introduction of an adversarial cost in addition to fidelity and image-quality losses used for optimizing the reconstruction. Promising reconstruction results are obtained from feasible sampling patterns of up to a fivefold acceleration of diverse brain MRIs, from a large publicly available dataset of healthy adult scans as well as multimodal acquisitions of multiple sclerosis patients and dynamic contrast-enhanced MRI (DCE-MRI) sequences of stroke and tumor patients. Clinical usability of the reconstructed MRI scans is assessed by performing either lesion or healthy tissue segmentation and comparing the results to those obtained by using the original, fully sampled images. Reconstruction quality and usability of the DCE-MRI sequences is demonstrated by calculating the pharmacokinetic (PK) parameters. The proposed MRI reconstruction approach is shown to outperform state-of-the-art methods for all datasets tested in terms of the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), as well as either the mean squared error (MSE) with respect to the PK parameters, calculated for the fully sampled DCE-MRI sequences, or the segmentation compatibility, measured in terms of Dice scores and Hausdorff distance. The code is available on GitHub.
Collapse
Affiliation(s)
- Roy Shaul
- The School of Electrical and Computer Engineering The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Israel
| | - Itamar David
- The School of Electrical and Computer Engineering The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Israel
| | - Ohad Shitrit
- The School of Electrical and Computer Engineering The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Israel
| | - Tammy Riklin Raviv
- The School of Electrical and Computer Engineering The Zlotowski Center for Neuroscience Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
20
|
Carass A, Roy S, Gherman A, Reinhold JC, Jesson A, Arbel T, Maier O, Handels H, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Pham DL, Crainiceanu CM, Calabresi PA, Prince JL, Roncal WRG, Shinohara RT, Oguz I. Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. Sci Rep 2020; 10:8242. [PMID: 32427874 PMCID: PMC7237671 DOI: 10.1038/s41598-020-64803-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
The Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image segmentation algorithms. It offers a standardized measure of segmentation accuracy which has proven useful. However, it offers diminishing insight when the number of objects is unknown, such as in white matter lesion segmentation of multiple sclerosis (MS) patients. We present a refinement for finer grained parsing of SDI results in situations where the number of objects is unknown. We explore these ideas with two case studies showing what can be learned from our two presented studies. Our first study explores an inter-rater comparison, showing that smaller lesions cannot be reliably identified. In our second case study, we demonstrate fusing multiple MS lesion segmentation algorithms based on the insights into the algorithms provided by our analysis to generate a segmentation that exhibits improved performance. This work demonstrates the wealth of information that can be learned from refined analysis of medical image segmentations.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jacob C Reinhold
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525, HP, Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525, GA, Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - William R Gray Roncal
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ipek Oguz
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
21
|
Valcarcel AM, Muschelli J, Pham DL, Martin ML, Yushkevich P, Brandstadter R, Patterson KR, Schindler MK, Calabresi PA, Bakshi R, Shinohara RT. TAPAS: A Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis. Neuroimage Clin 2020; 27:102256. [PMID: 32428847 PMCID: PMC7236059 DOI: 10.1016/j.nicl.2020.102256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/15/2022]
Abstract
Total brain white matter lesion (WML) volume is the most widely established magnetic resonance imaging (MRI) outcome measure in studies of multiple sclerosis (MS). To estimate WML volume, there are a number of automatic segmentation methods available, yet manual delineation remains the gold standard approach. Automatic approaches often yield a probability map to which a threshold is applied to create lesion segmentation masks. Unfortunately, few approaches systematically determine the threshold employed; many methods use a manually selected threshold, thus introducing human error and bias into the automated procedure. In this study, we propose and validate an automatic thresholding algorithm, Thresholding Approach for Probability Map Automatic Segmentation in Multiple Sclerosis (TAPAS), to obtain subject-specific threshold estimates for probability map automatic segmentation of T2-weighted (T2) hyperintense WMLs. Using multimodal MRI, the proposed method applies an automatic segmentation algorithm to obtain probability maps. We obtain the true subject-specific threshold that maximizes the Sørensen-Dice similarity coefficient (DSC). Then the subject-specific thresholds are modeled on a naive estimate of volume using a generalized additive model. Applying this model, we predict a subject-specific threshold in data not used for training. We ran a Monte Carlo-resampled split-sample cross-validation (100 validation sets) using two data sets: the first obtained from the Johns Hopkins Hospital (JHH) on a Philips 3 Tesla (3T) scanner (n = 94) and a second collected at the Brigham and Women's Hospital (BWH) using a Siemens 3T scanner (n = 40). By means of the proposed automated technique, in the JHH data we found an average reduction in subject-level absolute error of 0.1 mL per one mL increase in manual volume. Using Bland-Altman analysis, we found that volumetric bias associated with group-level thresholding was mitigated when applying TAPAS. The BWH data showed similar absolute error estimates using group-level thresholding or TAPAS likely since Bland-Altman analyses indicated no systematic biases associated with group or TAPAS volume estimates. The current study presents the first validated fully automated method for subject-specific threshold prediction to segment brain lesions.
Collapse
Affiliation(s)
- Alessandra M Valcarcel
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - John Muschelli
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287, United States
| | - Dzung L Pham
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, United States
| | - Melissa Lynne Martin
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Paul Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rachel Brandstadter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kristina R Patterson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Matthew K Schindler
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Peter A Calabresi
- Department of Neurology, School of Medicine Johns Hopkins University, Baltimore, MD 21287, United States
| | - Rohit Bakshi
- Department of Neurology, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Department of Radiology, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
22
|
Carass A, Cuzzocreo JL, Han S, Hernandez-Castillo CR, Rasser PE, Ganz M, Beliveau V, Dolz J, Ben Ayed I, Desrosiers C, Thyreau B, Romero JE, Coupé P, Manjón JV, Fonov VS, Collins DL, Ying SH, Onyike CU, Crocetti D, Landman BA, Mostofsky SH, Thompson PM, Prince JL. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage 2018; 183:150-172. [PMID: 30099076 PMCID: PMC6271471 DOI: 10.1016/j.neuroimage.2018.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/26/2023] Open
Abstract
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Shuo Han
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 20892, USA
| | - Carlos R Hernandez-Castillo
- Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Paul E Rasser
- Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan, NSW, Australia
| | - Melanie Ganz
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose Dolz
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Ismail Ben Ayed
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Christian Desrosiers
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Benjamin Thyreau
- Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - José E Romero
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Pierrick Coupé
- University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France; CNRS, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France
| | - José V Manjón
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vladimir S Fonov
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - D Louis Collins
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah H Ying
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Deana Crocetti
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA; Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
23
|
Knight J, Taylor GW, Khademi A. Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation. Magn Reson Imaging 2018; 54:119-136. [PMID: 29932970 DOI: 10.1016/j.mri.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Many algorithms have been proposed for automated segmentation of white matter hyperintensities (WMH) in brain MRI. Yet, broad uptake of any particular algorithm has not been observed. In this work, we argue that this may be due to variable and suboptimal validation data and frameworks, precluding direct comparison of methods on heterogeneous data. As a solution, we present Leave-One-Source-Out Cross Validation (LOSO-CV), which leverages all available data for performance estimation, and show that this gives more realistic (lower) estimates of segmentation algorithm performance on data from different scanners. We also develop a FLAIR-only WMH segmentation algorithm: Voxel-Wise Logistic Regression (VLR), inspired by the open-source Lesion Prediction Algorithm (LPA). Our variant facilitates more accurate parameter estimation, and permits intuitive interpretation of model parameters. We illustrate the performance of the VLR algorithm using the LOSO-CV framework with a dataset comprising freely available data from several recent competitions (96 images from 7 scanners). The performance of the VLR algorithm (median Similarity Index of 0.69) is compared to its LPA predecessor (0.58), and the results of the VLR algorithm in the 2017 WMH Segmentation Competition are also presented.
Collapse
Affiliation(s)
- Jesse Knight
- University of Guelph, 50 Stone Rd E, Guelph, Canada.
| | - Graham W Taylor
- University of Guelph, 50 Stone Rd E, Guelph, Canada; Vector Institute, 101 College Street, Toronto, Suite HL30B, Canada
| | - April Khademi
- Ryerson University, 350 Victoria St, Toronto, Canada
| |
Collapse
|
24
|
Valcarcel AM, Linn KA, Vandekar SN, Satterthwaite TD, Muschelli J, Calabresi PA, Pham DL, Martin ML, Shinohara RT. MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions. J Neuroimaging 2018. [PMID: 29516669 DOI: 10.1111/jon.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WMLs) in multiple sclerosis. While WMLs have been studied for over two decades using MRI, automated segmentation remains challenging. Although the majority of statistical techniques for the automated segmentation of WMLs are based on single imaging modalities, recent advances have used multimodal techniques for identifying WMLs. Complementary modalities emphasize different tissue properties, which help identify interrelated features of lesions. METHODS Method for Inter-Modal Segmentation Analysis (MIMoSA), a fully automatic lesion segmentation algorithm that utilizes novel covariance features from intermodal coupling regression in addition to mean structure to model the probability lesion is contained in each voxel, is proposed. MIMoSA was validated by comparison with both expert manual and other automated segmentation methods in two datasets. The first included 98 subjects imaged at Johns Hopkins Hospital in which bootstrap cross-validation was used to compare the performance of MIMoSA against OASIS and LesionTOADS, two popular automatic segmentation approaches. For a secondary validation, a publicly available data from a segmentation challenge were used for performance benchmarking. RESULTS In the Johns Hopkins study, MIMoSA yielded average Sørensen-Dice coefficient (DSC) of .57 and partial AUC of .68 calculated with false positive rates up to 1%. This was superior to performance using OASIS and LesionTOADS. The proposed method also performed competitively in the segmentation challenge dataset. CONCLUSION MIMoSA resulted in statistically significant improvements in lesion segmentation performance compared with LesionTOADS and OASIS, and performed competitively in an additional validation study.
Collapse
Affiliation(s)
- Alessandra M Valcarcel
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kristin A Linn
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Simon N Vandekar
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Muschelli
- Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dzung L Pham
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Melissa Lynne Martin
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|