1
|
Hossain R, Sultana A, Nuinoon M, Noonong K, Tangpong J, Hossain KH, Rahman MA. A Critical Review of the Neuropharmacological Effects of Kratom: An Insight from the Functional Array of Identified Natural Compounds. Molecules 2023; 28:7372. [PMID: 37959790 PMCID: PMC10648626 DOI: 10.3390/molecules28217372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Kratom (Mitragyna speciosa Korth. Havil) has been considered a narcotic drug for years, barred by the law in many parts of the world, while extensive research over the past few decades proves its several beneficial effects, some of which are still in ambiguity. In many countries, including Thailand, the indiscriminate use and abuse of kratom have led to the loss of life. Nonetheless, researchers have isolated almost fifty pure compounds from kratom, most of which are alkaloids. The most prevalent compounds, mitragynine and 7-hydroxy mitragynine, are reported to display agonist morphine-like effects on human μ-opioid receptors and antagonists at κ- and δ-opioid receptors with multimodal effects at other central receptors. Mitragynine is also credited to be one of the modulatory molecules for the Keap1-Nrf2 pathway and SOD, CAT, GST, and associated genes' upregulatory cascades, leading it to play a pivotal role in neuroprotective actions while evidently causing neuronal disorders at high doses. Additionally, its anti-inflammatory, antioxidative, antibacterial, and gastroprotective effects are well-cited. In this context, this review focuses on the research gap to resolve ambiguities about the neuronal effects of kratom and demonstrate its prospects as a therapeutic target for neurological disorders associated with other pharmacological effects.
Collapse
Affiliation(s)
- Rahni Hossain
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Abida Sultana
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Manit Nuinoon
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kunwadee Noonong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kazi Helal Hossain
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes (HMRI), Pasadena, CA 91105, USA;
| | - Md Atiar Rahman
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
2
|
Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, Yusof NSM, Mansor SM, Baharum SN, Ng CL. Comparative metabolomics analysis reveals alkaloid repertoires in young and mature Mitragyna speciosa (Korth.) Havil. Leaves. PLoS One 2023; 18:e0283147. [PMID: 36943850 PMCID: PMC10030037 DOI: 10.1371/journal.pone.0283147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
Collapse
Affiliation(s)
- Rubashiny Veeramohan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Arief Izzairy Zamani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Leave a Nest Malaysia Sdn Bhd, Cyberjaya, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohd Fauzi Abd Razak
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | | | | | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ. Growth modulation and metabolic responses of Ganoderma boninense to salicylic acid stress. PLoS One 2021; 16:e0262029. [PMID: 34972183 PMCID: PMC8719765 DOI: 10.1371/journal.pone.0262029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
Collapse
Affiliation(s)
- Cu Ean Ong
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya, Selangor, Malaysia
| | - Rafidah Ahmad
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - You Keng Goh
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Kah Joo Goh
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low CF, Goh HH, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. BIOLOGY 2021; 10:1086. [PMID: 34827079 PMCID: PMC8614662 DOI: 10.3390/biology10111086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (M.E.N.); (Y.M.); (F.M.J.); (W.M.A.); (C.-F.L.); (H.-H.G.); (K.A.A.); (H.B.)
| |
Collapse
|
5
|
Antibiotic Biosynthesis Pathways from Endophytic Streptomyces SUK 48 through Metabolomics and Genomics Approaches. Antibiotics (Basel) 2021; 10:antibiotics10080969. [PMID: 34439018 PMCID: PMC8388883 DOI: 10.3390/antibiotics10080969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
Streptomyces sp. has been known to be a major antibiotic producer since the 1940s. As the number of cases related to resistance pathogens infection increases yearly, discovering the biosynthesis pathways of antibiotic has become important. In this study, we present the streamline of a project report summary; the genome data and metabolome data of newly isolated Streptomyces SUK 48 strain are also analyzed. The antibacterial activity of its crude extract is also determined. To obtain genome data, the genomic DNA of SUK 48 was extracted using a commercial kit (Promega) and sent for sequencing (Pac Biosciences technology platform, Menlo Park, CA, USA). The raw data were assembled and polished using Hierarchical Genome Assembly Process 4.0 (HGAP 4.0). The assembled data were structurally predicted using tRNAscan-SE and rnammer. Then, the data were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database and antiSMASH analysis. Meanwhile, the metabolite profile of SUK 48 was determined using liquid chromatography-mass spectrophotometry (LC-MS) for both negative and positive modes. The results showed that the presence of kanamycin and gentamicin, as well as the other 11 antibiotics. Nevertheless, the biosynthesis pathways of aurantioclavine were also found. The cytotoxicity activity showed IC50 value was at 0.35 ± 1.35 mg/mL on the cell viability of HEK 293. In conclusion, Streptomyces sp. SUK 48 has proven to be a non-toxic antibiotic producer such as auranticlavine and gentamicin.
Collapse
|
6
|
Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL. Metabolite profiling of endophytic Streptomyces spp. and its antiplasmodial potential. PeerJ 2021; 9:e10816. [PMID: 33777509 PMCID: PMC7971094 DOI: 10.7717/peerj.10816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach. Methods Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts. Results The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.
Collapse
Affiliation(s)
- Siti Junaidah Ahmad
- Faculty of Health Sciences, University of Sultan Zainal Abidin, Kuala Nerus, Terengganu, Malaysia.,Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noor Wini Mazlan
- Analytical and Environmental Chemistry, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Mohd Shukri Baba
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University, Kuantan, Pahang, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Metabolic Profile of Scytalidium parasiticum- Ganoderma boninense Co-Cultures Revealed the Alkaloids, Flavonoids and Fatty Acids that Contribute to Anti-Ganoderma Activity. Molecules 2020; 25:molecules25245965. [PMID: 33339375 PMCID: PMC7767070 DOI: 10.3390/molecules25245965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022] Open
Abstract
In solving the issue of basal stem rot diseases caused by Ganoderma, an investigation of Scytalidium parasiticum as a biological control agent that suppresses Ganoderma infection has gained our interest, as it is more environmentally friendly. Recently, the fungal co-cultivation has emerged as a promising method to discover novel antimicrobial metabolites. In this study, an established technique of co-culturing Scytalidium parasiticum and Ganoderma boninense was applied to produce and induce metabolites that have antifungal activity against G. boninense. The crude extract from the co-culture media was applied to a High Performance Liquid Chromatography (HPLC) preparative column to isolate the bioactive compounds, which were tested against G. boninense. The fractions that showed inhibition against G. boninense were sent for a Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS) analysis to further identify the compounds that were responsible for the microbicidal activity. Interestingly, we found that eudistomin I, naringenin 7-O-beta-D-glucoside and penipanoid A, which were present in different abundances in all the active fractions, except in the control, could be the antimicrobial metabolites. In addition, the abundance of fatty acids, such as oleic acid and stearamide in the active fraction, also enhanced the antimicrobial activity. This comprehensive metabolomics study could be used as the basis for isolating biocontrol compounds to be applied in oil palm fields to combat a Ganoderma infection.
Collapse
|
8
|
Meireles V, Rosado T, Barroso M, Soares S, Gonçalves J, Luís Â, Caramelo D, Simão AY, Fernández N, Duarte AP, Gallardo E. Mitragyna speciosa: Clinical, Toxicological Aspects and Analysis in Biological and Non-Biological Samples. MEDICINES 2019; 6:medicines6010035. [PMID: 30836609 PMCID: PMC6473843 DOI: 10.3390/medicines6010035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
The abuse of psychotropic substances is a well-known phenomenon, and many of them are usually associated with ancestral traditions and home remedies. This is the case of Mitragyna speciosa (kratom), a tropical tree used to improve work performance and to withstand great heat. According to several published studies, the main reasons for kratom consumption involve improving sexual performance and endurance, but also social and recreational uses for the feeling of happiness and euphoria; it is also used for medical purposes as a pain reliever, and in the treatment of diarrhea, fever, diabetes, and hypertension. However, this plant has gained more popularity amongst young people over the last years. Since it is available on the internet for purchase, its use is now widely as a drug of abuse, namely as a new psychoactive substance, being a cheaper alternative to opioids that does not require medical prescription in most countries. According to internet surveys by the European Monitoring Centre for Drugs and Drug Addiction in 2008 and 2011, kratom was one of the most widely supplied new psychoactive substances. The composition of kratom is complex; in fact, more than 40 different alkaloids have been identified in Mitragyna speciosa so far, the major constituent being mitragynine, which is exclusive to this plant. Besides mitragynine, alkaloids such as corynantheidine and 7-hydroxamitragynine also present pharmacological effects, a feature that may be attributed to the remaining constituents as well. The main goal of this review is not only to understand the origin, chemistry, consumption, and analytical methodologies for analysis and mechanism of action, but also the use of secondary metabolites of kratom as therapeutic drugs and the assessment of potential risks associated with its consumption, in order to aid health professionals, toxicologists, and police authorities in cases where this plant is present.
Collapse
Affiliation(s)
- Vânia Meireles
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal.
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Joana Gonçalves
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Débora Caramelo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Ana Y Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Nicolás Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA). Junín 956 7mo piso. Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina.
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
| |
Collapse
|