1
|
Anyanwu IN, Beggel S, Sikoki FD, Okuku EO, Unyimadu JP, Geist J. Pollution of the Niger Delta with total petroleum hydrocarbons, heavy metals and nutrients in relation to seasonal dynamics. Sci Rep 2023; 13:14079. [PMID: 37640786 PMCID: PMC10462702 DOI: 10.1038/s41598-023-40995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
The African Niger Delta is among the world's most important wetlands in which the ecological effects of intensive oil exploitation and global change are not well documented. We characterized the seasonal dynamics and pollution with total-petroleum-hydrocarbons (TPHs), heavy-metals (HMs) and nutrient-loads in relation to climate-driven variables. High TPH concentrations up to 889 mg/L and HMs up to 13.119 mg/L were found in water samples, with pronounced spatio-temporal variation throughout the year. HM pollution index and contamination factor indicate serious ecological and human health hazards, especially for Cd, Cu, Hg, and Ni. Significant differences in TPHs/HMs were observed between sites and seasons, with correlations between TPHs-HMs, and climate-variables and TPHs-HMs. Nutrient levels, turbidity, salinity, temperature, and SO42- were high and interlinked with the variability of TPHs/HMs being greatest during wet season. These findings suggest an urgent need for improved pollution control in the Niger Delta taking into account the observed spatio-temporal variation and the exacerbation of effects in light of climate change. Given the high levels of contamination, further assessments of exposure effects and bioaccumulation in biota should include future climate change scenarios and effects on humans who intensively depend on the system for drinking water, food supply and livelihood.
Collapse
Affiliation(s)
- Ihuoma N Anyanwu
- Department of Biology, Faculty of Biological Sciences, Alex Ekwueme Federal University Ndufu-Alike, P.M.B 1010, Abakaliki, Nigeria.
| | - Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Muehlenweg 22, 85354, Freising, Germany
| | - Francis D Sikoki
- Department of Animal and Environmental Biology, Faculty of Science, University of Port Harcourt, P.M.B.1023, Choba, Nigeria
| | - Eric O Okuku
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya
| | - John-Paul Unyimadu
- Nigerian Institute for Oceanography and Marine Research, Victoria Island, P.O. Box 74304, Lagos, Nigeria
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Muehlenweg 22, 85354, Freising, Germany
| |
Collapse
|
2
|
Onyena AP, Nkwoji JA, Chukwu LO, Walker TR, Sam K. Risk assessment of sediment PAH, BTEX, and emerging contaminants in Chanomi Creek Niger Delta, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1080. [PMID: 37615789 DOI: 10.1007/s10661-023-11703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
This study assessed the levels of polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylene (BTEX), and emerging contaminants in Chanomi Creek. Sediment samples were collected between March 2019 and July 2020 to evaluate the concentrations of PAH, BTEX, and emerging contaminants using GC-MS and GC-FID with Headspace extraction. Results indicated mean PAH concentrations were 22.691 ± 15.09 µg/kg. The highest individual PAH concentrations were fluorene (7.085 µg/kg), naphthalene (4.517 µg/kg), and phenanthrene (3.081 µg/kg). Carbazole (0.828 µg/kg) was discovered as a novel environmental toxin with dioxin-like toxicity and widespread prevalence in sediments. The most common congener (25%) was ethylbenzene, followed by toluene and ortho- and meta-xylene (21%) and benzene (13%). The analysis of diagnostic ratios revealed that the main factors responsible for the presence of PAHs in the study area are the residential use of firewood, emissions from industrial activities, bush burning, and petroleum slicks. The risk assessment indicated that most PAHs exceeded the permissible risk quotient values, suggesting a moderate to high ecological risk. However, cutaneous exposure to PAHs and BTEX was found to have minimal impact on human health, with no significant hazards identified in adults and children. Nevertheless, the study revealed low cancer risks associated with PAH and BTEX compounds for both age groups. The continued discharge of PAHs and BTEX compounds into Chanomi Creek could have significant long-term negative effects on human and aquatic health. Thus, contamination risk awareness programs and the development of stringent contextual thresholds for identified contaminants could enhance environmental and public health protection.
Collapse
Affiliation(s)
- Amarachi P Onyena
- Department of Marine Sciences, Faculty of Science, University of Lagos, Lagos State, Nigeria.
- Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria.
| | - Joseph A Nkwoji
- Department of Marine Sciences, Faculty of Science, University of Lagos, Lagos State, Nigeria
| | - Lucian O Chukwu
- Department of Marine Sciences, Faculty of Science, University of Lagos, Lagos State, Nigeria
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| | - Kabari Sam
- Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
- School of Environment, Geography and Geoscience, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK
| |
Collapse
|
3
|
Lele CK, Oluba OM, Adeyemi OS. Impact of COVID-19 lockdown and health risk modeling of polycyclic aromatic hydrocarbons in Onne, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:166. [PMID: 36446906 PMCID: PMC9708509 DOI: 10.1007/s10661-022-10670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The people living in Onne are highly vulnerable to PAH exposure due to constant exposure to black soot through oral, dermal, and inhalation routes. This work aims to determine the PAHs profile of selected soils in Onne, to determine the health risks associated with PAHs exposure through the soil, and to determine the impact of reduced industrial and other activities on the PAHs profile and associated public health risks. This study evaluated 16 priority polycyclic aromatic hydrocarbon (PAHs) pollutants in soil samples from the four (4) major clans in Onne using a gas chromatography flame ionization detector (GC-FID) during and after the COVID-19 lockdown. The results showed a differential presence of PAHs during and after the lockdown. Of the 16 priority PAHs, 10 and 8 PAHs were respectively detected during and after the COVID-19 lockdown. High molecular weight PAHs such as benzo(k)fluoranthene and benzo(a)anthracene were major contributors during the lockdown, while low molecular weight PAHs such as naphthalene, acenaphthylene, and fluorene were present at higher levels after the lockdown. An assessment of health risk by incremental lifetime cancer risks revealed that the entire population of Onne might be at risk of cancer development across periods, though a higher risk was presented during the lockdown. In addition, children under the age of 18 may be at greater risk. To the best of our knowledge, there is no previous report on the impact of the COVID-19 lockdown on soil PAH profile and health risks, with particular attention to the Onne industrial host community. Earlier work considered the ecological risks of heavy metals on dumpsites in Onne. Taken together, the PAH-contaminated soil in Onne poses an immediate health concern. Therefore, reduced anthropological activities, as evident during the COVID-19 lockdown, may play a role in exposure and cancer risk reduction. While there may not be another lockdown due to the challenging impacts associated with a physical lockdown, firmly controlled economic activity can be a solution if embraced by stakeholders. The COVID-19-lockdown was encumbered with restricted movements and security checks, which limited the number of samples collected. However, the Local Government Council (Department of the Environment) granted permission for the researchers to work with a minimal threat to their lives.
Collapse
Affiliation(s)
- Charity Kelechi Lele
- Landmark University SDG 3 (Good Health & Well-Being Research Group), Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Nigeria
| | - Olarewaju Michael Oluba
- Landmark University SDG 3 (Good Health & Well-Being Research Group), Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Nigeria.
| | - Oluyomi Stephen Adeyemi
- Landmark University SDG 3 (Good Health & Well-Being Research Group), Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Nigeria.
| |
Collapse
|
4
|
Machado ME, Nascimento MM, Bomfim Bahia PV, Martinez ST, Bittencourt de Andrade J. Analytical advances and challenges for the determination of heterocyclic aromatic compounds (NSO-HET) in sediment: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Anyanwu IN, Semple KT. Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons and Nitrogen-Containing Polycyclic Aromatic Hydrocarbon Analogues in Soils from the Niger Delta, Nigeria. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1977352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ihuoma N. Anyanwu
- Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom
| | - Kirk T. Semple
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom
| |
Collapse
|
6
|
Pongpiachan S, Surapipith V, Hashmi MZ, Aukkaravittayapun S, Poshyachinda S. An application of aromatic compounds as alternative tracers of tsunami backwash deposits. Heliyon 2021; 7:e06883. [PMID: 33997408 PMCID: PMC8099755 DOI: 10.1016/j.heliyon.2021.e06883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/30/2020] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides some comprehensive technical insights regarding the application of polycyclic aromatic hydrocarbons (PAHs) characterized by using Gas-Chromatography Mass Spectrometry. Although numerous chemical species such as water soluble ionic species (e.g. Na+, K+, Cl-, Ca2+, Mg2+) and acid leachable heavy metal fractions (e.g. Fe, Cd, Al, Mo, Sb, As, Cu, Zn, Pb, and Mn) can be used to characterize tsunami deposits, the knowledge of PAH congeners as alternative chemical species for identifying tsunami backwash deposits is strictly limited. This manuscript is exclusive because it aims to find some alternative chemical proxies in order to distinguish tsunami backwash deposits from typical marine sediments. A wide range of diagnostic binary ratios of PAH congeners have been selected in order to characterize Typical Marine Sediments (TMS), Tsunami backwash deposits (TBD), Onshore Tsunami Deposits (OTD) and Coastal Zone Soils (CZS). The state of the art and future perspectives coupled with both advantages and disadvantages of above mentioned chemical tracers will be critically reviewed and further discussed.
Collapse
Affiliation(s)
- Siwatt Pongpiachan
- NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), 118 Moo-3, Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240 Thailand
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an, 710075, China
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| | - Vanisa Surapipith
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| | | | - Suparerk Aukkaravittayapun
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| | - Saran Poshyachinda
- National Astronomical Research Institute of Thailand (Public Organization) (NARIT), 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
| |
Collapse
|