1
|
Sam YH, Nibali L, Ghuman M. Periodontal granulation tissue - To remove or not to remove, that is the question. J Periodontal Res 2024; 59:636-646. [PMID: 38686698 DOI: 10.1111/jre.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/02/2024]
Abstract
Formation of granulation tissue is a fundamental phase in periodontal wound healing with subsequent maturation leading to regeneration or repair. However, persistently inflamed granulation tissue presents in osseous defects as a result of periodontitis and is routinely disrupted and discarded with non-surgical and surgical therapy to facilitate wound healing or improve chances of regeneration. Histological assessment suggests that granulation tissue from periodontitis-affected sites is effectively a chronic inflammatory tissue resulting from impaired wound healing due to persistence of bacterial dysbiotic bioflim. Nevertheless, the immunomodulatory potential and stem cell characteristics in granulation tissue have also raised speculation about the tissue's regenerative potential. This has led to the conception and recent implementation of surgical techniques which preserve granulation tissue with the intention of enhancing innate regenerative potential and improve clinical outcomes. As knowledge of fundamental cellular and molecular functions regulating periodontitis-affected granulation tissue is still scarce, this review aimed to provide a summary of current understanding of granulation tissue in the context of periodontal wound healing. This may provide new insights into clinical practice related to the management of granulation tissue and stimulate further investigation.
Collapse
Affiliation(s)
- Ye Han Sam
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Mandeep Ghuman
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Bharuka T, Reche A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus 2024; 16:e54115. [PMID: 38487109 PMCID: PMC10938178 DOI: 10.7759/cureus.54115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Periodontal disease, characterized by inflammation and infection of the supporting structures of teeth, presents a significant challenge in dentistry and public health. Current treatment modalities, while effective to some extent, have limitations in achieving comprehensive periodontal tissue regeneration. This comprehensive review explores the potential of stem cell therapy in advancing the field of periodontal regeneration. Stem cells, including mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), hold promise due to their immunomodulatory effects, differentiation potential into periodontal tissues, and paracrine actions. Preclinical studies using various animal models have revealed encouraging outcomes, though standardization and long-term assessment remain challenges. Clinical trials and case studies demonstrate the safety and efficacy of stem cell therapy in real-world applications, especially in personalized regenerative medicine. Patient selection criteria, ethical considerations, and standardized treatment protocols are vital for successful clinical implementation. Stem cell therapy is poised to revolutionize periodontal regeneration, offering more effective, patient-tailored treatments while addressing the systemic health implications of periodontal disease. This transformative approach holds the potential to significantly impact clinical practice and improve the overall well-being of individuals affected by this prevalent oral health concern. Responsible regulatory compliance and a focus on ethical considerations will be essential as stem cell therapy evolves in periodontal regeneration.
Collapse
Affiliation(s)
- Tanvi Bharuka
- Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Arai M, Kaku M, Thant L, Kitami M, Ono Y, Dobashi A, Iwama H, Mizukoshi M, Kitami K, Matsumoto M, Saito I, Uoshima K. Effect of Sparc knockout on the extracellular matrix of mouse periodontal ligament cells. Biochem Biophys Res Commun 2024; 692:149364. [PMID: 38070276 DOI: 10.1016/j.bbrc.2023.149364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.
Collapse
Affiliation(s)
- Moe Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Lay Thant
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshiki Ono
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Azusa Dobashi
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hajime Iwama
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Ikhar AS, Kolte RA, Kolte AP, Purohit AR, Dahake RN. Efficacy of platelet rich fibrin with and without metformin in the treatment of periodontal osseous defects: a systematic review and meta-analysis. Acta Odontol Scand 2023; 81:186-195. [PMID: 35786379 DOI: 10.1080/00016357.2022.2095024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The systematic review and meta-analysis aimed to evaluate the efficacy of Metformin (MF) with Platelet Rich Fibrin (PRF) over PRF alone in the treatment of periodontal osseous defects. MATERIALS AND METHODS An extensive electronic search for articles published up to September 2021 was conducted on 'Embase', 'PubMed' and other library databases accompanied with manual searching. Randomized controlled trials (RCTs), comparing MF plus PRF Vs PRF alone in periodontal osseous defects were identified in which periodontal pocket depth (PPD), Clinical attachment level (CAL) and Intrabony defect depth (IBD Depth) were the outcome measures. RESULTS Four studies compared MF plus PRF vs .PRF alone in periodontal osseous defects. Meta-analysis was carried out for PPD reduction, CAL gain and IBD Depth changes. A standardized mean difference (SMD) of 1.86 for PPD reduction, 1.95 for CAL gain and 1.31 for IBD Depth reduction in all the studies was observed and the findings were statistically significant favouring test group. CONCLUSION The systematic review indicates supplemental benefits of combination therapy of MF + PRF over monotherapy in resolving periodontal osseous defects. In our quest to achieve maximum regeneration in periodontal osseous defects, combination therapies such as MF + PRF have reported to be better treatment choices over other modalities.
Collapse
Affiliation(s)
- Aishwarya S Ikhar
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Rajashri A Kolte
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Abhay P Kolte
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Aishwarya R Purohit
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Rahul N Dahake
- Department of Oral and Maxillofacial Surgery, VSPM Dental College and Research Centre, Nagpur, India
| |
Collapse
|
5
|
Zhang Z, Bi F, Guo W. Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth. Gels 2023; 9:gels9030245. [PMID: 36975694 PMCID: PMC10048036 DOI: 10.3390/gels9030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Tissue regeneration and remineralization in teeth is a long-term and complex biological process, including the regeneration of pulp and periodontal tissue, and re-mineralization of dentin, cementum and enamel. Suitable materials are needed to provide cell scaffolds, drug carriers or mineralization in this environment. These materials need to regulate the unique odontogenesis process. Hydrogel-based materials are considered good scaffolds for pulp and periodontal tissue repair in the field of tissue engineering due to their inherent biocompatibility and biodegradability, slow release of drugs, simulation of extracellular matrix, and the ability to provide a mineralized template. The excellent properties of hydrogels make them particularly attractive in the research of tissue regeneration and remineralization in teeth. This paper introduces the latest progress of hydrogel-based materials in pulp and periodontal tissue regeneration and hard tissue mineralization and puts forward prospects for their future application. Overall, this review reveals the application of hydrogel-based materials in tissue regeneration and remineralization in teeth.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
6
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2022. J Oral Biosci 2023; 65:1-12. [PMID: 36740188 DOI: 10.1016/j.job.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Tooth Development & Regeneration," "Tooth Bleaching," "Adipokines," "Milk Thistle," "Epithelial-Mesenchymal Transition," "Periodontitis," "Diagnosis," "Salivary Glands," "Tooth Root," "Exosome," "New Perspectives of Tooth Identification," "Dental Pulp," and "Saliva" in addition to the review articles by the winner of the "Lion Dental Research Award" ("Plastic changes in nociceptive pathways contributing to persistent orofacial pain") presented by the Japanese Association for Oral Biology. CONCLUSION The review articles in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge about various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
7
|
Current Application of iPS Cells in the Dental Tissue Regeneration. Biomedicines 2022; 10:biomedicines10123269. [PMID: 36552025 PMCID: PMC9775967 DOI: 10.3390/biomedicines10123269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
When teeth and periodontal tissues are severely damaged by severe caries, trauma, and periodontal disease, such cases may be subject to tooth extraction. As tooth loss leads to the deterioration of quality of life, the development of regenerative medicine for tooth and periodontal tissue is desired. Induced pluripotent stem cells (iPS cells) are promising cell resources for dental tissue regeneration because they offer high self-renewal and pluripotency, along with fewer ethical issues than embryonic stem cells. As iPS cells retain the epigenetic memory of donor cells, they have been established from various dental tissues for dental tissue regeneration. This review describes the regeneration of dental tissue using iPS cells. It is important to mimic the process of tooth development in dental tissue regeneration using iPS cells. Although iPS cells had safety issues in clinical applications, they have been overcome in recent years. Dental tissue regeneration using iPS cells has not yet been established, but it is expected in the future.
Collapse
|
8
|
Li M, Lv J, Yang Y, Cheng G, Guo S, Liu C, Ding Y. Advances of Hydrogel Therapy in Periodontal Regeneration-A Materials Perspective Review. Gels 2022; 8:gels8100624. [PMID: 36286125 PMCID: PMC9602018 DOI: 10.3390/gels8100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Hydrogel, a functional polymer material, has emerged as a promising technology for therapies for periodontal diseases. It has the potential to mimic the extracellular matrix and provide suitable attachment sites and growth environments for periodontal cells, with high biocompatibility, water retention, and slow release. In this paper, we have summarized the main components of hydrogel in periodontal tissue regeneration and have discussed the primary construction strategies of hydrogels as a reference for future work. Hydrogels provide an ideal microenvironment for cells and play a significant role in periodontal tissue engineering. The development of intelligent and multifunctional hydrogels for periodontal tissue regeneration is essential for future research.
Collapse
|
9
|
Vafaei S, Mansoori M, hashemi F, Basiri M. Exosome Odyssey to Original Line in Dental Regeneration. J Oral Biosci 2022; 64:271-278. [DOI: 10.1016/j.job.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
10
|
Yoshikazu Manabe, Shiga M, Kometani-Gunjigake K, Nakao-Kuroishi K, Mizuhara M, Toyono T, Seta Y, Kawamoto T. Fibrillin-1 regulates periostin expression during maintenance of periodontal homeostasis. J Dent Sci 2022; 17:1714-1721. [PMID: 36299324 PMCID: PMC9588790 DOI: 10.1016/j.jds.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background/purpose Human periodontal ligament consists of elastic system fibers, mainly fibrillin-1 (FBN1). Periostin (POSTN) maintains periodontal homeostasis. A previous study showed that the expression of Postn in periodontal ligament cells was decreased in mice underexpressing Fbn1. However, the relationship between FBN1 and POSTN is not fully understood in the context of mechanical stress. FBN1 contributes to transforming growth factor β1 (TGF-β1) activation; TGF-β1 upregulates the expression of POSTN in human periodontal ligament cells. This study examined whether FBN1 contributed to the maintenance of periodontal homeostasis in cultured human periodontal ligament cells. Materials and methods Human periodontal ligament fibroblasts (HPDLFs) were exposed to mechanical force via centrifugation. The expression of POSTN was examined by quantitative reverse transcription polymerase chain reaction. The phosphorylation of Smad2 in the TGF-β/Smad signaling pathway was monitored by western blotting. Results The expression levels of FBN1 and POSTN were not significantly decreased by centrifugation. However, the expression of POSTN after centrifugation significantly decreased upon knockdown of FBN1. The phosphorylation of Smad2 after centrifugation was decreased, regardless of FBN1 knockdown. Supplementation with 0.1 ng/ml recombinant human TGF-β1 rescued POSTN expression after centrifugation in HPDLFs upon knockdown of FBN1. Conclusion FBN1 regulates the expression of POSTN to maintain periodontal homeostasis via TGF-β/Smad signaling during centrifugation.
Collapse
|
11
|
Aksel H, Zhu X, Gauthier P, Zhang W, Azim AA, Huang GTJ. A new direction in managing avulsed teeth: stem cell-based de novo PDL regeneration. Stem Cell Res Ther 2022; 13:34. [PMID: 35090556 PMCID: PMC8796335 DOI: 10.1186/s13287-022-02700-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Management of avulsed teeth after replantation often leads to an unfavorable outcome. Damage to the thin and vulnerable periodontal ligament is the key reason for failure. Cell- or stem cell-based regenerative medicine has emerged in the past two decades as a promising clinical treatment modality to improve treatment outcomes. This concept has also been tested for the management of avulsed teeth in animal models. This review focuses on the discussion of limitation of current management protocols for avulsed teeth, cell-based therapy for periodontal ligament (PDL) regeneration in small and large animals, the challenges of de novo regeneration of PDL on denuded root in the edentulous region using a mini-swine model, and establishing a prospective new clinical protocol to manage avulsed teeth based on the current progress of cell-based PDL regeneration studies.
Collapse
Affiliation(s)
- Hacer Aksel
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, USA
| | - Xiaofei Zhu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.,VIP Dental Service and Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Philippe Gauthier
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.,Département d'endodontie, Faculté de Médecine Dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, USA
| | - Adham A Azim
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, USA.,Department of Endodontics, Arthur A Dugoni School of Dental Medicine, University of Pacific, San Francisco, California, USA
| | - George T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA. .,Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA. .,Cancer Research Building, University of Tennessee Health Science Center, 19 S. Manassas St. Lab Rm 256, office 255, Memphis, TN, 38163, USA.
| |
Collapse
|
12
|
Wu Z, Chen S, He Y, Zhang D, Zou S, Xie J, Zhou C. Connective tissue growth factor promotes cell-to-cell communication in human periodontal ligament stem cells via MAPK and PI3K pathway. J Periodontol 2021; 93:e60-e72. [PMID: 34532860 DOI: 10.1002/jper.21-0339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cell-cell communication is an essential process to respond to biological stimuli and sustain the micro environmental homeostasis of human periodontal ligament stem cells (hPDLSCs). Connective tissue growth factor (CTGF), a critical secreted matrix protein, exhibits significant tasks in regulating the cell-cell and cell-matrix interactions. This study aimed to explore the relationship between CTGF and cell communication and the underlying mechanism. METHODS qRT-PCR was used to detect CCN family, connexin, and pannexin family expression in hPDLSCs. Stimulation with CTGF, cell migration assay was performed to examine the wound repair. The scrape loading/dye transfer assay was employed to access lucifer Yellow molecules transfer efficiency mediated by cell-cell communication. Connexin43 (Cx43), Pannexin1 (Panx1), MAPK, and the PI3K/Akt signaling pathway proteins were examined via Western blotting. Immunofluorescence was applied to visualize the localization of specific proteins within cells. Corresponding pathway inhibitors were applied to hPDLSCs to detect Cx43, Panx1 expression, and intercellular communication induced by CTGF. RESULTS Our result showed that CTGF was the second most expressed CCN family member in hPDLSCs. Cx43, and Panx1 were the most widely expressed gap junction hemichannels in hPDLSCs. CTGF enhanced hPDLSCs migration in a dose-dependent manner. CTGF promoted cell-cell communication by up-regulating Cx43 and Panx1. CTGF induced Akt, JNK, and p38 phosphorylation and subcellular relocation. Inhibiting corresponding pathways reduced Cx43 expression, thereby weakening CTGF-induced cell-cell communication. However, the Panx1 expression in CTGF-treated hPDLSCs mainly depended on PI3K/Akt signaling. CONCLUSION We provided novel evidence that CTGF promoted cell-cell communication in hPDLSCs through MAPK and PI3K pathway.
Collapse
Affiliation(s)
- Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuying He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Yang P, Li C, Kou Y, Jiang Y, Li D, Liu S, Lu Y, Hasegawa T, Li M. Notum suppresses the osteogenic differentiation of periodontal ligament stem cells through the Wnt/Beta catenin signaling pathway. Arch Oral Biol 2021; 130:105211. [PMID: 34352447 DOI: 10.1016/j.archoralbio.2021.105211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aims of this study were to explore: (ⅰ) the effect of Notum on periodontitis in vivo; (ⅱ) the effect of Notum on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in vitro; and (ⅲ) the potential mechanism of Notum in inhibiting the osteogenic differentiation of hPDLSCs. DESIGN C57BL/6J mice were randomly assigned into two groups: control group (n = 4) and periodontitis group (n = 4). Immunohistochemical staining was used to evaluate the expression of Notum. In in vitro experiments, Western blot, qRT- PCR and ELISA were used to examine the expression of Notum in a lipopolysaccharide-induced inflammation model. Alkaline phosphatase staining was used to evaluate alkaline phosphatase activity. Western blot and qRT - PCR were used to measure the expression of osteogenic-related markers after adding human recombinant Notum and Notum inhibitor ABC99. In addition, LiCl, an agonist of the Wnt/Beta-catenin signaling pathway, was added to explore using Western blot whether Notum was involved in regulating the osteogenic differentiation of human periodontal ligament stem cells through the Wnt/Beta-catenin signaling pathway. RESULTS Notum was highly expressed in periodontal tissues of mice and lipopolysaccharide-induced inflammation cell model. The protein and messenger ribonucleic acid levels of hPDLSCs osteogenic markers were reduced after adding human recombinant Notum. However, the inhibitory effect of Notum on the osteogenic differentiation of hPDLSCs could be significantly reversed by adding LiCl. CONCLUSION These results demonstrated that Notum inhibited the osteogenic differentiation of hPDLSCs probably via the Wnt/Beta-catenin the downstream signaling pathway.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Congshan Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Yujun Jiang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Dongfang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Yupu Lu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China.
| |
Collapse
|
14
|
Evaluation of PRF Efficiency in the Treatment of Infrabony Defects. ACTA ACUST UNITED AC 2021; 41:79-86. [PMID: 32573474 DOI: 10.2478/prilozi-2020-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The present study aimed to investigate the effectiveness of PRF in the treatment of infrabony defects in patients with chronic periodontitis by evaluating the clinical outcome through periodontal depth, clinical attachment level at the baseline, 6 and 9 months post operatively. MATERIAL AND METHODS Sixty infrabony defects with probing depth ≥ 5 mm were treated. The inclusion criterion was the necessity for surgical bilateral maxillary treatment. By using split-mouth study design, each patient had one side treated with conventional flap surgery and the other side with conventional flap surgery and PRF. Clinical parameters, such as probing depth (PD) and clinical attachment lost (CAL), were recorded in both groups at baseline, 6 and 9 months post operatively. RESULTS Positive effects for all clinical and radiographic parameters were evident in the group with PRF. Mean PD reduction demonstrated statistically significant greater results in the test group (4.00±1.07 mm) compared to the control one (4.83±0.99 mm), p = 0.003 after 9 months postoperatively. After 9 months, there were better results in the test group compared to the control group for CAL (5.60±1.61 mm, 6.20±1.58 mm), but statistically not significant. CONCLUSION Additional use of PRF in the conventional surgical treatment of infrabony defects demonstrated better parameters than the open flap debridement alone.
Collapse
|
15
|
Connizzo BK, Sun L, Lacin N, Gendelman A, Solomonov I, Sagi I, Grodzinsky AJ, Naveh GRS. Nonuniformity in Periodontal Ligament: Mechanics and Matrix Composition. J Dent Res 2020; 100:179-186. [PMID: 33043806 DOI: 10.1177/0022034520962455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The periodontal ligament (PDL) plays a critical role in providing immediate response to abrupt high loads during mastication while also facilitating slow remodeling of the alveolar bone. The PDL exceptional functionality is permitted by the unique nonuniform structure of the tissue. Two distinct areas that are critical to PDL function were previously identified: the furcation and the dense collar. Despite their hypothesized functions in tooth movement and maintenance, these 2 regions have not yet been compared within the context of their native environment. Therefore, the objective of this study is to elucidate the extracellular matrix (ECM) structure, composition, and biomechanical function of the furcation and the collar regions while maintaining the 3-dimensional (3D) structure in the murine PDL. We identify significant difference between the collar and furcation regions in both structure and mechanical properties. Specifically, we observed unique longitudinal structures in the dense collar that correlate with type VI collagen and LOX, both of which are associated with increased type I collagen density and tissue stiffness and are therefore proposed to function as scaffolds for tooth stabilization. We also found that the collar region is stiffer than the furcation region and therefore suggest that the dense collar acts as a suspense structure of the tooth within the bone during physiological loading. The furcation region of the PDL contained more proteins associated with reduced stiffness and higher tissue remodeling, as well as a dual mechanical behavior, suggesting a critical function in loads transfer and remodeling of the alveolar bone. In summary, this work unravels the nonuniform nature of the PDL within the 3D structural context and establishes understanding of regional PDL function, which opens new avenues for future studies of remodeling, regeneration, and disease.
Collapse
Affiliation(s)
- B K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Sun
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| | - N Lacin
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| | - A Gendelman
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| | - I Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - I Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - A J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - G R S Naveh
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
16
|
Alsherif AA, Eltokhey HM, Taiema DA. Platelet rich fibrin versus ozone gel for periodontal regeneration in induced rats' intrabony three-wall periodontal defects. J Oral Biol Craniofac Res 2020; 10:639-649. [PMID: 32983858 PMCID: PMC7493000 DOI: 10.1016/j.jobcr.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The question of whether platelet rich fibrin and ozone can enhance regeneration of periodontal defect was addressed. MATERIALS AND METHODS three-wall periodontal defects were surgically created in 30 rats involving mesial aspect of right mandibular first molar. Rats were randomly assigned into three groups: 1) Group I (Positive control group). 2) Group II (Ozone treated group) and 3) Group III (PRF treated group). Two weeks after surgery, five rats from each group were euthanized and the remaining was euthanized 4 weeks post surgery. The degree of periodontal regeneration was evaluated using light microscope and scanning electron microscope. Histomorphometric measurements and anti-PCNA immunohistochemical counting were statistically analyzed. RESULTS group I showed intense inflammatory reaction with mild new bone formation. In group II, partial regeneration was seen with moderate new woven bone formation in 2 weeks period. After 4 weeks, almost complete restoration of periodontium was seen. In group III, after 2 weeks, moderate lamellar bone formation was observed. In 4 weeks period, the periodontal regeneration was almost completed. Histomorphometric analysis showed a significant difference between group I and group II. The difference between group I and group III was significant in 2 weeks and highly significant after 4 weeks. That between group II and group III was nonsignificant in 2 weeks and significant in 4 weeks. Anti-PCNA analysis was nonsignificant between groups. CONCLUSIONS both Platelet rich fibrin and ozone can improve histological parameters associated with healing of experimental intrabony periodontal defects in rats with the former being superior.
Collapse
Affiliation(s)
- Aya Anwar Alsherif
- Oral Biology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | | | - Doaa Ameen Taiema
- Oral Biology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
18
|
Yuh DY, Maekawa T, Li X, Kajikawa T, Bdeir K, Chavakis T, Hajishengallis G. The secreted protein DEL-1 activates a β3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration. J Biol Chem 2020; 295:7261-7273. [PMID: 32280065 PMCID: PMC7247308 DOI: 10.1074/jbc.ra120.013024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The integrin-binding secreted protein developmental endothelial locus-1 (DEL-1) is involved in the regulation of both the initiation and resolution of inflammation in different diseases, including periodontitis, an oral disorder characterized by inflammatory bone loss. Here, using a mouse model of bone regeneration and in vitro cell-based mechanistic studies, we investigated whether and how DEL-1 can promote alveolar bone regeneration during resolution of experimental periodontitis. Compared with WT mice, mice lacking DEL-1 or expressing a DEL-1 variant with an Asp-to-Glu substitution in the RGD motif ("RGE point mutant"), which does not interact with RGD-dependent integrins, exhibited defective bone regeneration. Local administration of DEL-1 or of its N-terminal segment containing the integrin-binding RGD motif, but not of the RGE point mutant, reversed the defective bone regeneration in the DEL-1-deficient mice. Moreover, DEL-1 (but not the RGE point mutant) promoted osteogenic differentiation of MC3T3-E1 osteoprogenitor cells or of primary calvarial osteoblastic cells in a β3 integrin-dependent manner. The ability of DEL-1 to promote in vitro osteogenesis, indicated by induction of osteogenic genes such as the master transcription factor Runt-related transcription factor-2 (Runx2) and by mineralized nodule formation, depended on its capacity to induce the phosphorylation of focal adhesion kinase (FAK) and of extracellular signal-regulated kinase 1/2 (ERK1/2). We conclude that DEL-1 can activate a β3 integrin-FAK-ERK1/2-RUNX2 pathway in osteoprogenitors and promote new bone formation in mice. These findings suggest that DEL-1 may be therapeutically exploited to restore bone lost due to periodontitis and perhaps other osteolytic conditions.
Collapse
Affiliation(s)
- Da-Yo Yuh
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tomoki Maekawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 001069 Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
19
|
Denes BJ, Ait-Lounis A, Wehrle-Haller B, Kiliaridis S. Core Matrisome Protein Signature During Periodontal Ligament Maturation From Pre-occlusal Eruption to Occlusal Function. Front Physiol 2020; 11:174. [PMID: 32194440 PMCID: PMC7066325 DOI: 10.3389/fphys.2020.00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The pre-occlusal eruption brings the molars into functional occlusion and initiates tensional strains during mastication. We hypothesized that upon establishment of occlusal contact, the periodontal ligament (PDL) undergoes cell and extracellular matrix maturation to adapt to this mechanical function. The PDL of 12 Wistar male rats were laser microdissected to observe the proteomic changes between stages of pre-occlusal eruption, initial occlusal contact and 1-week after occlusion. The proteome was screened by mass spectrometry and confirmed by immunofluorescence. The PDL underwent maturation upon establishment of occlusion. Downregulation of alpha-fetoprotein stem cell marker and protein synthesis markers indicate cell differentiation. Upregulated proteins were components of the extracellular matrix (ECM) and were characterized with the matrisome project database. In particular, periostin, a major protein of the PDL, was induced following occlusal contact and localized around collagen α-1 (III) bundles. This co-localization coincided with organization of collagen fibers in direction of the occlusal forces. Establishment of occlusion coincides with cellular differentiation and the maturation of the PDL. Co-localization of periostin and collagen with subsequent fiber organization may help counteract tensional forces and reinforce the ECM structure. This may be a key mechanism of the PDL to adapt to occlusal forces and maintain structural integrity.
Collapse
Affiliation(s)
- Balazs Jozsef Denes
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| | - Aouatef Ait-Lounis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Stavros Kiliaridis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Isaac A, Jivan F, Xin S, Hardin J, Luan X, Pandya M, Diekwisch TGH, Alge DL. Microporous Bio-orthogonally Annealed Particle Hydrogels for Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2019; 5:6395-6404. [PMID: 33417792 PMCID: PMC7992163 DOI: 10.1021/acsbiomaterials.9b01205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microporous annealed particle (MAP) hydrogels are an emerging class of biomaterials with the potential to improve outcomes in tissue repair and regeneration. Here, a new MAP hydrogel platform comprising poly(ethylene) glycol (PEG) hydrogel microparticles that are annealed in situ using bio-orthogonal tetrazine click chemistry is reported (i.e., TzMAP hydrogels). Briefly, clickable PEG-peptide hydrogel microparticles with extracellular matrix mimetic peptides to permit cell adhesion and enzymatic degradation were fabricated via submerged electrospraying and stoichiometrically controlled thiol-norbornene click chemistry. Subsequently, unreacted norbornene groups in the microparticles were leveraged for functionalization with bioactive proteins as well as annealing into TzMAP hydrogels via the tetrazine-norbornene click reaction, which is highly selective and proceeds spontaneously without requiring an initiator or catalyst. The results demonstrate that the clickable particles can be easily applied to a tissue-like defect and then annealed into an inherently microporous structure in situ. In addition, the ability to produce TzMAP hydrogels with heterogeneous properties by incorporating multiple types of hydrogel microspheres is demonstrated, first with fluorophore-functionalized hydrogel microparticles and then with protein-functionalized hydrogel microparticles. For the latter, tetrazine-modified alkaline phosphatase was conjugated to PEG hydrogel microparticles, which were mixed with nonfunctionalized microparticles and used to produce TzMAP hydrogels. A biomimetic mineralized/nonmineralized interface was then produced upon incubation in calcium glycerophosphate. Finally, platelet-derived growth factor-BB (PDGF-BB) and human periodontal ligament stem cells (PDLSC) were incorporated into the TzMAP hydrogels during the annealing step to demonstrate their potential for delivering regenerative therapeutics, specifically for periodontal tissue regeneration. In vitro characterization revealed excellent PDGF-BB retention as well as PDLSC growth and spreading. Moreover, PDGF-BB loading increased PDLSC proliferation within hydrogels by 90% and more than doubled the average volume per cell. Overall, these results demonstrate that TzMAP hydrogels are a versatile new platform for the delivery of stem cells and regenerative factors.
Collapse
Affiliation(s)
- Alisa Isaac
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA 77843
| | - Faraz Jivan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA 77843
| | - Shangjing Xin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA 77843
| | - Jacob Hardin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA 77843
| | - Xianghong Luan
- Department of Periodontics, Texas A&M University, Dallas, TX, USA 75246
| | - Mirali Pandya
- Department of Periodontics, Texas A&M University, Dallas, TX, USA 75246
| | | | - Daniel L. Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA 77843
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA 77843
| |
Collapse
|
21
|
Novais A, Lesieur J, Sadoine J, Slimani L, Baroukh B, Saubaméa B, Schmitt A, Vital S, Poliard A, Hélary C, Rochefort GY, Chaussain C, Gorin C. Priming Dental Pulp Stem Cells from Human Exfoliated Deciduous Teeth with Fibroblast Growth Factor-2 Enhances Mineralization Within Tissue-Engineered Constructs Implanted in Craniofacial Bone Defects. Stem Cells Transl Med 2019; 8:844-857. [PMID: 31016898 PMCID: PMC6646701 DOI: 10.1002/sctm.18-0182] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
The craniofacial area is prone to trauma or pathologies often resulting in large bone damages. One potential treatment option is the grafting of a tissue-engineered construct seeded with adult mesenchymal stem cells (MSCs). The dental pulp appears as a relevant source of MSCs, as dental pulp stem cells display strong osteogenic properties and are efficient at bone formation and repair. Fibroblast growth factor-2 (FGF-2) and/or hypoxia primings were shown to boost the angiogenesis potential of dental pulp stem cells from human exfoliated deciduous teeth (SHED). Based on these findings, we hypothesized here that these primings would also improve bone formation in the context of craniofacial bone repair. We found that both hypoxic and FGF-2 primings enhanced SHED proliferation and osteogenic differentiation into plastically compressed collagen hydrogels, with a much stronger effect observed with the FGF-2 priming. After implantation in immunodeficient mice, the tissue-engineered constructs seeded with FGF-2 primed SHED mediated faster intramembranous bone formation into critical size calvarial defects than the other groups (no priming and hypoxia priming). The results of this study highlight the interest of FGF-2 priming in tissue engineering for craniofacial bone repair. Stem Cells Translational Medicine 2019;8:844&857.
Collapse
Affiliation(s)
- Anita Novais
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| | - Julie Lesieur
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Jérémy Sadoine
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Lotfi Slimani
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Brigitte Baroukh
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Bruno Saubaméa
- Cellular and Molecular Imaging FacilityInserm US25, CNRS UMS 3612, Faculté de Pharmacie de Paris, Université Paris Descartes Sorbonne Paris CitéParisFrance
| | - Alain Schmitt
- Cochin Institute, Transmission Electron Microscopy Platform, INSERM U1016, CNRS UMR8104Université Paris Descartes Sorbonne Paris CitéParisFrance
| | - Sibylle Vital
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| | - Anne Poliard
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Christophe Hélary
- Laboratoire de Chimie de la Matière Condensée de ParisSorbonne Universités, CNRS, Collège de FranceParisFrance
| | - Gaël Y. Rochefort
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
| | - Catherine Chaussain
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| | - Caroline Gorin
- EA 2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant (PIV)Dental School, Université Paris Descartes Sorbonne Paris CitéMontrougeFrance
- AP‐HP Département d'OdontologieHôpitaux Universitaires PNVS, Charles Foix et Henri MondorIle de FranceFrance
| |
Collapse
|
22
|
Francis M, Pandya M, Gopinathan G, Lyu H, Ma W, Foyle D, Nares S, Luan X. Histone Methylation Mechanisms Modulate the Inflammatory Response of Periodontal Ligament Progenitors. Stem Cells Dev 2019; 28:1015-1025. [PMID: 31218921 PMCID: PMC6661920 DOI: 10.1089/scd.2019.0125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023] Open
Abstract
Inflammatory conditions affect periodontal ligament (PDL) homeostasis and diminish its regenerative capacity. The complexity of biological activities during an inflammatory response depends on genetic and epigenetic mechanisms. To characterize the epigenetic changes in response to periodontal pathogens we have focused on histone lysine methylation as a relatively stable chromatin modification involved in the epigenetic activation and repression of transcription and a prime candidate mechanism responsible for the exacerbated and prolonged response of periodontal cells and tissues to dental plaque biofilm. To determine the effect of inflammatory conditions on histone methylation profiles, related gene expression and cellular functions of human periodontal ligament (hPDL) progenitor cells, a hPDL cell culture system was subjected to bacterial cell wall toxin exposure [lipopolysaccharide (LPS)]. Chromatin immunoprecipitation-on-chip analysis revealed that healthy PDL cells featured high enrichment levels for the active H3K4me3 mark at COL1A1, COL3, and RUNX2 gene promoters, whereas there were high occupancy levels for the repressive H3K27me3 marks at DEFA4, CCL5, and IL-1β gene promoters. In response to LPS, H3K27me3 enrichment increased on extracellular matrix and osteogenesis lineage gene promoters, whereas H3K4me3 enrichment increased on the promoters of inflammatory response genes, suggestive of an involvement of epigenetic mechanisms in periodontal lineage differentiation and in the coordination of the periodontal inflammatory response. On a gene expression level, LPS treatment downregulated COL1A1, COL3A1, and RUNX2 expression and upregulated CCL5, DEFA4, and IL-1β gene expression. LPS also greatly affected PDL progenitor function, including a reduction in proliferation and differentiation potential and an increase in cell migration capacity. Confirming the role of epigenetic mechanisms in periodontal inflammatory conditions, our studies highlight the significant role of histone methylation mechanisms and modification enzymes in the inflammatory response to LPS bacterial cell wall toxins and periodontal stem cell function.
Collapse
Affiliation(s)
- Marybeth Francis
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
- Department of Oral Biology, UIC College of Dentistry, Chicago, Illinois
| | - Mirali Pandya
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| | - Gokul Gopinathan
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| | - Huling Lyu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Ma
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Deborah Foyle
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| | - Salvadore Nares
- Department of Periodontics, UIC College of Dentistry, Chicago, Illinois
| | - Xianghong Luan
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| |
Collapse
|
23
|
Li J, Zhang F, Zhang N, Geng X, Meng C, Wang X, Yang Y. Osteogenic capacity and cytotherapeutic potential of periodontal ligament cells for periodontal regeneration in vitro and in vivo. PeerJ 2019; 7:e6589. [PMID: 30867997 PMCID: PMC6410690 DOI: 10.7717/peerj.6589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/10/2019] [Indexed: 01/09/2023] Open
Abstract
Background The periodontal ligament cells (PDLCs) contain heterogeneous cell populations and possess stem-cell-like properties. PDLCs have attracted considerable attention as an option for periodontal regeneration. However, the osteogenic differentiation of PDLCs remains obscure owing to variable osteo-inductive methods and whether PDLCs could be directly used for periodontal regeneration without stem cell enrichment is uncertain. The aim of the present study was to clarify the osteogenic differentiation capacity of PDLCs and test PDLCs as an alternative to stem cells for periodontal regeneration. Methods We tested the performance of human PDLCs in osteo-inductive culture and transplantation in vivo while taking human bone marrow derived mesenchymal stem cells (hMSCs) as positive control. Proliferation of PDLCs and hMSCs in osteo-inductive condition were examined by MTT assay and colony formation assay. The osteogenic differentiations of PDLCs and hMSCs were assessed by Alkaline phosphatase (ALP) activity measurement, von Kossa staining, Alizarin red S staining and quantitative RT-PCR of osteogenic marker gene including RUNX2, ALP, OCN, Col I, BSP, OPN. We transplanted osteo-inductive PDLCs and hMSCs with hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds to immunodeficient mice to explore their biological behaviors in vivo by histological staining and immunohistochemical evaluation. Results After 14 days of osteo-induction, PDLCs exhibited significantly higher proliferation rate but lower colony-forming ability comparing with hMSCs. PDLCs demonstrated lower ALP activity and generated fewer mineralized nodules than hMSCs. PDLCs showed overall up-regulated expression of RUNX2, ALP, OCN, Col I, BSP, OPN after osteo-induction. Col I level of PDLCs in osteo-inductive group was significantly higher while RUNX2, ALP, OCN were lower than that of hMSCs. Massive fiber bundles were produced linking or circling the scaffold while the bone-like structures were limited in the PDLCs-loaded HA/TCP samples. The fiber bundles displayed strong positive Col I, but weak OCN and OPN staining. The in vivo results were consistent with the in vitro data, which confirmed strong collagen forming ability and considerable osteogenic potential of PDLCs. Conclusion It is encouraging to find that PDLCs exhibit higher proliferation, stronger collagen fiber formation capacity, but lower osteogenic differentiation ability in comparison with hMSCs. This characteristic is essential for the successful periodontal reconstruction which is based on the synchronization of fiber formation and bone deposition. Moreover, PDLCs have advantages such as good accessibility, abundant source, vigorous proliferation and evident osteogenic differentiation capacity when triggered properly. They can independently form PDL-like structure in vivo without specific stem cell enrichment procedure. The application of PDLCs may offer a novel cytotherapeutic option for future clinical periodontal reconstruction.
Collapse
Affiliation(s)
- Jinghui Li
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fangming Zhang
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuefei Geng
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cen Meng
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Wang
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Yang
- Department of stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
MicroRNA 210 Mediates VEGF Upregulation in Human Periodontal Ligament Stem Cells Cultured on 3DHydroxyapatite Ceramic Scaffold. Int J Mol Sci 2018; 19:ijms19123916. [PMID: 30563289 PMCID: PMC6320762 DOI: 10.3390/ijms19123916] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of the present research was the evaluation of the behavior of human periodontal ligament stem cells (hPDLSCs), cultured in presence of Endobon® Xenograft Granules (G), a fully deproteinated hydroxyapatite ceramic scaffold derived from cancellous bovine bone. hPDLSCs were seeded with and without G for 24 h to 1 week. The cell growth, morphological features, adhesiveness, differentiation ability, modulation of miR-210 and Vascular Endothelial Growth Factor (VEGF) secretion were analyzed by means of MTT assay, Scanning Electron Microscopy (SEM), Confocal Laser Scanning Microscopy (CLSM), Alizarin Red S assay, RT-PCR and ELISA test, respectively. hPDLSCs grown on the biomaterial showed the ability to form focal adhesion on the substrate, as demonstrated by vinculin expression. These data were supported by SEM analysis showing that an adhesiveness process associated to cell growth occurs between cells and biomaterials. The osteogenic differentiation, evaluated by morphological, biochemical, and RT-PCR analysis, was pronounced in the hPDLSCs grown in the three-dimensional inorganic bovine bone substitute in the presence of osteoinductive conditions. In addition, an upregulation of miR-210 and VEGF was evident in cells cultured in presence of the biomaterial. Our results inspire us to consider granules not only an adequate biocompatible three-dimensional biomaterial, but also an effective inductor of miR-210 and VEGF; in fact, the involvement of miR-210 in VEGF secretion could offer a novel regulatory system in the early steps of the bone-regeneration process.
Collapse
|
25
|
Raafat SN, Amin RM, Elmazar MM, Khattab MM, El-Khatib AS. The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone 2018; 117:60-69. [PMID: 30208342 DOI: 10.1016/j.bone.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
Statins like simvastatin (SIM) have demonstrated to have pleiotropic actions other than their conventional use as antilipidemic drugs. Also, nowadays natural scaffolds like platelets rich fibrin (PRF) showed promising results on bone regeneration. Aim This study compare the regenerative power of SIM and PRF added locally each as a sole filling material on induced bone defect and evaluate the combined effect using PRF loaded with SIM. MATERIALS AND METHODS: A critical size bone defect was induced in 48 male albino rats of average weight 150-200 g and were divided into 4 groups according to the filling material. Control, PRF, SIM, and SIM/PRF group. Each group was subdivided according to the sacrificing period into two subgroups (one and two-months postoperatively). Tibial specimens were evaluated histologically using masson trichrome (MT) special stain to detect areas of new bone formation, immunohistochemically using anti- BMP2 and anti-VEGF, serum levels of Osteoprotegerin (OPG), RANKL, osteocalcin and alkaline phosphatase enzyme (ALP) were measured one and two months postoperatively using ELISA, Finally bone mineral density (BMD) at the bone defect area was analyzed using digital X-ray one and two-months postoperatively. RESULTS: The percentage of newly formed bone increased significantly in the three groups vs the control group with the highest significant increase (p < 0.001) in the SIM/PRF group one month postoperatively. Also, SIM/PRF group was the only group which showed significant bone maturation two-months postoperatively compared to the other groups. Immunohistochemical analysis showed significant increase in positively stained BMP-2 and VEGF expression (p < 0.001) in the three groups vs the control group with the highest significant increase (p < 0.001) in the SIM/PRF group. Serum bone anabolic markers increased significantly in the SIM and SIM/PRF groups. In contrast, RANKL serum level decreased significantly in the SIM and SIM/PRF group one month postoperatively with no significant decrease in the PRF group vs the control group. Digital X-ray results revealed the highest BMD percent change was found in the SIM/PRF group and showed complete bone healing two-months postoperatively.
Collapse
Affiliation(s)
- Shereen N Raafat
- Department of Pharmacology and Toxicology, Faculty of Dentistry, The British University in Egypt (BUE), Egypt.
| | - Reham M Amin
- Department of Oral Biology, Faculty of Dentistry, The British University in Egypt (BUE), Egypt
| | - M M Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
26
|
Li J, Yin X, Luan Q. Comparative study of periodontal differentiation propensity of induced pluripotent stem cells from different tissue origins. J Periodontol 2018; 89:1230-1240. [PMID: 30039603 DOI: 10.1002/jper.18-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Despite being almost identical to embryonic stem cells, induced pluripotent stem cells (iPSCs) have been shown to possess a residual somatic memory that favors their differentiation propensity into donor tissue. To further confirm this assumption, we compare for the first time the periodontal differentiation tendency of human gingival fibroblast-derived iPSCs (G-iPSCs) and human neonatal skin fibroblast-derived iPSCs (S-iPSCs) to assess whether G-iPSCs could be more efficiently induced toward periodontal cells. METHODS We induced G- and S-iPSCs under the treatment of growth/differentiation factor-5 and connective tissue growth factor, respectively, for 14 days. Immunofluorescence staining and real-time polymerase chain reaction were used to compare their expression levels of related markers. Furthermore, a hydrogel carrier was developed to seed these periodontal progenitors for subcutaneous implantation in non-obese diabetic-severe combined immunodeficiency disease mice. Their differentiated periodontal phenotype maintenance was further assayed by HE observation, immunohistochemical staining and immunofluorescence co-localization with pre-labeled PKH67. RESULTS As expected, both iPSCs were inclined to differentiate back into their original lineage by expressing higher markers at both gene and protein levels in vitro. HE observation of G-iPSCs-seeded hydrogel constructs present more mineralized structure formation than S-iPSCs-seeded ones. Immunohistochemical staining and immunofluorescence analysis also showed stronger positive staining for periodontal related markers in G-iPSCs-seeded hydrogel constructs. CONCLUSIONS Our results preliminarily confirmed that both G- and S-iPSCs were inclined to differentiate back into their original tissue in vitro. Animal study further confirmed the phenotype maintenance of periodontal differentiated G-iPSCs, which highlighted their significant implications for therapeutic use in periodontal regeneration.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xiaohui Yin
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| |
Collapse
|
27
|
Zhan D, Guo L, Zheng L. Inhibition of the receptor for advanced glycation promotes proliferation and repair of human periodontal ligament fibroblasts in response to high glucose via the NF-κB signaling pathway. Arch Oral Biol 2017; 87:86-93. [PMID: 29274622 DOI: 10.1016/j.archoralbio.2017.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To observe if inhibition of the receptor for advanced glycation endproducts (RAGE) promotes proliferation and repair of human periodontal ligament fibroblasts (hPDLFs) stimulated by high glucose. In addition, we also discuss the effects of the NF-κB signaling pathway in relation to this process. METHODS Primary cultured hPDLFs were exposed to either low glucose (5.5 mmol/L) or high glucose (25 mmol/L), and RAGE expression was measured by Western blot analysis. Cells were cultured in high glucose with different concentrations of the RAGE inhibitor, FPS-ZM1. We measured cell proliferation using the Cell Counting Kit-8 and expression of collagen type 1 and fibronectin by real-time PCR and ELISA, respectively. The relative protein expression levels of NF-κB p65 and phosphorylated p65 were measured by Western blot analysis. RESULTS High glucose enhanced RAGE expression and suppressed cell growth. While FPS-ZM1 increased proliferation and expression of repair-related factors in high glucose, there was a concurrent decline in the phosphorylation level of NF-κB p65. CONCLUSION FPS-ZM1 rescued the proliferative capacity and repair capability of hPDLFs via the RAGE-NF-κB signaling pathway in response to high glucose.
Collapse
Affiliation(s)
- Danting Zhan
- Department of prosthodontics, The Oral Hospital Of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ling Guo
- Department of prosthodontics, The Oral Hospital Of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Lige Zheng
- Department of prosthodontics, The Oral Hospital Of Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
28
|
Yoshida S, Nakama T, Ishikawa K, Nakao S, Sonoda KH, Ishibashi T. Periostin in vitreoretinal diseases. Cell Mol Life Sci 2017; 74:4329-4337. [PMID: 28913545 PMCID: PMC11107734 DOI: 10.1007/s00018-017-2651-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
Proliferative vitreoretinal diseases such as diabetic retinopathy, proliferative vitreoretinopathy (PVR), and age-related macular degeneration are a leading cause of decreased vision and blindness in developed countries. In these diseases, retinal fibro(vascular) membrane (FVM) formation above and beneath the retina plays an important role. Gene expression profiling of human FVMs revealed significant upregulation of periostin. Subsequent analyses demonstrated increased periostin expression in the vitreous of patients with both proliferative diabetic retinopathy and PVR. Immunohistochemical analysis showed co-localization of periostin with α-SMA and M2 macrophage markers in FVMs. In vitro, periostin blockade inhibited migration and adhesion induced by PVR vitreous and transforming growth factor-β2 (TGF-β2). In vivo, a novel single-stranded RNAi agent targeting periostin showed the inhibitory effect on experimental retinal and choroidal FVM formation without affecting the viability of retinal cells. These results indicated that periostin is a pivotal molecule for FVM formation and a promising therapeutic target for these proliferative vitreoretinal diseases.
Collapse
Affiliation(s)
- Shigeo Yoshida
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan.
| | - Takahito Nakama
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| |
Collapse
|
29
|
Hyun SY, Lee JH, Kang KJ, Jang YJ. Effect of FGF-2, TGF-β-1, and BMPs on Teno/Ligamentogenesis and Osteo/Cementogenesis of Human Periodontal Ligament Stem Cells. Mol Cells 2017; 40:550-557. [PMID: 28835018 PMCID: PMC5582301 DOI: 10.14348/molcells.2017.0019] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/04/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
The periodontal ligament (PDL) is the connective tissue between tooth root and alveolar bone containing mesenchymal stem cells (MSC). It has been suggested that human periodontal ligament stem cells (hPDLSCs) differentiate into osteo/cementoblast and ligament progenitor cells. The periodontitis is a representative oral disease where the PDL tissue is collapsed, and regeneration of this tissue is important in periodontitis therapy. Fibroblast growth factor-2 (FGF-2) stimulates proliferation and differentiation of fibroblastic MSCs into various cell lineages. We evaluated the dose efficacy of FGF-2 for cytodifferentiation of hPDLSCs into ligament progenitor. The fibrous morphology was highly stimulated even at low FGF-2 concentrations, and the expression of teno/ligamentogenic markers, scleraxis and tenomodulin in hPDLSCs increased in a dose dependent manner of FGF-2. In contrast, expression of the osteo/cementogenic markers decreased, suggesting that FGF-2 might induce and maintain the ligamentogenic potential of hPDLSCs. Although the stimulation of tenocytic maturation by TGF-β1 was diminished by FGF-2, the inhibition of the expression of early ligamentogenic marker by TGF-β1 was redeemed by FGF-2 treatment. The stimulating effect of BMPs on osteo/cementogenesis was apparently suppressed by FGF-2. These results indicate that FGF-2 predominantly differentiates the hPDLSCs into teno/ligamentogenesis, and has an antagonistic effect on the hard tissue differentiation induced by BMP-2 and BMP-4.
Collapse
Affiliation(s)
- Sun-Yi Hyun
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| | - Ji-Hye Lee
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| | - Kyung-Jung Kang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116,
Korea
| |
Collapse
|
30
|
Miron RJ, Zucchelli G, Pikos MA, Salama M, Lee S, Guillemette V, Fujioka-Kobayashi M, Bishara M, Zhang Y, Wang HL, Chandad F, Nacopoulos C, Simonpieri A, Aalam AA, Felice P, Sammartino G, Ghanaati S, Hernandez MA, Choukroun J. Use of platelet-rich fibrin in regenerative dentistry: a systematic review. Clin Oral Investig 2017; 21:1913-1927. [PMID: 28551729 DOI: 10.1007/s00784-017-2133-z] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Research across many fields of medicine now points towards the clinical advantages of combining regenerative procedures with platelet-rich fibrin (PRF). This systematic review aimed to gather the extensive number of articles published to date on PRF in the dental field to better understand the clinical procedures where PRF may be utilized to enhance tissue/bone formation. MATERIALS AND METHODS Manuscripts were searched systematically until May 2016 and separated into the following categories: intrabony and furcation defect regeneration, extraction socket management, sinus lifting procedures, gingival recession treatment, and guided bone regeneration (GBR) including horizontal/vertical bone augmentation procedures. Only human randomized clinical trials were included for assessment. RESULTS In total, 35 articles were selected and divided accordingly (kappa = 0.94). Overall, the use of PRF has been most investigated in periodontology for the treatment of periodontal intrabony defects and gingival recessions where the majority of studies have demonstrated favorable results in soft tissue management and repair. Little to no randomized clinical trials were found for extraction socket management although PRF has been shown to significantly decrease by tenfold dry sockets of third molars. Very little to no data was available directly investigating the effects of PRF on new bone formation in GBR, horizontal/vertical bone augmentation procedures, treatment of peri-implantitis, and sinus lifting procedures. CONCLUSIONS Much investigation now supports the use of PRF for periodontal and soft tissue repair. Despite this, there remains a lack of well-conducted studies demonstrating convincingly the role of PRF during hard tissue bone regeneration. Future human randomized clinical studies evaluating the use of PRF on bone formation thus remain necessary. CLINICAL RELEVANCE PRF was shown to improve soft tissue generation and limit dimensional changes post-extraction, with little available data to date supporting its use in GBR.
Collapse
Affiliation(s)
- Richard J Miron
- College of Dental Medicine, Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Giovanni Zucchelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Maurice Salama
- College of Dental Medicine, Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Periodontology, Georgia University, Athens, GA, USA.,Goldstein Garber & Salama, Atlanta, GA, USA
| | - Samuel Lee
- International Academy of Dental Implantology, San Diego, CA, USA
| | | | - Masako Fujioka-Kobayashi
- College of Dental Medicine, Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mark Bishara
- West Bowmanville Dental, Bowmanville, Ontario, Canada
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Fatiha Chandad
- Department of Periodontology, Laval University, Quebec City, Canada
| | - Cleopatra Nacopoulos
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, School of Medicine, National and Kapodistrian, University of Athens, Athens, Greece
| | - Alain Simonpieri
- Oral Surgery Department, University Federico II Naples, Naples, Italy.,Periodontology and Implantology, Beausoleil, France.,Periodontology and Implantology, Marseille, France
| | - Alexandre Amir Aalam
- Department of Advanced Periodontics, USC School of Dentistry, Los Angeles, CA, USA
| | - Pietro Felice
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gilberto Sammartino
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Maria A Hernandez
- College of Dental Medicine, Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | |
Collapse
|
31
|
Kasahara Y, Usumi-Fujita R, Hosomichi J, Kaneko S, Ishida Y, Shibutani N, Shimizu Y, Okito A, Oishi S, Kuma Y, Yamaguchi H, Ono T. Low-intensity pulsed ultrasound reduces periodontal atrophy in occlusal hypofunctional teeth. Angle Orthod 2017; 87:709-716. [PMID: 28463085 DOI: 10.2319/121216-893.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To clarify whether low-intensity pulsed ultrasound (LIPUS) exposure has recovery effects on the hypofunctional periodontal ligament (PDL) and interradicular alveolar bone (IRAB). MATERIALS AND METHODS Twelve-week-old male Sprague-Dawley rats were divided into three groups (n = 5 each): a normal occlusion (C) group, an occlusal hypofunction (H) group, and an occlusal hypofunction group subjected to LIPUS (HL) treatment. Hypofunctional occlusion of the maxillary first molar (M1) of the H and HL groups was induced by the bite-raising technique. Only the HL group was irradiated with LIPUS for 5 days. The IRAB and PDL of M1 were examined by microcomputed tomography (micro-CT) analysis. To quantify mRNA expression of cytokines involved in PDL proliferation and development, real-time reverse transcription quantitative PCR (qRT-PCR) was performed for twist family bHLH transcription factor 1 (Twist1), periostin, and connective tissue growth factor (CTGF) in the PDL samples. RESULTS Micro-CT analysis showed that the PDL volume was decreased in the H group compared with that of the C and HL groups. Both bone volume per tissue volume (BV/TV) of IRAB was decreased in the H group compared with that in the C group. LIPUS exposure restored BV/TV in the IRAB of the HL group. qRT-PCR analysis showed that Twist1, periostin, and CTGF mRNA levels were decreased in the H group and increased in the HL group. CONCLUSION LIPUS exposure reduced the atrophic changes of alveolar bone by inducing the upregulation of periostin and CTGF expression to promote PDL healing after induction of occlusal hypofunction.
Collapse
|
32
|
Luan X, Zhou X, Trombetta-eSilva J, Francis M, Gaharwar A, Atsawasuwan P, Diekwisch T. MicroRNAs and Periodontal Homeostasis. J Dent Res 2017; 96:491-500. [PMID: 28068481 PMCID: PMC5453493 DOI: 10.1177/0022034516685711] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic effort toward harnessing the enormous therapeutic potential of these small molecules will greatly benefit the future of periodontal patient care.
Collapse
Affiliation(s)
- X. Luan
- Department of Oral Biology, UIC College of Dentistry, Chicago, IL, USA
| | - X. Zhou
- Department of Periodontics, UIC College of Dentistry, Chicago, IL, USA
| | - J. Trombetta-eSilva
- Texas A&M University College of Dentistry, Center for Craniofacial Research and Diagnosis and Department of Periodontics, Dallas, TX, USA
| | - M. Francis
- Department of Oral Biology, UIC College of Dentistry, Chicago, IL, USA
| | - A.K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA
| | - P. Atsawasuwan
- Department of Orthodontics, UIC College of Dentistry, Chicago, IL, USA
| | - T.G.H. Diekwisch
- Texas A&M University College of Dentistry, Center for Craniofacial Research and Diagnosis and Department of Periodontics, Dallas, TX, USA
| |
Collapse
|
33
|
Xu HY, Nie EM, Deng G, Lai LZ, Sun FY, Tian H, Fang FC, Zou YG, Wu BL, Ou-Yang J. Periostin is essential for periodontal ligament remodeling during orthodontic treatment. Mol Med Rep 2017; 15:1800-1806. [DOI: 10.3892/mmr.2017.6200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
|
34
|
Yin X, Li Y, Li J, Li P, Liu Y, Wen J, Luan Q. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells. Biochem Biophys Res Commun 2016; 473:726-32. [DOI: 10.1016/j.bbrc.2015.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/02/2015] [Indexed: 12/11/2022]
|
35
|
Jazayeri HE, Fahmy MD, Razavi M, Stein BE, Nowman A, Masri RM, Tayebi L. Dental Applications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 2016; 25:510-7. [DOI: 10.1111/jopr.12465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hossein E. Jazayeri
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
- Marquette University School of Dentistry; Milwaukee WI
| | - Mina D. Fahmy
- Marquette University School of Dentistry; Milwaukee WI
| | - Mehdi Razavi
- BCAST, Institute of Materials and Manufacturing; Brunel University London; Uxbridge London UK
- Brunel Institute for Bioengineering; Brunel University London; Uxbridge London UK
| | - Brett E. Stein
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
| | - Aatif Nowman
- Marquette University School of Dentistry; Milwaukee WI
| | - Radi M. Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry; University of Maryland School of Dentistry; Baltimore MD
| | - Lobat Tayebi
- Marquette University School of Dentistry; Milwaukee WI
- Department of Engineering Science; University of Oxford; Oxford UK
| |
Collapse
|
36
|
Dalheim MØ, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE. Efficient functionalization of alginate biomaterials. Biomaterials 2015; 80:146-156. [PMID: 26708091 DOI: 10.1016/j.biomaterials.2015.11.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/06/2015] [Accepted: 11/29/2015] [Indexed: 01/09/2023]
Abstract
Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere.
Collapse
Affiliation(s)
- Marianne Ø Dalheim
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Julie Vanacker
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain (UCL), Brussels B-1200, Belgium
| | - Maryam A Najmi
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Bjørn E Christensen
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway.
| |
Collapse
|
37
|
Zhou X, Luan X, Chen Z, Francis M, Gopinathan G, Li W, Lu X, Li S, Wu C, Diekwisch TGH. MicroRNA-138 Inhibits Periodontal Progenitor Differentiation under Inflammatory Conditions. J Dent Res 2015; 95:230-7. [PMID: 26518300 DOI: 10.1177/0022034515613043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory conditions as they occur during periodontal disease often result in decreased alveolar bone levels and a loss of connective tissue homeostasis. Here we have focused on the effect of microRNA-138 (miR-138) as a potential regulator of periodontal stem cells as they affect homeostasis during inflammatory conditions. Our data indicate that miR-138 was significantly upregulated in our periodontal disease animal model. Interaction of miR-138 with a predicted targeting site on the osteocalcin (OC) promoter resulted in a 3.7-fold reduction of luciferase activity in promoter assays compared with controls; and miR-138 overexpression in periodontal progenitors significantly inhibited OC (3.4-fold), Runx2 (2.8-fold), and collagen I (2.6-fold). Moreover, treatment with inflammatory modulators such as interleukin (IL)-6 and lipopolysaccharide (LPS) resulted in a significant 2.2-fold (IL-6) or 1.9-fold (LPS) increase in miR-138 expression, while OC and Runx2 expression was significantly decreased as a result of treatment with each inflammatory mediator. Further defining the role of miR-138 in the OC-mediated control of mineralization, we demonstrated that the LPS-induced downregulation of OC expression was partially reversed after miR-138 knockdown. LPS, miR-138 mimic, and OC small interfering RNA inhibited osteoblast differentiation marker alkaline phosphatase activity, while miR-138 inhibitor and OC protein addition enhanced alkaline phosphatase activity. Supporting the role of OC as an essential modulator of osteoblast differentiation, knockdown of miR-138 or addition of OC protein partially rescued alkaline phosphatase activity in periodontal ligament (PDL) cells subjected to LPS treatment. Our data establish miR-138 inhibitor as a potential therapeutic agent for the prevention of the bone loss associated with advanced periodontal disease.
Collapse
Affiliation(s)
- X Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Z Chen
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - M Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G Gopinathan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - W Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Lu
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - S Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - C Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - T G H Diekwisch
- Department of Periodontics, Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
38
|
Awata T, Yamada S, Tsushima K, Sakashita H, Yamaba S, Kajikawa T, Yamashita M, Takedachi M, Yanagita M, Kitamura M, Murakami S. PLAP-1/Asporin Positively Regulates FGF-2 Activity. J Dent Res 2015; 94:1417-24. [PMID: 26239644 DOI: 10.1177/0022034515598507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PLAP-1 is an extracellular matrix protein that is predominantly expressed in the periodontal ligament within periodontal tissue. It was previously revealed that PLAP-1 negatively regulates bone morphogenetic protein 2 and transforming growth factor β activity through direct interactions. However, the interaction between PLAP-1 and other growth factors has not been defined. Here, we revealed that PLAP-1 positively regulates the activity of fibroblast growth factor 2 (FGF-2), a critical growth factor in tissue homeostasis and repair. In this study, we isolated mouse embryonic fibroblasts (MEFs) from Plap-1(-/-) mice generated in our laboratory. Interestingly, Plap-1(-/-) MEFs exhibited enhanced responses to bone morphogenetic protein 2 but defective responses to FGF-2, and Plap-1 transfection into Plap-1(-/-) MEFs rescued these defective responses. In addition, binding assays revealed that PLAP-1 promotes FGF-2-FGF receptor 1 (FGFR1) complex formation by direct binding to FGF-2. Immunocytochemistry analyses revealed colocalization of PLAP-1 and FGF-2 in wild-type MEFs and reduced colocalization of FGF-2 and FGFR1 in Plap-1(-/-) MEFs compared with wild-type MEFs. Taken together, PLAP-1 positively regulates FGF-2 activity through a direct interaction. Extracellular matrix-growth factor interactions have considerable effects; thus, this approach may be useful in several regenerative medicine applications.
Collapse
Affiliation(s)
- T Awata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - S Yamada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - K Tsushima
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - H Sakashita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - S Yamaba
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - T Kajikawa
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Yamashita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Yanagita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - S Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
39
|
Nivedhitha Sundaram M, Sowmya S, Deepthi S, Bumgardener JD, Jayakumar R. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J Biomed Mater Res B Appl Biomater 2015; 104:761-70. [PMID: 26153674 DOI: 10.1002/jbm.b.33480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/15/2015] [Indexed: 01/29/2023]
Abstract
Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL.
Collapse
Affiliation(s)
- M Nivedhitha Sundaram
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, 682 041, India
| | - S Sowmya
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, 682 041, India
| | - S Deepthi
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, 682 041, India
| | - Joel D Bumgardener
- Department of Biomedical Engineering, University of Memphis, Joint University of Memphis University of Tennessee, Graduate Biomedical Engineering Program, Memphis, Tennessee, USA
| | - R Jayakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, 682 041, India
| |
Collapse
|
40
|
Sowmya S, Chennazhi KP, Arzate H, Jayachandran P, Nair SV, Jayakumar R. Periodontal Specific Differentiation of Dental Follicle Stem Cells into Osteoblast, Fibroblast, and Cementoblast. Tissue Eng Part C Methods 2015; 21:1044-58. [PMID: 25962715 DOI: 10.1089/ten.tec.2014.0603] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The dental follicle is a source of dental follicle stem cells (DFCs), which have the potential to differentiate into the periodontal lineage. DFCs therefore are of value in dental tissue engineering. The purpose of this study was to evaluate the effect of growth factor type and concentration on DFC differentiation into periodontal specific lineages. DFCs were isolated from the human dental follicle and characterized for the expression of mesenchymal markers. The cells were positive for CD-73, CD-44, and CD-90; and negative for CD-33, CD-34, and CD-45. The expression of CD-29 and CD-31 was almost negligible. The cells also expressed periodontal ligament and cementum markers such as periodontal ligament-associated protein-1 (PLAP-1), fibroblast growth factor-2 (FGF-2), and cementum protein-1 (CEMP-1), however, the expression of osteoblast markers was absent. Further, the DFCs were cultured in three different induction medium to analyze the osteoblastic, fibroblastic, and cementoblastic differentiation. Runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP) activity, alizarin staining, calcium quantification, collagen type-1 (Col-1), and osteopontin (OPN) expression confirmed the osteoblastic differentiation of DFCs. DFCs cultured in recombinant human FGF-2 (rhFGF-2) containing medium showed enhanced PLAP-1, FGF-2, and COL-1 expression with increasing concentration of rhFGF-2 which thereby confirmed periodontal ligament fibroblastic differentiation. Similarly, DFCs cultured in recombinant human cementum protein-1 (rhCEMP-1) containing medium showed enhanced bone sialoprotein-2 (BSP-2), CEMP-1, and COL-1 expression with respect to rhCEMP-1 which confirmed cementoblastic differentiation. The expression of osteoblast, fibroblast, and cementoblast-related genes of DFCs cultured in induction medium was enhanced in comparison to DFCs cultured in noninduction medium. Thus, growth factor-dependent differentiation of DFCs into periodontal specific lineages was proved by quantitative analysis.
Collapse
Affiliation(s)
- S Sowmya
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - K P Chennazhi
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - Higinio Arzate
- 2 Laboratorio de Biologia Periodontal, Facultad de Odontologia, Universidad Nacional Autnoma de Mexico , Mexico City, Mexico
| | - P Jayachandran
- 3 Amrita School of Dentistry, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - Shantikumar V Nair
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| | - R Jayakumar
- 1 Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University , Kochi, India
| |
Collapse
|
41
|
Chen G, Chen J, Yang B, Li L, Luo X, Zhang X, Feng L, Jiang Z, Yu M, Guo W, Tian W. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 2015; 52:56-70. [PMID: 25818413 DOI: 10.1016/j.biomaterials.2015.02.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 02/05/2023]
Abstract
In tissue engineering, scaffold materials provide effective structural support to promote the repair of damaged tissues or organs through simulating the extracellular matrix (ECM) microenvironments for stem cells. This study hypothesized that simulating the ECM microenvironments of periodontium and dental pulp/dentin complexes would contribute to the regeneration of tooth root. Here, aligned PLGA/Gelatin electrospun sheet (APES), treated dentin matrix (TDM) and native dental pulp extracellular matrix (DPEM) were fabricated and combined into APES/TDM and DPEM/TDM for periodontium and dental pulp regeneration, respectively. This study firstly examined the physicochemical properties and biocompatibilities of both APES and DPEM in vitro, and further investigated the degradation of APES and revascularization of DPEM in vivo. Then, the potency of APES/TDM and DPEM/TDM in odontogenic induction was evaluated via co-culture with dental stem cells. Finally, we verified the periodontium and dental pulp/dentin complex regeneration in the jaw of miniature swine. Results showed that APES possessed aligned fiber orientation which guided cell proliferation while DPEM preserved the intrinsic fiber structure and ECM proteins. Importantly, both APES/TDM and DPEM/TDM facilitated the odontogenic differentiation of dental stem cells in vitro. Seeded with stem cells, the sandwich composites (APES/TDM/DPEM) generated tooth root-like tissues after being transplanted in porcine jaws for 12 w. In dental pulp/dentin complex-like tissues, columnar odontoblasts-like layer arranged along the interface between newly-formed predentin matrix and dental pulp-like tissues in which blood vessels could be found; in periodontium complex-like tissues, cellular cementum and periodontal ligament (PDL)-like tissues were generated on the TDM surface. Thus, above results suggest that APES and DPEM exhibiting appropriate physicochemical properties and well biocompatibilities, in accompany with TDM, could make up an ECM microenvironment for tooth root regeneration, which also offers a strategy for complex tissue or organ regeneration.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jinlong Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Lei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xiangyou Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xuexin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Lian Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Zongting Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Pedodontics, West China College of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, PR China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
42
|
Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int 2015; 2015:972313. [PMID: 25861283 PMCID: PMC4378705 DOI: 10.1155/2015/972313] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs), which reside in the perivascular space of the periodontium, possess characteristics of mesenchymal stem cells and are a promising tool for periodontal regeneration. Recently, great progress has been made in PDLSC transplantation. Investigators are attempting to maximize the proliferation and differentiation potential of PDLSCs by modifying culture conditions and applying growth factors. Nevertheless, problems remain. First, incomparability among different studies must be minimized by establishing standard guidelines for culture and identification of PDLSCs. Notably, attention should be paid to the biological safety of PDLSC transplantation. The present review updates the latest findings regarding PDLSCs and discusses standard criteria for culture and identification of PDLSCs. Finally, the review calls for careful consideration of PDLSC transplantation safety.
Collapse
|
43
|
Effect of CTGF/CCN2 on Osteo/Cementoblastic and Fibroblastic Differentiation of a Human Periodontal Ligament Stem/Progenitor Cell Line. J Cell Physiol 2014; 230:150-9. [DOI: 10.1002/jcp.24693] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
|
44
|
Lee JH, Um S, Song IS, Kim HY, Seo BM. Neurogenic differentiation of human dental stem cells in vitro. J Korean Assoc Oral Maxillofac Surg 2014; 40:173-80. [PMID: 25247147 PMCID: PMC4170666 DOI: 10.5125/jkaoms.2014.40.4.173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives The purpose of this study was to investigate the neurogenic differentiation of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Materials and Methods After induction of neurogenic differentiation using commercial differentiation medium, expression levels of neural markers, microtubule-associated protein 2 (MAP2), class III β-tubulin, and glial fibrillary acidic protein (GFAP) were identified using reverse transcriptase polymerase chain reaction (PCR), real-time PCR, and immunocytochemistry. Results The induced cells showed neuron-like morphologies, similar to axons, dendrites, and perikaryons, which are composed of neurons in DPSCs, PDLSCs, and SCAP. The mRNA levels of neuronal markers tended to increase in differentiated cells. The expression of MAP2 and β-tubulin III also increased at the protein level in differentiation groups, even though GFAP was not detected via immunocytochemistry. Conclusion Human dental stem cells including DPSCs, PDLSCs, and SCAP may have neurogenic differentiation capability in vitro. The presented data support the use of human dental stem cells as a possible alternative source of stem cells for therapeutic utility in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Joo-Hee Lee
- Biotooth Engineering Lab, Department of Oral and Maxillofacial Surgery and Craniomaxillofacial Life Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Soyoun Um
- Biotooth Engineering Lab, Department of Oral and Maxillofacial Surgery and Craniomaxillofacial Life Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea. ; Dental Regenerative Biotechnology, Department of Dental Science, School of Dentistry, Seoul National University, Seoul, Korea
| | - In-Seok Song
- Biotooth Engineering Lab, Department of Oral and Maxillofacial Surgery and Craniomaxillofacial Life Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea. ; Division of Oral and Maxillofacial Surgery, Department of Dentistry, Korea University Anam Hospital, Seoul, Korea
| | - Hui Young Kim
- Biotooth Engineering Lab, Department of Oral and Maxillofacial Surgery and Craniomaxillofacial Life Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Byoung Moo Seo
- Biotooth Engineering Lab, Department of Oral and Maxillofacial Surgery and Craniomaxillofacial Life Science, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
45
|
McKnight H, Kelsey WP, Hooper DA, Hart TC, Mariotti A. Proteomic Analyses of Human Gingival and Periodontal Ligament Fibroblasts. J Periodontol 2014; 85:810-8. [DOI: 10.1902/jop.2013.130161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2. Int J Mol Sci 2014; 15:8509-25. [PMID: 24830554 PMCID: PMC4057745 DOI: 10.3390/ijms15058509] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022] Open
Abstract
Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold±0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold±0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p<0.001) when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering.
Collapse
|
47
|
Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, Sassa Y, Arita R, Miyazaki M, Enaida H, Oshima Y, Murakami N, Niiro H, Ono J, Matsuda A, Goto Y, Akashi K, Izuhara K, Kudo A, Kono T, Hafezi-Moghadam A, Ishibashi T. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J 2013; 28:131-42. [PMID: 24022401 DOI: 10.1096/fj.13-229740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a severe, vision-threatening disorder characterized by the fibrous membrane formation that leads to tractional retinal detachment. There has been no effective therapeutic approach other than vitreoretinal surgery. In this study, DNA microarray analysis of the fibrous membranes revealed significant up-regulation of periostin. We also found increased periostin expression in the vitreous and retinal pigment epithelial (RPE) cells from fibrous membranes of PVR patients. In vitro, periostin increased proliferation, adhesion, migration, and collagen production in RPE cells through integrin αV-mediated FAK and AKT phosphorylation. Periostin blockade suppressed migration and adhesion induced by TGFβ2 and PVR vitreous. In vivo, periostin inhibition had the inhibitory effect on progression of experimental PVR in rabbit eyes without affecting the viability of retinal cells. These results identified periostin as a pivotal molecule for fibrous membrane formation as well as a promising therapeutic target for PVR.
Collapse
Affiliation(s)
- Keijiro Ishikawa
- 1Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saminathan A, Vinoth KJ, Low HH, Cao T, Meikle MC. Engineering three-dimensional constructs of the periodontal ligament in hyaluronan-gelatin hydrogel films and a mechanically active environment. J Periodontal Res 2013; 48:790-801. [PMID: 23581542 DOI: 10.1111/jre.12072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament (PDL) cells in stationary two-dimensional culture systems are in a double default state. Our aim therefore was to engineer and characterize three-dimensional constructs, by seeding PDL cells into hyaluronan-gelatin hydrogel films (80-100 μm) in a format capable of being mechanically deformed. MATERIAL AND METHODS Human PDL constructs were cultured with and without connective tissue growth factor (CTGF) and fibroblast growth factor (FGF)-2 in (i) stationary cultures, and (ii) mechanically active cultures subjected to cyclic strains of 12% at 0.2 Hz each min, 6 h/d, in a Flexercell FX-4000 Strain Unit. The following parameters were measured: cell number and viability by laser scanning confocal microscopy; cell proliferation with the MTS assay; the expression of a panel of 18 genes using real-time RT-PCR; matrix metalloproteinases (MMPs) 1-3, TIMP-1, CTGF and FGF-2 protein levels in supernatants from mechanically activated cultures with Enzyme-linked immunosorbent assays. Constructs from stationary cultures were also examined by scanning electron microscopy and immunostained for actin and vinculin. RESULTS Although initially randomly distributed, the cells became organized into a bilayer by day 7; apoptotic cells remained constant at approximately 5% of the total. CTGF/FGF-2 stimulated cell proliferation in stationary cultures, but relative quantity values suggested modest effects on gene expression. Two transcription factors (RUNX2 and PPARG), two collagens (COL1A1, COL3A1), four MMPs (MMP-1-3, TIMP-1), TGFB1, RANKL, OPG and P4HB were detected by gel electrophoresis and Ct values < 35. In mechanically active cultures, with the exception of P4HB, TGFB1 and RANKL, each was upregulated at some point in the time scale, as was the synthesis of MMPs and TIMP-1. SOX9, MYOD, SP7, BMP2, BGLAP or COL2A1 were not detected in either stationary or mechanically active cultures. CONCLUSION Three-dimensional tissue constructs provide additional complexity to monolayer culture systems, and suggest some of the assumptions regarding cell growth, differentiation and matrix turnover based on two-dimensional cultures may not apply to cells in three-dimensional matrices. Primarily developed as a transitional in vitro model for studying cell-cell and cell-matrix interactions in tooth support, the system is also suitable for investigating the pathogenesis of periodontal diseases, and importantly from the clinical point of view, in a mechanically active environment.
Collapse
Affiliation(s)
- A Saminathan
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore, 119083, Singapore
| | | | | | | | | |
Collapse
|
49
|
Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:638043. [PMID: 23586051 PMCID: PMC3622372 DOI: 10.1155/2013/638043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 01/22/2023]
Abstract
In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms.
Collapse
|
50
|
Anitua E, Troya M, Orive G. An autologous platelet-rich plasma stimulates periodontal ligament regeneration. J Periodontol 2013; 84:1556-66. [PMID: 23289869 DOI: 10.1902/jop.2013.120556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Regeneration of periodontal tissues is one of the most important goals for the treatment of periodontal disease. The technology of plasma rich in growth factors provides a biologic approach for the stimulation and acceleration of tissue healing. The purpose of this study is to evaluate the biologic effects of this technology on primary human periodontal ligament fibroblasts. METHODS The authors studied the response of periodontal ligament cells to this pool of growth factors on cell proliferation, cell migration, secretion of several biomolecules, cell adhesion, and expression of α2 integrin. Cell proliferation and adhesion were evaluated by means of a fluorescence-based method. Cell migration was performed on culture inserts. The release of different biomolecules by periodontal ligament fibroblasts was quantified through enzyme-linked immunosorbent assay. The α2 integrin expression was assessed through Western blot. RESULTS This autologous technology significantly stimulated cell proliferation, migration, adhesion, and synthesis of many growth factors from cells including vascular endothelial growth factor, thrombospondin 1, connective tissue growth factor, hepatocyte growth factor, and procollagen type I. The α2 integrin expression was lower in plasma rich in growth factor-treated cells compared to non-stimulated cells, although no statistically significant differences were observed. CONCLUSION This plasma rich in growth factors exerts positive effects on periodontal ligament fibroblasts, which could be positive for periodontal regeneration.
Collapse
|