1
|
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024; 13:1722. [PMID: 39451240 PMCID: PMC11506562 DOI: 10.3390/cells13201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PKD2 was first identified as the pathogenic protein for autosomal dominant polycystic kidney disease (ADPKD) and is widely recognized as an ion channel. Subsequent studies have shown that PKD2 is widely expressed in various animal tissues and plays a crucial role in tissue and organ development. Additionally, PKD2 is conserved from single-celled organisms to vertebrates. Here, we provide an overview of recent advances in the function of PKD2 in key model animals, focusing on the establishment of left-right organ asymmetry, renal homeostasis, cardiovascular development, and signal transduction in reproduction and mating. We specifically focus on the roles of PKD2 in development and highlight future prospects for PKD2 research.
Collapse
Affiliation(s)
- Shuo Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Vinay L, Hess RA, Belleannée C. Human efferent ductules and epididymis display unique cell lineages with motile and primary cilia. Andrology 2024. [PMID: 39212979 DOI: 10.1111/andr.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous research has illustrated the role of cilia as mechanical and sensory antennae in various organs within the mammalian male reproductive system across different developmental stages. Despite their significance in both organ development and homeostasis, primary cilia in the human male reproductive excurrent duct have been overlooked due to limited access to human specimens. OBJECTIVE This study aimed to characterize the unique cellular composition of human efferent and epididymal ducts, with a focus on their association with primary cilia. MATERIALS AND METHODS Human efferent ductules/epididymides from five donors aged 32-47 years, were obtained through our local organ transplant program. Cell lineage specificity and primary cilia features were examined by immunofluorescent staining and confocal microscopy in the efferent ductules and the distinct segments of the epididymis. RESULTS The epithelium of the human efferent duct exhibited estrogen receptor-positive cells with primary cilia, FoxJ1-positive multiciliated cells with numerous motile cilia, and non-ciliated intraepithelial immune cells. Notably, intraluminal macrophages, identified by CD163/CD68 positivity, were observed to engage in sperm phagocytosis. In all three segments of the human epididymis, primary cilia were found on the surface of principal and basal cells. DISCUSSION AND CONCLUSIONS Our research indicates that the human efferent ductules create a distinct environment, characterized by the presence of two types of ciliated cells that are in contact with immune cells. The discovery of sensory primary cilia exposed on the surface of reabsorptive cells in the efferent ductules, as well as on basal and principal cells in the epididymis, lays the foundation for complementary functional studies. This research uncovers novel characteristics exclusive to human efferent ductules and epididymides, providing a basis for exploring innovative approaches to male contraception and infertility treatment.
Collapse
Affiliation(s)
- Ludovic Vinay
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| |
Collapse
|
3
|
Lee V, Hinton BT, Hirashima T. Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective. Andrology 2024; 12:939-948. [PMID: 37415418 PMCID: PMC11278975 DOI: 10.1111/andr.13490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND The mammalian epididymis is a specialized duct system that serves a critical role in sperm maturation and storage. Its distinctive, highly coiled tissue morphology provides a unique opportunity to investigate the link between form and function in reproductive biology. Although recent genetic studies have identified key genes and signaling pathways involved in the development and physiological functions of the epididymis, there has been limited discussion about the underlying dynamic and mechanical processes that govern these phenomena. AIMS In this review, we aim to address this gap by examining two key aspects of the epididymis across its developmental and physiological phases. RESULTS AND DISCUSSION First, we discuss how the complex morphology of the Wolffian/epididymal duct emerges through collective cell dynamics, including duct elongation, cell proliferation, and arrangement during embryonic development. Second, we highlight dynamic aspects of luminal fluid flow in the epididymis, essential for regulating the microenvironment for sperm maturation and motility, and discuss how this phenomenon emerges and interplays with epididymal epithelial cells. CONCLUSION This review not only aims to summarize current knowledge but also to provide a starting point for further exploration of mechanobiological aspects related to the cellular and extracellular fluid dynamics in the epididymis.
Collapse
Affiliation(s)
- Veronica Lee
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
| | - Barry T. Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsuyoshi Hirashima
- Mechanobiology, Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Crossen MJ, Wilbourne J, Fogarty A, Zhao F. Epithelial and mesenchymal fate decisions in Wolffian duct development. Trends Endocrinol Metab 2023; 34:462-473. [PMID: 37330364 PMCID: PMC10524679 DOI: 10.1016/j.tem.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Wolffian ducts (WDs) are the paired embryonic structures that give rise to internal male reproductive tract organs. WDs are initially formed in both sexes but have sex-specific fates during sexual differentiation. Understanding WD differentiation requires insights into the process of fate decisions of epithelial and mesenchymal cells, which are tightly coordinated by endocrine, paracrine, and autocrine signals. In this review, we discuss current advances in understanding the fate-decision process of WD epithelial and mesenchymal lineages from their initial formation at the embryonic stage to postnatal differentiation. Finally, we discuss aberrant cell differentiation in WD abnormalities and pathologies and identify opportunities for future investigations.
Collapse
Affiliation(s)
- McKenna J Crossen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jillian Wilbourne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allyssa Fogarty
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Schmidt F, Abdesselem HB, Suhre K, Vaikath NN, Sohail MU, Al-Nesf M, Bensmail I, Mashod F, Sarwath H, Bernhardt J, Schaefer-Ramadan S, Tan TM, Morris PE, Schenck EJ, Price D, Mohamed-Ali V, Al-Maadheed M, Arredouani A, Decock J, Blackburn JM, Choi AMK, El-Agnaf OM. Auto-immunoproteomics analysis of COVID-19 ICU patients revealed increased levels of autoantibodies related to the male reproductive system. Front Physiol 2023; 14:1203723. [PMID: 37520825 PMCID: PMC10374950 DOI: 10.3389/fphys.2023.1203723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Coronavirus disease (COVID-19) manifests many clinical symptoms, including an exacerbated immune response and cytokine storm. Autoantibodies in COVID-19 may have severe prodromal effects that are poorly understood. The interaction between these autoantibodies and self-antigens can result in systemic inflammation and organ dysfunction. However, the role of autoantibodies in COVID-19 complications has yet to be fully understood. Methods: The current investigation screened two independent cohorts of 97 COVID-19 patients [discovery (Disc) cohort from Qatar (case = 49 vs. control = 48) and replication (Rep) cohort from New York (case = 48 vs. control = 28)] utilizing high-throughput KoRectly Expressed (KREX) Immunome protein-array technology. Total IgG autoantibody responses were evaluated against 1,318 correctly folded and full-length human proteins. Samples were randomly applied on the precoated microarray slides for 2 h. Cy3-labeled secondary antibodies were used to detect IgG autoantibody response. Slides were scanned at a fixed gain setting using the Agilent fluorescence microarray scanner, generating a 16-bit TIFF file. Group comparisons were performed using a linear model and Fisher's exact test. Differentially expressed proteins were used for KEGG and WIKIpathway annotation to determine pathways in which the proteins of interest were significantly over-represented. Results and conclusion: Autoantibody responses to 57 proteins were significantly altered in the COVID-19 Disc cohort compared to healthy controls (p ≤ 0.05). The Rep cohort had altered autoantibody responses against 26 proteins compared to non-COVID-19 ICU patients who served as controls. Both cohorts showed substantial similarities (r 2 = 0.73) and exhibited higher autoantibody responses to numerous transcription factors, immunomodulatory proteins, and human disease markers. Analysis of the combined cohorts revealed elevated autoantibody responses against SPANXN4, STK25, ATF4, PRKD2, and CHMP3 proteins in COVID-19 patients. The sequences for SPANXN4 and STK25 were cross-validated using sequence alignment tools. ELISA and Western blot further verified the autoantigen-autoantibody response of SPANXN4. SPANXN4 is essential for spermiogenesis and male fertility, which may predict a potential role for this protein in COVID-19-associated male reproductive tract complications, and warrants further research.
Collapse
Affiliation(s)
- Frank Schmidt
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Houari B. Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Nishant N. Vaikath
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| | | | - Maryam Al-Nesf
- Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fathima Mashod
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Joerg Bernhardt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Ti-Myen Tan
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Priscilla E. Morris
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward J. Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - David Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Jonathan M. Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Augustine M. K. Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - Omar M. El-Agnaf
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| |
Collapse
|
6
|
Lin T, Luo J, Yu H, Dong B, Zhang Q, Zhang W, Chen K, Xiang Y, Liu D, Huang G. Blocker displacement amplification-based genetic diagnosis for autosomal dominant polycystic kidney disease and the clinical outcomes of preimplantation genetic testing. J Assist Reprod Genet 2023; 40:783-792. [PMID: 36773205 PMCID: PMC10224877 DOI: 10.1007/s10815-023-02722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVE Given that the molecular diagnosis of autosomal dominant polycystic kidney disease (ADPKD) is complicated, we aim to apply blocker displacement amplification (BDA) on the mutational screening of PKD1 and PKD2. METHODS A total of 35 unrelated families with ADPKD were recruited from the Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University (Chongqing, China), from October 2018 to October 2021. Long-range PCR followed by next-generation sequencing were applied for resequencing of PKD1 and PKD2, and the putatively disease-causative variants were verified with BDA. The effects of ADPKD on male and female infertility and the factors influencing the clinical outcomes of preimplantation genetic testing (PGT) for ADPKD were investigated. RESULTS A total of 26 PKD1 variants and 5 PKD2 variants were identified, of which 13 were newly discovered. The BDA system worked effectively for eliminating the interference of pseudogenes in genetic testing of PKD1 (1-33 exons) with different concentrations of genome DNA. The females with ADPKD have no specific infertility factors, while 68.2% of the affected men were with abnormal sperm concentration and/or motility with an indefinite genotype-phenotype relationship. As for PGT, the fertilization rate of couples with the male partner having ADPKD was relatively lower compared to those with the female partner being affected. The ADPKD patients receiving PGT usually achieved high rates of live births. CONCLUSION These findings expanded the variant spectrum of PKD genes and emphasized the application prospect of blocker displacement amplification on PKD1-related genetic diagnosis.
Collapse
Affiliation(s)
- Tingting Lin
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | | | - Haibing Yu
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Center for Women and Children, Chongqing, China
| | | | - Qi Zhang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Wei Zhang
- AmCare Genomics Lab, Guangzhou, China
| | - Ke Chen
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Yezhou Xiang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Center for Women and Children, Chongqing, China
| | - Dongyun Liu
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Health Center for Women and Children, Chongqing, China.
| | - Guoning Huang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Health Center for Women and Children, Chongqing, China.
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China.
| |
Collapse
|
7
|
Alves MBR, Girardet L, Augière C, Moon KH, Lavoie-Ouellet C, Bernet A, Soulet D, Calvo E, Teves ME, Beauparlant CJ, Droit A, Bastien A, Robert C, Bok J, Hinton BT, Belleannée C. Hedgehog signaling regulates Wolffian duct development through the primary cilium†. Biol Reprod 2023; 108:241-257. [PMID: 36525341 PMCID: PMC9930401 DOI: 10.1093/biolre/ioac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Primary cilia play pivotal roles in embryonic patterning and organogenesis through transduction of the Hedgehog signaling pathway (Hh). Although mutations in Hh morphogens impair the development of the gonads and trigger male infertility, the contribution of Hh and primary cilia in the development of male reproductive ductules, including the epididymis, remains unknown. From a Pax2Cre; IFT88fl/fl knock-out mouse model, we found that primary cilia deletion is associated with imbalanced Hh signaling and morphometric changes in the Wolffian duct (WD), the embryonic precursor of the epididymis. Similar effects were observed following pharmacological blockade of primary cilia formation and Hh modulation on WD organotypic cultures. The expression of genes involved in extracellular matrix, mesenchymal-epithelial transition, canonical Hh and WD development was significantly altered after treatments. Altogether, we identified the primary cilia-dependent Hh signaling as a master regulator of genes involved in WD development. This provides new insights regarding the etiology of sexual differentiation and male infertility issues.
Collapse
Affiliation(s)
- Maíra Bianchi Rodrigues Alves
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Laura Girardet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Céline Augière
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Kyeong Hye Moon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Agathe Bernet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Denis Soulet
- Faculty of Pharmacy, Department of Neurosciences, CHU de Québec Research Center (CHUL)—Université Laval, Quebec City, QC, Canada
| | - Ezequiel Calvo
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles Joly Beauparlant
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alexandre Bastien
- Faculty of Agriculture and Food Sciences, Department of Animal Sciences—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Claude Robert
- Faculty of Agriculture and Food Sciences, Department of Animal Sciences—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Liu X, Tang J, Chen XZ. Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front Physiol 2022; 13:962571. [PMID: 36035467 PMCID: PMC9399649 DOI: 10.3389/fphys.2022.962571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene which encodes membrane receptor PKD1 and cation channel PKD2, respectively. PKD2, also called transient receptor potential polycystin-2 (TRPP2), is a Ca2+-permeable channel located on the membrane of cell surface, primary cilia, and endoplasmic reticulum (ER). Ca2+ is closely associated with diverse cellular functions. While ER Ca2+ homeostasis depends on different Ca2+ receptors, channels and transporters, the role of PKD2 within the ER remains controversial. Whether and how PKD2-mediated ER Ca2+ leak relates to ADPKD pathogenesis is not well understood. Here, we reviewed current knowledge about the biophysical and physiological properties of PKD2 and how PKD2 contributes to ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, HB, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Xing-Zhen Chen,
| |
Collapse
|
9
|
Crucial Convolution: Genetic and Molecular Mechanisms of Coiling during Epididymis Formation and Development in Embryogenesis. J Dev Biol 2022; 10:jdb10020025. [PMID: 35735916 PMCID: PMC9225329 DOI: 10.3390/jdb10020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
As embryonic development proceeds, numerous organs need to coil, bend or fold in order to establish their final shape. Generally, this occurs so as to maximise the surface area for absorption or secretory functions (e.g., in the small and large intestines, kidney or epididymis); however, mechanisms of bending and shaping also occur in other structures, notably the midbrain–hindbrain boundary in some teleost fish models such as zebrafish. In this review, we will examine known genetic and molecular factors that operate to pattern complex, coiled structures, with a primary focus on the epididymis as an excellent model organ to examine coiling. We will also discuss genetic mechanisms involving coiling in the seminiferous tubules and intestine to establish the final form and function of these coiled structures in the mature organism.
Collapse
|
10
|
Li W, Liu G, Zhao X, Lu Y, Li H, Zhang H, Lin G. Genetic testing, ultrasonography and preimplantation genetic testing of men with autosomal dominant polycystic kidney disease in Hunan, China. Andrologia 2021; 54:e14273. [PMID: 34739738 DOI: 10.1111/and.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The present study identified novel mutations in polycystic kidney disease (PKD) genes in China, determined the prevalence of cysts in the genital tract and accessory gonad in autosomal dominant PKD (ADPKD) patients, correlated these genes with ADPKD and male infertility and investigated whether male infertility associated with ADPKD affected the clinical outcomes in a preimplantation genetic testing (PGT) cycle cohort. This study was a cross-sectional study. Twenty-four unrelated men with ADPKD recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya in China were investigated between January 2019 and December 2020. A total of 24 variations were identified in 22 patients, including 23, 1 and 0 variations in PKD1, PKD2 and GANAB, respectively. Genital tract and accessory gonadal cysts were significant dependent variables for male infertility. A diagnosis was made in 87.04% (94/108) and 51.85% (56/108) of the embryos for ADPKD and PGT-A respectively. Clinical pregnancy reached 72.73% per embryo transfer and 84.21% per patient. We identified a group of novel mutations in PKD genes, which enriches the PKD mutation spectrum. Although genital tract and accessory gonadal cysts greatly influence the fertility of men with ADPKD, they have minimal clinical consequences on pregnancy by intracytoplasmic sperm injection (ICSI) and PGT.
Collapse
Affiliation(s)
- Weina Li
- Hunan Guangxiu Hi-tech Life Technology Co., Ltd, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xingguo Zhao
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Yichang Lu
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Huanzhu Li
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Huan Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.,The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| |
Collapse
|
11
|
Słowińska M, Paukszto Ł, Paweł Jastrzębski J, Bukowska J, Kozłowski K, Jankowski J, Ciereszko A. Transcriptome analysis of turkey (Meleagris gallopavo) reproductive tract revealed key pathways regulating spermatogenesis and post-testicular sperm maturation. Poult Sci 2020; 99:6094-6118. [PMID: 33142529 PMCID: PMC7647744 DOI: 10.1016/j.psj.2020.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
The application of transcriptomics to the study of the reproductive tract in male turkeys can significantly increase our current knowledge regarding the specifics of bird reproduction. To characterize the complex transcriptomic changes that occur in the testis, epididymis, and ductus deferens, deep sequencing of male turkey RNA samples (n = 6) was performed, using Illumina RNA-Seq. The obtained sequence reads were mapped to the turkey genome, and relative expression values were calculated to analyze differentially expressed genes (DEGs). Statistical analysis revealed 1,682; 2,150; and 340 DEGs in testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparisons, respectively. The expression of selected genes was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. Bioinformatics analysis revealed several potential candidate genes involved in spermatogenesis, spermiogenesis and flagellum formation in the testis, and in post-testicular sperm maturation in the epididymis and ductus deferens. In the testis, genes were linked with the mitotic proliferation of spermatogonia and the meiotic division of spermatocytes. Histone ubiquitination and protamine phosphorylation were shown to be regulatory mechanisms for nuclear condensation during spermiogenesis. The characterization of testicular transcripts allowed a better understanding of acrosome formation and development and flagellum formation, including axoneme structures and functions. Spermatozoa motility during post-testicular maturation was linked to the development of flagellar actin filaments and biochemical processes, including Ca2+ influx and protein phosphorylation/dephosphorylation. Spermatozoa quality appeared to be controlled by apoptosis and antioxidant systems in the epididymis and ductus deferens. Finally, genes associated with reproductive system development and morphogenesis were identified. To the best of our knowledge, this is the first genome-wide functional investigation of genes associated with tissue-specific processes in turkey reproductive tract. A catalog of genes worthy of further studies to understand the avian reproductive physiology and regulation was provided.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Joanna Bukowska
- In Vitro and Cell Biotechnology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| |
Collapse
|
12
|
Berckmoes V, Verdyck P, De Becker P, De Vos A, Verheyen G, Van der Niepen P, Verpoest W, Liebaers I, Bonduelle M, Keymolen K, De Rycke M. Factors influencing the clinical outcome of preimplantation genetic testing for polycystic kidney disease. Hum Reprod 2020; 34:949-958. [PMID: 30927425 DOI: 10.1093/humrep/dez027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION What are the factors influencing the success rate for couples undergoing preimplantation genetic testing (PGT) for polycystic kidney disease (PKD)? SUMMARY ANSWER In our study cohort, the live birth delivery rate is significantly associated with female age while the male infertility accompanying autosomal dominant PKD (ADPKD) does not substantially affect the clinical outcome. WHAT IS KNOWN ALREADY While women with ADPKD have no specific fertility problems, male ADPKD patients may present with reproductive system abnormalities and infertility. STUDY DESIGN, SIZE, DURATION This retrospective cohort study involves 91 PGT cycles for PKD for 43 couples (33 couples for PKD1, 2 couples for PKD2 and 8 couples for autosomal recessive PKD (ARPKD)) from January 2005 until December 2016 with follow-up of transfers until end of 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixteen single-cell clinical tests for PKD based on multiplex PCR of short tandem repeat markers, with or without a specific mutation were developed and applied for diagnosis of 584 Day 3 cleavage stage embryos. In 18 couples, the male partner was affected with ADPKD (=Group A) and 12 of them had a documented infertility status. Group A underwent 52 cycles to oocyte retrieval. For 18 other couples, the female partner was affected with ADPKD (=Group B) and four male partners from this group had a documented history of infertility. This group underwent 31 cycles to OR. MAIN RESULTS AND THE ROLE OF CHANCE Genetic analysis resulted in 545 embryos (93.3%) with a diagnosis, of which 215 (36.8%) were genetically transferable. Transfer of 74 embryos in 53 fresh cycles and of 34 cryopreserved embryos in 33 frozen-warmed embryo transfer cycles resulted in a live birth delivery rate of 38.4% per transfer with 31 singleton live births, two twin live births and one ongoing pregnancy. The observed cumulative delivery rate was 57.8% per couple after five treatment cycles. Thirty cryopreserved embryos still remain available for transfer. The clinical pregnancy rate per transfer (fresh + frozen; 45.9% in group A versus 60.0% in group B, P < 0.05) and the live birth delivery rate per transfer (fresh + frozen; 27.0% in group A versus 42.9% in group B, P < 0.05) was significantly lower for couples with the male partner affected with ADPKD compared with couples with the female partner affected with ADPKD. However, a multivariate logistic regression analysis showed that only female age was associated with live birth delivery rate (odds ratio = 0.87; 95% CI: 0.77-0.99; P = 0.032). LIMITATIONS, REASONS FOR CAUTION This study is based on retrospective data from a single centre with Day 3 one-cell and two-cell biopsy. Further analysis of a larger cohort of PKD patients undergoing PGT is required to determine the impact of male infertility associated with ADPKD on the cumulative results. WIDER IMPLICATIONS OF THE FINDINGS Knowledge about factors affecting the clinical outcome after PGT can be a valuable tool for physicians to counsel PKD patients about their reproductive options. Males affected with ADPKD who suffer from infertility should be advised to seek treatment in time to improve their chances of conceiving a child. STUDY FUNDING/COMPETING INTEREST(S) No funding was obtained. There are no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- V Berckmoes
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - P Verdyck
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - P De Becker
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - A De Vos
- Centre for Reproductive Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - G Verheyen
- Centre for Reproductive Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - P Van der Niepen
- Department of Nephrology & Hypertension, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - W Verpoest
- Centre for Reproductive Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - I Liebaers
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - M Bonduelle
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - K Keymolen
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - M De Rycke
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
13
|
van Son M, Tremoen NH, Gaustad AH, Våge DI, Zeremichael TT, Myromslien FD, Grindflek E. Transcriptome profiling of porcine testis tissue reveals genes related to sperm hyperactive motility. BMC Vet Res 2020; 16:161. [PMID: 32456687 PMCID: PMC7249385 DOI: 10.1186/s12917-020-02373-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ann Helen Gaustad
- Norsvin SA, 2317 Hamar, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | |
Collapse
|
14
|
Wong J, Juma AR, Tran SC, Gasperoni JG, Grommen SVH, De Groef B. Deficiency of the transcription factor PLAG1 results in aberrant coiling and morphology of the epididymis. Asian J Androl 2019; 22:342-347. [PMID: 31464202 PMCID: PMC7406099 DOI: 10.4103/aja.aja_87_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mice deficient in the transcription factor pleomorphic adenoma gene 1 (PLAG1) exhibit reproductive issues that are characterized, in part, by decreased progressive sperm motility in the male. However, the underlying cause of this impairment is unknown. As epididymal transit is critical for sperm maturation and motility, the morphology of the epididymis of Plag1-deficient mice was investigated and the spatial expression patterns of PLAG1 protein and mRNA were identified. Using X-gal staining and in situ hybridization, PLAG1 was shown to be widely expressed in both the epithelium and stroma in all regions of the mouse epididymis. Interestingly, the X-gal staining pattern was markedly different in the cauda, where it could be suggestive of PLAG1 secretion into the epididymal lumen. At all ages investigated, the morphology of epididymides from Plag1 knockout (KO) mice was aberrant; the tubule failed to elongate and coil, particularly in the corpus and cauda, and the cauda was malformed, lacking its usual bulbous shape. Moreover, the epididymides from Plag1 KO mice were significantly reduced in size relative to body weight. In 20% of Plag1-deficient mice, the left testicle and epididymis were lacking. The impaired morphogenesis of the epididymal tubule is likely to be a major contributing factor to the fertility problems observed in male Plag1-deficient mice. These results also establish PLAG1 as an important regulator of male reproduction, not only through its involvement in testicular sperm production, but also via its role in the development and function of the epididymis.
Collapse
Affiliation(s)
- Joanne Wong
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Almas R Juma
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Stephanie C Tran
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jemma G Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
15
|
Girardet L, Augière C, Asselin MP, Belleannée C. Primary cilia: biosensors of the male reproductive tract. Andrology 2019; 7:588-602. [PMID: 31131532 DOI: 10.1111/andr.12650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The primary cilium is a microtubule-based organelle that extends transiently from the apical cell surface to act as a sensory antenna. Initially viewed as a cellular appendage of obscure significance, the primary cilium is now acknowledged as a key coordinator of signaling pathways during development and in tissue homeostasis. OBJECTIVES The aim of this review was to present the structure and function of this overlooked organelle,with an emphasis on its epididymal context and contribution to male infertility issues. MATERIALS AND METHODS A systematic review has been performed in order to include main references relevant to the aforementioned topic. RESULTS Increasing evidence demonstrates that primary cilia dysfunctions are associated with impaired male reproductive system development and male infertility issues. DISCUSSION While a large amount of data exists regarding the role of primary cilia in most organs and tissues, few studies investigated the contribution of these organelles to male reproductive tract development and homeostasis. CONCLUSION Functional studies of primary cilia constitute an emergent and exciting new area in reproductive biology research.
Collapse
Affiliation(s)
- Laura Girardet
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Céline Augière
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Marie-Pier Asselin
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|
16
|
He WB, Xiao WJ, Tan YQ, Zhao XM, Li W, Zhang QJ, Zhong CG, Li XR, Hu L, Lu GX, Lin G, Du J. Novel mutations of PKD genes in Chinese patients suffering from autosomal dominant polycystic kidney disease and seeking assisted reproduction. BMC MEDICAL GENETICS 2018; 19:186. [PMID: 30333007 PMCID: PMC6192368 DOI: 10.1186/s12881-018-0693-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/24/2018] [Indexed: 01/24/2023]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD), the commonest inherited kidney disease, is generally caused by heterozygous mutations in PKD1, PKD2, or GANAB (PKD3). Methods We performed mutational analyses of PKD genes to identify causative mutations. A set of 90 unrelated families with ADPKD were subjected to mutational analyses of PKD genes. Genes were analysed using long-range PCR (LR-PCR), direct PCR sequencing, followed by multiplex ligation-dependent probe amplification (MLPA) or screening of GANAB for some patients. Semen quality was assessed for 46 male patients, and the correlation between mutations and male infertility was analysed. Results A total of 76 mutations, including 38 novel mutations, were identified in 77 families, comprising 72 mutations in PKD1 and 4 in PKD2, with a positive detection rate of 85.6%. No pathogenic mutations of GANAB were detected. Thirty-seven patients had low semen quality and were likely to be infertile. No association was detected between PKD1 mutation type and semen quality. However, male patients carrying a pathogenic mutation in the Ig-like repeat domain of PKD1 had a high risk of infertility. Conclusion Our study identified a group of novel mutations in PKD genes, which enrich the PKD mutation spectrum and might help clinicians to make precise diagnoses, thereby allowing better family planning and genetic counselling. Men with ADPKD accompanied by infertility should consider intracytoplasmic sperm injection combined with preimplantation genetic diagnosis to achieve paternity and obtain healthy progeny. Electronic supplementary material The online version of this article (10.1186/s12881-018-0693-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Bin He
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Wen-Juan Xiao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Xiao-Meng Zhao
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Qian-Jun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Chang-Gao Zhong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Xiu-Rong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, 410078, People's Republic of China.
| |
Collapse
|
17
|
Cooper JC, Phadnis N. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels. Genome Biol Evol 2017; 9:1938-1949. [PMID: 28810709 PMCID: PMC5553355 DOI: 10.1093/gbe/evx131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior.
Collapse
|
18
|
Deletion of Pkd1 in renal stromal cells causes defects in the renal stromal compartment and progressive cystogenesis in the kidney. J Transl Med 2017; 97:1427-1438. [PMID: 28892094 DOI: 10.1038/labinvest.2017.97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by PKD1 and PKD2 gene mutations, is one of the most common genetic diseases, affecting up to 1 in 500 people. Mutations of PKD1 account for over 85% of ADPKD cases. However, mechanisms of disease progression and explanations for the wide range in disease phenotype remain to be elucidated. Moreover, functional roles of PKD1 in the renal stromal compartment are poorly understood. In this work, we tested if Pkd1 is essential for development and maintenance of the renal stromal compartment and if this role contributes to pathogenesis of polycystic kidney disease using a novel tissue-specific knockout mouse model. We demonstrate that deletion of Pkd1 from renal stromal cells using Foxd1-driven Cre causes a spectrum of defects in the stromal compartment, including excessive apoptosis/proliferation and extracellular matrix deficiency. Renal vasculature was also defective. Further, mutant mice showed epithelial changes and progressive cystogenesis in adulthood modeling human ADPKD. Altogether, we provide robust evidence to support indispensable roles for Pkd1 in development and maintenance of stromal cell derivatives by using a novel ADPKD model. Moreover, stromal compartment defects caused by Pkd1 deletion might serve as an important mechanism for pathogenesis of ADPKD.
Collapse
|
19
|
Mieusset R, Fauquet I, Chauveau D, Monteil L, Chassaing N, Daudin M, Huart A, Isus F, Prouheze C, Calvas P, Bieth E, Bujan L, Faguer S. The spectrum of renal involvement in male patients with infertility related to excretory-system abnormalities: phenotypes, genotypes, and genetic counseling. J Nephrol 2016; 30:211-218. [PMID: 26946416 DOI: 10.1007/s40620-016-0286-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND While reproductive technologies are increasingly used worldwide, epidemiologic, clinical and genetic data regarding infertile men with combined genital tract and renal abnormalities remain scarce, preventing adequate genetic counseling. METHODS In a cohort-based study, we assessed the prevalence (1995-2014) and the clinical characteristics of renal disorders in infertile males with genital tract malformation. In a subset of 34 patients, we performed a detailed phenotype analysis of renal and genital tract disorders. RESULTS Among the 180 patients with congenital uni- or bilateral absence of vas deferens (CU/BAVD), 45 (25 %) had a renal malformation. We also identified 14 infertile men with combined seminal vesicle (SV) and renal malformation but no CU/BAVD. Among the 34 patients with detailed clinical description, renal disease was unknown before the assessment of the infertility in 27 (79.4 %), and 7 (20.6 %) had chronic renal failure. Four main renal phenotypes were observed: solitary kidney (47 %); autosomal-dominant polycystic kidney disease (ADPKD, 0.6 %); uni- or bilateral hypoplastic kidneys (20.6 %); and a complex renal phenotype associated with a mutation of the HNF1B gene (5.8 %). Absence of SV and azoospermia were significantly associated with the presence of a solitary kidney, while dilatation of SV and necroasthenozoospermia were suggestive of ADPKD. CONCLUSION A dominantly inherited renal disease (ADPKD or HNF1B-related nephropathy) is frequent in males with infertility and combined renal and genital tract abnormalities (26 %). A systematic renal screening should be proposed in infertile males with CU/BAVD or SV disorders.
Collapse
Affiliation(s)
- Roger Mieusset
- Centre de stérilité masculine-Médecine de la Reproduction, Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France.,EA 3694, Groupe de Recherche en Fertilité Humaine, Université Paul Sabatier, Toulouse III, Toulouse, France.,Université Paul Sabatier, Toulouse III, Toulouse, France
| | | | - Dominique Chauveau
- Université Paul Sabatier, Toulouse III, Toulouse, France.,Département de Néphrologie et Transplantation d'organes, Centre de référence des maladies rénales rares, et INSERM UMR1048, Hôpital Rangueil, CHU de Toulouse, 1, avenue Jean Poulhes, 31000, Toulouse, France
| | - Laetitia Monteil
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Université Paul Sabatier, Toulouse III, Toulouse, France.,Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Myriam Daudin
- Centre de stérilité masculine-Médecine de la Reproduction, Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France.,EA 3694, Groupe de Recherche en Fertilité Humaine, Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Antoine Huart
- Département de Néphrologie et Transplantation d'organes, Centre de référence des maladies rénales rares, et INSERM UMR1048, Hôpital Rangueil, CHU de Toulouse, 1, avenue Jean Poulhes, 31000, Toulouse, France
| | - François Isus
- Centre de stérilité masculine-Médecine de la Reproduction, Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France.,EA 3694, Groupe de Recherche en Fertilité Humaine, Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Cathy Prouheze
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Eric Bieth
- Université Paul Sabatier, Toulouse III, Toulouse, France.,Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Louis Bujan
- Centre de stérilité masculine-Médecine de la Reproduction, Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France.,EA 3694, Groupe de Recherche en Fertilité Humaine, Université Paul Sabatier, Toulouse III, Toulouse, France.,Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Stanislas Faguer
- Université Paul Sabatier, Toulouse III, Toulouse, France. .,Département de Néphrologie et Transplantation d'organes, Centre de référence des maladies rénales rares, et INSERM UMR1048, Hôpital Rangueil, CHU de Toulouse, 1, avenue Jean Poulhes, 31000, Toulouse, France.
| |
Collapse
|
20
|
Chen SR, Liu YX. Testis Cord Maintenance in Mouse Embryos: Genes and Signaling1. Biol Reprod 2016; 94:42. [DOI: 10.1095/biolreprod.115.137117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
|
21
|
Linck RW, Chemes H, Albertini DF. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J Assist Reprod Genet 2016; 33:141-56. [PMID: 26825807 PMCID: PMC4759005 DOI: 10.1007/s10815-016-0652-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/03/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- Richard W Linck
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Hector Chemes
- Center for Research in Endocrinology, National Research Council, CEDIE-CONICET, Endocrinology Division, Buenos Aires Children's Hospital, Gallo 1330, C1425SEFD, Buenos Aires, Argentina.
| | - David F Albertini
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,The Center for Human Reproduction, New York, NY, USA.
| |
Collapse
|