1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Xu Y, Liu X, Ahmad MA, Ao Q, Yu Y, Shao D, Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration. Mater Today Bio 2024; 27:101125. [PMID: 38979129 PMCID: PMC11228803 DOI: 10.1016/j.mtbio.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Extracellular matrices (ECMs) play a key role in nerve repair and are recognized as the natural source of biomaterials. In parallel to extensively studied tissue-derived ECMs (ts-ECMs), cell-derived ECMs (cd-ECMs) also have the capability to partially recapitulate the complicated regenerative microenvironment of native nerve tissues. Notably, cd-ECMs can avoid the shortcomings of ts-ECMs. Cd-ECMs can be prepared by culturing various cells or even autologous cells in vitro under pathogen-free conditions. And mild decellularization can achieve efficient removal of immunogenic components in cd-ECMs. Moreover, cd-ECMs are more readily customizable to achieve the desired functional properties. These advantages have garnered significant attention for the potential of cd-ECMs in neuroregenerative medicine. As promising biomaterials, cd-ECMs bring new hope for the effective treatment of peripheral nerve injuries. Herein, this review comprehensively examines current knowledge about the functional characteristics of cd-ECMs and their mechanisms of interaction with cells in nerve regeneration, with a particular focus on the preparation, engineering optimization, and scalability of cd-ECMs. The applications of cd-ECMs from distinct cell sources reported in peripheral nerve tissue engineering are highlighted and summarized. Furthermore, current limitations that should be addressed and outlooks related to clinical translation are put forward as well.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianbo Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | | | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, Guangzhou, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
3
|
Lin S, He X, Wang Y, Chen Y, Lin A. Emerging role of lncRNAs as mechanical signaling molecules in mechanotransduction and their association with Hippo-YAP signaling: a review. J Zhejiang Univ Sci B 2024; 25:280-292. [PMID: 38584091 PMCID: PMC11009445 DOI: 10.1631/jzus.b2300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/11/2023] [Indexed: 04/09/2024]
Abstract
Cells within tissues are subject to various mechanical forces, including hydrostatic pressure, shear stress, compression, and tension. These mechanical stimuli can be converted into biochemical signals through mechanoreceptors or cytoskeleton-dependent response processes, shaping the microenvironment and maintaining cellular physiological balance. Several studies have demonstrated the roles of Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransducers, exerting dynamic influence on cellular phenotypes including differentiation and disease pathogenesis. This regulatory function entails the involvement of the cytoskeleton, nucleoskeleton, integrin, focal adhesions (FAs), and the integration of multiple signaling pathways, including extracellular signal-regulated kinase (ERK), wingless/integrated (WNT), and Hippo signaling. Furthermore, emerging evidence substantiates the implication of long non-coding RNAs (lncRNAs) as mechanosensitive molecules in cellular mechanotransduction. In this review, we discuss the mechanisms through which YAP/TAZ and lncRNAs serve as effectors in responding to mechanical stimuli. Additionally, we summarize and elaborate on the crucial signal molecules involved in mechanotransduction.
Collapse
Affiliation(s)
- Siyi Lin
- College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyu He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Yu Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
- International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310058, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
4
|
Jinsheng L, Qing D, Junhao C, Qiqi S, Jieru C, Liwen Y, Zhiyun G, Tailin G, Jie W. Micro/nano topological modification of TiO 2 nanotubes activates Thy-1 signaling to control osteogenic differentiation of stem cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100139. [PMID: 38169172 DOI: 10.1016/j.slasd.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Micro/nano topological modification is critical for improving the in vivo behaviors of bone implants, regulating multiple cellular functions. Titania (TiO2) nanotubes show the capacity of promoting osteoblast-related cell differentiation and induce effective osseointegration, serving as a model material for studying the effects of micro/nano-topological modifications on cells. However, the intracellular signaling pathways by which TiO2 nanotubes regulate the osteogenic differentiation of stem cells are not fully defined. Thy-1 (CD90), a cell surface glycoprotein anchored by glycosylphosphatidylinositol, has been considered a key molecule in osteoblast differentiation in recent years. Nevertheless, whether the micro/nano topology of the implant surface leads to changes in Thy-1 is unknown, as well as whether these changes promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Here, TiO2 nanotubes of various diameters were prepared by adjusting the anodizing voltage. qPCR and immunoblot were carried out to assess the mechanism by which TiO2 nanotubes regulate Thy-1. The results revealed Ti plates harboring TiO2 nanotubes ∼100-nm diameter (TNT-100) markedly upregulated Thy-1. Subsequently, upregulated Thy-1 promoted the activation of Fyn/RhoA/MLC Ⅱ/F-actin axis, which enhanced the nuclear translocation of YAP. After Thy-1 knockdown by siRNA, the Fyn/RhoA/MLC Ⅱ/F-actin axis was significantly inhibited and TiO2 nanotubes showed decreased effects on osteogenic differentiation. Therefore, Thy-1 upregulation might be a major mechanism by which micro/nano-topological modification of TiO2 nanotubes promotes osteogenic differentiation in BMSCs. This study provides novel insights into the molecular mechanism of TiO2 nanotubes, which may help design improved bone implants for clinical application.
Collapse
Affiliation(s)
- Li Jinsheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Deng Qing
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Chen Junhao
- School of Finance and Economics, Xizang Minzu University, Xianyang 712082, PR China
| | - Si Qiqi
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chen Jieru
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yang Liwen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Guo Zhiyun
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guo Tailin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Weng Jie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
5
|
Hu R, Cao Y, Wang Y, Zhao T, Yang K, Fan M, Guan M, Hou Y, Ying J, Ma X, Deng N, Sun X, Zhang Y, Zhang X. TMEM120B strengthens breast cancer cell stemness and accelerates chemotherapy resistance via β1-integrin/FAK-TAZ-mTOR signaling axis by binding to MYH9. Breast Cancer Res 2024; 26:48. [PMID: 38504374 PMCID: PMC10949598 DOI: 10.1186/s13058-024-01802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Breast cancer stem cell (CSC) expansion results in tumor progression and chemoresistance; however, the modulation of CSC pluripotency remains unexplored. Transmembrane protein 120B (TMEM120B) is a newly discovered protein expressed in human tissues, especially in malignant tissues; however, its role in CSC expansion has not been studied. This study aimed to determine the role of TMEM120B in transcriptional coactivator with PDZ-binding motif (TAZ)-mediated CSC expansion and chemotherapy resistance. METHODS Both bioinformatics analysis and immunohistochemistry assays were performed to examine expression patterns of TMEM120B in lung, breast, gastric, colon, and ovarian cancers. Clinicopathological factors and overall survival were also evaluated. Next, colony formation assay, MTT assay, EdU assay, transwell assay, wound healing assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, RNA-sequencing assay, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of TMEM120B interaction on proliferation, invasion, stemness, chemotherapy sensitivity, and integrin/FAK/TAZ/mTOR activation. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between TMEM120B, myosin heavy chain 9 (MYH9), and CUL9. RESULTS TMEM120B expression was elevated in lung, breast, gastric, colon, and ovarian cancers. TMEM120B expression positively correlated with advanced TNM stage, lymph node metastasis, and poor prognosis. Overexpression of TMEM120B promoted breast cancer cell proliferation, invasion, and stemness by activating TAZ-mTOR signaling. TMEM120B directly bound to the coil-coil domain of MYH9, which accelerated the assembly of focal adhesions (FAs) and facilitated the translocation of TAZ. Furthermore, TMEM120B stabilized MYH9 by preventing its degradation by CUL9 in a ubiquitin-dependent manner. Overexpression of TMEM120B enhanced resistance to docetaxel and doxorubicin. Conversely, overexpression of TMEM120B-∆CCD delayed the formation of FAs, suppressed TAZ-mTOR signaling, and abrogated chemotherapy resistance. TMEM120B expression was elevated in breast cancer patients with poor treatment outcomes (Miller/Payne grades 1-2) than in those with better outcomes (Miller/Payne grades 3-5). CONCLUSIONS Our study reveals that TMEM120B bound to and stabilized MYH9 by preventing its degradation. This interaction activated the β1-integrin/FAK-TAZ-mTOR signaling axis, maintaining stemness and accelerating chemotherapy resistance.
Collapse
Affiliation(s)
- Ran Hu
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Tingting Zhao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaibo Yang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Mingwei Fan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Mengyao Guan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Yuekang Hou
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Jiao Ying
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Xiaowen Ma
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Ning Deng
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
6
|
Li Z, Cui Z, Wang X, Lv Y. Knockdown of LRCH4 Remodels Tumor Microenvironment Through Inhibiting YAP and TGF-β/Smad Signaling Pathway in Colorectal Cancer. Comb Chem High Throughput Screen 2024; 27:1823-1829. [PMID: 38383956 DOI: 10.2174/0113862073267943231101065948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Colorectal cancer is one of the most common gastrointestinal malignancies worldwide. LRCH4 is the top 1 gene associated with an unfavorable prognosis in colorectal cancer. METHODS Here, we reported that the knockdown of LRCH4 inhibited the proliferation, migration and invasion in HT29 cells. RESULTS The activity of Yes-Associated Protein (YAP), a transcription factor in the Hppo-YAP signaling pathway, was significantly inhibited by LRCH4-siRNA. LRCH4 knockdown also reversed the EMT and regulated the expression of extracellular matrix (ECM) protein, Fibronectin and Collagen IV in HT29 cells. In addition, the TGF-β/Smad signaling pathway, as the downstream pathway of Yap, was also inhibited by LRCH4 knockdown. CONCLUSION Knockdown of LRCH4 involved in the regulation of ECM and EMT and inhibited YAP and the TGF-β/Smad signaling pathway in colorectal cancer cells. Our study provided a mechanism of LRCH4 on colorectal cancer cells, and a new potential target for clinical tumor treatment.
Collapse
Affiliation(s)
- Zhiwen Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenhua Cui
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianren Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfeng Lv
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. ECM proteins and cationic polymers coating promote dedifferentiation of patient-derived mature adipocytes to stem cells. Biomater Sci 2023; 11:7623-7638. [PMID: 37830400 DOI: 10.1039/d3bm00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Reprogramming of mature adipocytes is an attractive research area due to the plasticity of these cells. Mature adipocytes can be reprogrammed in vitro, transforming them into dedifferentiated fat cells (DFATs), which are considered a new type of stem cell, and thereby have a high potential for use in tissue engineering and regenerative medicine. However, there are still no reports or findings on in vitro controlling the dedifferentiation. Although ceiling culture performed in related studies is a relatively simple method, its yield is low and does not allow manipulation of mature adipocytes to increase or decrease the dedifferentiation. In this study, to understand the role of physicochemical surface effects on the dedifferentiation of patient-derived mature adipocytes, the surfaces of cell culture flasks were coated with extracellular matrix, basement membrane proteins, and cationic/anionic polymers. Extracellular matrix such as fibronectin and collagen type I, and basement membrane proteins such as collagen type IV and laminin strongly promoted dedifferentiation of mature adipocytes, with laminin showing the highest effect with a DFAT ratio of 2.98 (±0.84). Interestingly, cationic polymers also showed a high dedifferentiation effect, but anionic polymers did not, and poly(diallyl dimethylammonium chloride) showed the highest DFAT ratio of 2.27 (±2.8) among the cationic polymers. Protein assay results revealed that serum proteins were strongly adsorbed on the surfaces of the cationic polymer coating, including inducing high mature adipocyte adhesion. This study demonstrates for the first time the possibility of regulating the transformation of mature adipocytes to DFAT stem cells by controlling the physicochemical properties of the surface of conventional cell culture flasks.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
8
|
Tassinari R, Olivi E, Cavallini C, Taglioli V, Zannini C, Marcuzzi M, Fedchenko O, Ventura C. Mechanobiology: A landscape for reinterpreting stem cell heterogeneity and regenerative potential in diseased tissues. iScience 2022; 26:105875. [PMID: 36647385 PMCID: PMC9839966 DOI: 10.1016/j.isci.2022.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanical forces play a fundamental role in cellular dynamics from the molecular level to the establishment of complex heterogeneity in somatic and stem cells. Here, we highlight the role of cytoskeletal mechanics and extracellular matrix in generating mechanical forces merging into oscillatory synchronized patterns. We discuss how cellular mechanosensing/-transduction can be modulated by mechanical forces to control tissue metabolism and set the basis for nonpharmacologic tissue rescue. Control of bone anabolic activity and repair, as well as obesity prevention, through a fine-tuning of the stem cell morphodynamics are highlighted. We also discuss the use of mechanical forces in the treatment of cardiovascular diseases and heart failure through the fine modulation of stem cell metabolic activity and regenerative potential. We finally focus on the new landscape of delivering specific mechanical stimuli to reprogram tissue-resident stem cells and enhance our self-healing potential, without the need for stem cell or tissue transplantation.
Collapse
Affiliation(s)
| | - Elena Olivi
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy
| | | | | | | | - Martina Marcuzzi
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Oleksandra Fedchenko
- NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy
| | - Carlo Ventura
- ELDOR LAB, via Corticella 183, 40129 Bologna, Italy,NIBB, National Institute of Biostructures and Biosystems, National Laboratory of Molecular Biology and Stem Cell Engineering, via Corticella 183, 40129 Bologna, Italy,Corresponding author
| |
Collapse
|
9
|
Xu Z, Li Y, Li P, Sun Y, Lv S, Wang Y, He X, Xu J, Xu Z, Li L, Li Y. Soft substrates promote direct chemical reprogramming of fibroblasts into neurons. Acta Biomater 2022; 152:255-272. [PMID: 36041647 DOI: 10.1016/j.actbio.2022.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
Fibroblasts can be directly reprogrammed via a combination of small molecules to generate induced neurons (iNs), bypassing intermediate stages. This method holds great promise for regenerative medicine; however, it remains inefficient. Recently, studies have suggested that physical cues may improve the direct reprogramming of fibroblasts into neurons, but the underlying mechanisms remain to be further explored, and the physical factors reported to date do not exhibit the full properties of the extracellular matrix (ECM). Previous in vitro studies mainly used rigid polystyrene dishes, while one of the characteristics of the native in-vivo environment of neurons is the soft nature of brain ECM. The reported stiffness of brain tissue is very soft ranging between 100 Pa and 3 kPa, and the effect of substrate stiffness on direct neuronal reprogramming has not been explored. Here, we show for the first time that soft substrates substantially improved the production efficiency and quality of iNs, without needing to co-culture with glial cells during reprogramming, producing more glutamatergic neurons with electrophysiological functions in a shorter time. Transcriptome sequencing indicated that soft substrates might promote glutamatergic neuron reprogramming through integrins, actin cytoskeleton, Hippo signalling pathway, and regulation of mesenchymal-to-epithelial transition, and competing endogenous RNA network analysis provided new targets for neuronal reprogramming. We demonstrated that soft substrates may promote neuronal reprogramming by inhibiting microRNA-615-3p-targeting integrin subunit beta 4. Our findings can aid the development of regenerative therapies and help improve our understanding of neuronal reprogramming. STATEMENT OF SIGNIFICANCE: : First, we have shown that low stiffness promotes direct reprogramming on the basis of small molecule combinations. To the best of our knowledge, this is the first report on this type of method, which may greatly promote the progress of neural reprogramming. Second, we found that miR-615-3p may interact with ITGB4, and the soft substrates may promote neural reprogramming by inhibiting microRNA (miR)-615-3p targeting integrin subunit beta 4 (ITGB4). We are the first to report on this mechanism. Our findings will provide more functional neurons for subsequent basic and clinical research in neurological regenerative medicine, and will help to improve the overall understanding of neural reprogramming. This work also provides new ideas for the design of medical biomaterials for nerve regeneration.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yan Li
- Division of Orthopedics and Biotechnology, Department for Clinical Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
| | - Pengdong Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Stomatology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xia He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Pathology, Shanxi Bethune Hospital, Taiyuan 030032, China.
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Burns Surgery, The First Hospital of Jilin University, Changchun 130000, China.
| | - Zhixiang Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Liu L, Liu X, Liu M, Jihu Y, Xie D, Yan H. Mechanical signals induces reprogramming of mature adipocytes through the YAP/TAZ-binding motif. Exp Cell Res 2022; 415:113109. [DOI: 10.1016/j.yexcr.2022.113109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022]
|
11
|
Yu L, Liu Y, Wu J, Wang S, Yu J, Wang W, Ye X. Genipin Cross-Linked Decellularized Nucleus Pulposus Hydrogel-Like Cell Delivery System Induces Differentiation of ADSCs and Retards Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 9:807883. [PMID: 35004657 PMCID: PMC8733700 DOI: 10.3389/fbioe.2021.807883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the pathological basis of disc degenerative diseases (DDD). Reduction in the number of cells and degeneration of the extracellular matrix (ECM) in the nucleus pulposus (NP) are characteristics of IDD. Bio-hydrogel combined with stem cell transplantation is a promising treatment. Injectable ECM hydrogels have good biological activity and in-situ gelatinization. However, its biomechanics and stability are insufficient to provide adequate mechanical support for intervertebral discs and to maintain the long-term differential stimulus for seeded stem cells. In our study, we developed genipin cross-linked decellularized nucleus pulposus hydrogel (GDH) as delivery system. We evaluated the mechanical properties, stability, biocompatibility, and differentiation induction of GDH cross-linked with different concentrations of genipin in vitro. The GDH-loaded adipose-derived mesenchymal stem cells (ADSCs) (GDHA) were injected into the rat degenerated coccygeal intervertebral disc. The effect of intervertebral disc regeneration in vivo was evaluated. The results showed that GDH with 0.02% of genipin had similar elastic modulus to human nucleus pulposus, good biocompatibility, and inducibility of expressing NP-related genes. In vivo studies showed that GDHA improved the survival of ADSCs and improved the intervertebral height, MRI index, and histological grading score. In conclusion, GDH, as an outstanding bio-hydrogel cell delivery system, has the therapeutic potential for retarding IDD.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianxin Wu
- Department of Orthopedics, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuang Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weiheng Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|