1
|
Combining anatomical and functional networks for neuropathology identification: A case study on autism spectrum disorder. Med Image Anal 2021; 69:101986. [PMID: 33610918 DOI: 10.1016/j.media.2021.101986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
While the prevalence of Autism Spectrum Disorder (ASD) is increasing, research continues in an effort to identify common etiological and pathophysiological bases. In this regard, modern machine learning and network science pave the way for a better understanding of the neuropathology and the development of diagnosis aid systems. The present work addresses the classification of neurotypical and ASD subjects by combining knowledge about both the structure and the functional activity of the brain. In particular, we model the brain structure as a graph, and the resting-state functional MRI (rs-fMRI) signals as values that live on the nodes of that graph. We then borrow tools from the emerging field of Graph Signal Processing (GSP) to build features related to the frequency content of these signals. In order to make these features highly discriminative, we apply an extension of the Fukunaga-Koontz transform. Finally, we use these new markers to train a decision tree, an interpretable classification scheme, which results in a final diagnosis aid model. Interestingly, the resulting decision tree outperforms state-of-the-art methods on the publicly available Autism Brain Imaging Data Exchange (ABIDE) collection. Moreover, the analysis of the predictive markers reveals the influence of the frontal and temporal lobes in the diagnosis of the disorder, which is in line with previous findings in the literature of neuroscience. Our results indicate that exploiting jointly structural and functional information of the brain can reveal important information about the complexity of the neuropathology.
Collapse
|
2
|
Martin B, Wang R, Cong WN, Daimon CM, Wu WW, Ni B, Becker KG, Lehrmann E, Wood WH, Zhang Y, Etienne H, van Gastel J, Azmi A, Janssens J, Maudsley S. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. J Biol Chem 2017; 292:11508-11530. [PMID: 28522608 DOI: 10.1074/jbc.m116.773820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.
Collapse
Affiliation(s)
- Bronwen Martin
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Rui Wang
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wei-Na Cong
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Caitlin M Daimon
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wells W Wu
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Bin Ni
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Kevin G Becker
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Elin Lehrmann
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - William H Wood
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Yongqing Zhang
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Harmonie Etienne
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jaana van Gastel
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Abdelkrim Azmi
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jonathan Janssens
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Stuart Maudsley
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224, .,the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| |
Collapse
|
3
|
Bonnet-Brilhault F. [Autism: An early neurodevelopmental disorder]. Arch Pediatr 2017; 24:384-390. [PMID: 28256376 DOI: 10.1016/j.arcped.2017.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/16/2022]
Abstract
With approximately 67 million individuals affected worldwide, autism spectrum disorder (ASD) is the fastest growing neurodevelopmental disorder (United Nations, 2011), with a prevalence estimated to be 1/100. In France ASD affects approximately 600,000 individuals (from childhood to adulthood, half of whom are also mentally retarded), who thus have a major handicap in communication and in adapting to daily life, which leads autism to be recognized as a national public health priority. ASD is a neurodevelopmental disorder that affects several domains (i.e., socio-emotional, language, sensori-motor, executive functioning). These disorders are expressed early in life with an age of onset around 18 months. Despite evidence suggesting a strong genetic link with ASD, the genetic determinant remains unclear. The clinical picture is characterized by impairments in social interaction and communication and the presence of restrictive and repetitive behaviors (DSM-5, ICD-10). However, in addition to these two main dimensions there is significant comorbidity between ASD and other neurodevelopmental disorders such as attention deficit hyperactivity disorder or with genetic and medical conditions. One of the diagnostic features of ASD is its early emergence: symptoms must begin in early childhood for a diagnosis to be given. Due to brain plasticity, early interventions are essential to facilitate clinical improvement. Therefore, general practitioners and pediatricians are on the front line to detect early signs of ASD and to guide both medical explorations and early rehabilitation.
Collapse
Affiliation(s)
- F Bonnet-Brilhault
- UMR Inserm U930, équipe autisme, centre universitaire de pédopsychiatrie, hôpital Bretonneau, CHRU de Tours, 2, boulevard Tonnellé, 37044 Tours cedex 09, France.
| |
Collapse
|
4
|
Wang J, Qin W, Liu F, Liu B, Zhou Y, Jiang T, Yu C. Sex-specific mediation effect of the right fusiform face area volume on the association between variants in repeat length of AVPR1A RS3 and altruistic behavior in healthy adults. Hum Brain Mapp 2016; 37:2700-9. [PMID: 27027249 DOI: 10.1002/hbm.23203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 01/03/2023] Open
Abstract
Microsatellite variants in the arginine vasopressin receptor 1A gene (AVPR1A) RS3 have been associated with normal social behaviors variation and autism spectrum disorders (ASDs) in a sex-specific manner. However, neural mechanisms underlying these associations remain largely unknown. We hypothesized that AVPR1A RS3 variants affect altruistic behavior by modulating the gray matter volume (GMV) of specific brain regions in a sex-specific manner. We investigated 278 young healthy adults using the Dictator Game to assess altruistic behavior. All subjects were genotyped and main effect of AVPR1A RS3 repeat polymorphisms and interaction of genotype-by-sex on the GMV were assessed in a voxel-wise manner. We observed that male subjects with relatively short repeats allocated less money to others and exhibited a significantly smaller GMV in the right fusiform face area (FFA) compared with male long homozygotes. In male subjects, the GMV of the right FFA exhibited a significant positive correlation with altruistic behavior. A mixed mediation and moderation analysis further revealed both a significant mediation effect of the GMV of the right FFA on the association between AVPR1A RS3 repeat polymorphisms and allocation sums and a significant moderation effect of sex (only in males) on the mediation effect. Post hoc analysis showed that the GMV of the right FFA was significantly smaller in male subjects carrying allele 426 than in non-426 carriers. These results suggest that the GMV of the right FFA may be a potential mediator whereby the genetic variants in AVPR1A RS3 affect altruistic behavior in healthy male subjects. Hum Brain Mapp 37:2700-2709, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Center for Social and Economic Behavior, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Watanabe H, Nakamura M, Ohno T, Itahashi T, Tanaka E, Ohta H, Yamada T, Kanai C, Iwanami A, Kato N, Hashimoto R. Altered orbitofrontal sulcogyral patterns in adult males with high-functioning autism spectrum disorders. Soc Cogn Affect Neurosci 2014; 9:520-8. [PMID: 23386741 PMCID: PMC3989135 DOI: 10.1093/scan/nst016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/27/2013] [Indexed: 11/14/2022] Open
Abstract
Functions of the orbitofrontal cortex include diverse social, cognitive and affective processes, many of which are abnormal in autism spectrum disorders (ASDs). Recently, altered orbitofrontal sulcogyral patterns have been revealed in several psychiatric conditions, such as schizophrenia, indicating a possibility that altered orbitofrontal sulcogyral morphology reflects abnormal neurodevelopment. However, the presence of sulcal alterations in ASD remains unexplored. Using structural magnetic resonance imaging, subtypes of the 'H-shaped' sulcus (Type I, II and III, in order of frequency), posterior orbital sulcus (POS) and intermediate orbital sulcus were identified in each hemisphere of adult males with ASD (n = 51) and matched normal controls (n = 55) based on the study by Chiavaras and Petrides. ASD showed a significantly altered distribution of H-shaped sulcal subtypes in both hemispheres, with a significant increase of Type III. A significant alteration in the distribution of sulcal subtypes was also identified in the right hemisphere POS of ASD. Categorical regression analysis revealed that Type I and II expressions predicted a reduced total Autism-Spectrum Quotient score. Furthermore, Type I expression was associated with a reduced 'attention to detail' subscale score. The results demonstrate that altered sulcogyral morphology can be a marker for abnormal neurodevelopment leading to the increased risk of developing autism.
Collapse
Affiliation(s)
- Hiromi Watanabe
- Department of Psychiatry, Showa University School of Medicine, 6-11-11, Kita-karasuyaSetagaya-ku, Tokyo 157-8577, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kodish I, Rockhill CM, Webb SJ. ASD: Psychopharmacologic Treatments and Neurophysiologic Underpinnings. Curr Top Behav Neurosci 2014; 21:257-75. [PMID: 24683058 PMCID: PMC4180816 DOI: 10.1007/7854_2014_298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autism Spectrum Disorder encompasses a range of neurodevelopmental disorders characterized by early deficits in social communication in addition to restricted and repetitive behaviors. Symptoms are increasingly understood to be associated with abnormalities in the coordination of neuronal assemblies responsible for processing information essential for early adaptive behaviors. Pharmacologic treatments carry evidence for clinically significant benefit of multiple impairing symptoms of ASD, yet these benefits are limited and range across a broad spectrum of medication classes, making it difficult to characterize associated neurochemical impairments. Increasing prevalence of both ASD and its pharmacologic management calls for greater understanding of the neurophysiologic basis of the disorder. This paper reviews underlying alterations in local brain regions and coordination of brain activation patterns during both resting state and task-related processes. We propose that new pharmacologic treatments may focus on realigning trajectories of network specialization across development by working in combination with behavioral treatments to enhance social and emotional learning by bolstering the impact of experience-induced plasticity on neuronal network connectivity.
Collapse
Affiliation(s)
- Ian Kodish
- University of Washington Department of Psychiatry and Behavioral Sciences, Seattle, United States of America
| | | | | |
Collapse
|
7
|
Abdel Razek A, Mazroa J, Baz H. Assessment of white matter integrity of autistic preschool children with diffusion weighted MR imaging. Brain Dev 2014; 36:28-34. [PMID: 23398955 DOI: 10.1016/j.braindev.2013.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 12/14/2022]
Abstract
The purpose was to assess white matter integrity of autistic preschool children with diffusion weighted MR imaging. Prospective study was carried on 19 autistic children (mean age 55.2ms, IQ of 86.5) and 10 sex, age and IQ matched control (mean age 53.2ms, IQ 84.5). The childhood Autism Rating Scale (CARS), social age and language age were calculated. Patients and controls underwent diffusion weighted MR imaging of the brain with b factor of 0, 500 and 1000s/mm(2). The apparent diffusion coefficient (ADC) value at different regions of the white matter were calculated and correlated with CARS, social age and language age. There were significant differences at the ADC value of the white matter between autistic and control children at genu (P=0.043), splenium (P=0.003) of the corpus callosum, frontal white matter (P=0.015) and temporal white matter (P=0.020). There was positive correlation of CARS score with ADC value of the genu (r=0.63, P=0.001), splenium (r=0.59, P=0.005), frontal white matter (r=0.81, P=0.001) and temporal white matter (r=0.74, P=0.001). The social age well correlated with ADC value of the frontal white matter (r=0.81, P=0.001) and language age well correlated with ADC value of the temporal white matter (r=0.78, P=0.001). We concluded that ADC value can be helpful in assessment of integrity of the white matter in autistic preschool children and well correlated with CARS score, social age and language age.
Collapse
Affiliation(s)
- Ahmed Abdel Razek
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt.
| | - Jehan Mazroa
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Hemmat Baz
- Phonetic Unit, ENT Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
8
|
Sgadò P, Provenzano G, Dassi E, Adami V, Zunino G, Genovesi S, Casarosa S, Bozzi Y. Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders. Mol Autism 2013; 4:51. [PMID: 24355397 PMCID: PMC3896729 DOI: 10.1186/2040-2392-4-51] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/27/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. METHODS Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. RESULTS Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. CONCLUSIONS Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.
Collapse
Affiliation(s)
- Paola Sgadò
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Erik Dassi
- Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Valentina Adami
- High Throughput Screening Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Giulia Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Sacha Genovesi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Simona Casarosa
- Laboratory of Developmental Neurobiology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy.,C.N.R. Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, 38123 Trento, Italy.,C.N.R. Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
9
|
Bringas M, Carvajal-Flores F, López-Ramírez T, Atzori M, Flores G. Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience 2013; 241:170-87. [DOI: 10.1016/j.neuroscience.2013.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/25/2013] [Accepted: 03/15/2013] [Indexed: 12/30/2022]
|