1
|
Zang R, Zhou R, Li Y, Wu H, Lu L, Xu H. The probiotic Lactobacillus plantarum alleviates colitis by modulating gut microflora to activate PPARγ and inhibit MAPKs/NF-κB. Eur J Nutr 2024; 64:32. [PMID: 39607600 DOI: 10.1007/s00394-024-03520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE In order to address the global public health concern of colitis, this study was conducted to investigate the beneficial effect of Lactobacillus plantarum LR002 (LR) on the remission of ulcerative colitis (UC) in mice and to explore the possible underlying mechanisms. METHODS The effect of LR on UC was analyzed by using dextran sodium sulfate (DSS)-induced UC model in mice (n = 9). To assess the therapeutic effect of LR on UC in mice, the disease activity index (DAI) of mice, histopathological alterations, intestinal epithelial barrier integrity, and intestinal microflora were determined. RESULTS The results demonstrated a reduction in the DSS-induced DAI in UC mice. Additionally, it mitigated colon shortening, minimized intestinal tissue damage, and preserved intestinal tight junction proteins (Claudin-3, Occludin, and ZO-1). LR reduced the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and oxidative mediators (MPO, SOD and MDA) in the colon of UC mice, which could also alleviate the imbalance of intestinal flora in UC mice, increase the abundance of Prevotellaceae, and Ligilactobacillus, and decrease the abundance of Bacteroidaceae and Eubacteriumrum. LR can also increase the levels of PPARγ in the nucleus and inhibit the MAPK/NF-ĸB signaling pathway in UC mice. Besides, the reduction of the content of short-chain fatty acid (SCFAs) in the colon of UC mice was relieved. CONCLUSION The above results forge a scientific basis for LR as natural anti-inflammatory food to improve the imbalance of inflammatory intestinal flora and promote intestinal health.
Collapse
Affiliation(s)
- Rongxin Zang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Rui Zhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
| | - Yaodong Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
| | - Huihao Wu
- Experimental Teaching Department, Northwest Minzu University, Lanzhou, 730100, China
| | - Liping Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730100, China.
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Koseki C, Ishikawa T, Sato Y, Shimada M, Yokoi Y, Nakamura K, Honma N, Moriyama T, Kashiwagi H, Sugawara M. Development of an Evaluation System Using Intestinal Organoids for Drug Efflux Transport Analysis by an Imaging Approach. J Pharm Sci 2024; 113:2675-2682. [PMID: 38871222 DOI: 10.1016/j.xphs.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
There are several in vitro systems that enable evaluation of the absorption direction, but there are few quantitative systems that enable easy evaluation of the excretion direction. Enteroids, organoids derived from intestine, have been frozen and passaged for various research. But it is not clear how the freezing and passaging affect the expression and function of transporters. We investigated the effects of passage and cryopreservation of enteroids. We focused on P-gp (P-glycoprotein) and compared the transfer rates of rhodamine 123 (Rh123) into the lumen of enteroids with and without a P-gp inhibitor. mRNA expression levels did not change significantly before and after passage and cryopreservation. Accumulation of Rh123 in the lumen of enteroids was observed. With some P-gp inhibitors, excretion of Rh123 into the lumen of enteroids was inhibited and the nonexcreted Rh123 accumulated in enteroids epithelial cells. The transfer rate of Rh123 into the lumen of enteroids with a P-gp inhibitor was significantly decreased compared to that of without a P-gp inhibitor. Before and after passage and cryopreservation, the transfer rate was almost the same as that of primary cultured enteroids. We succeeded in easily evaluating whether a component is a substrate of P-gp using enteroids.
Collapse
Affiliation(s)
- Chihiro Koseki
- School of Pharmaceutical Sciences and Pharmacy, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takehiko Ishikawa
- School of Pharmaceutical Sciences and Pharmacy, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Mikiko Shimada
- School of Pharmaceutical Sciences and Pharmacy, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Yokoi
- Faculty of Advanced Life Science, Hokkaido University, Kita-21-jo, Nishi-11-chome, Kita-ku, Sapporo 001-0021, Japan
| | - Kiminori Nakamura
- Faculty of Advanced Life Science, Hokkaido University, Kita-21-jo, Nishi-11-chome, Kita-ku, Sapporo 001-0021, Japan
| | - Naoyuki Honma
- Faculty of Health Sciences, Hokkaido University, Kita-12-jo, Nishi-5-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Takanori Moriyama
- Faculty of Health Sciences, Hokkaido University, Kita-12-jo, Nishi-5-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Hitoshi Kashiwagi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Mitsuru Sugawara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo 060-8648, Japan; Global Station for Biosurfaces and Drug Discovery, Global Institution for Research and Education (GI-CoRE), Hokkaido University, Japan.
| |
Collapse
|
3
|
Inui T, Uraya Y, Yokota J, Yamashita T, Kawai K, Okada K, Ueyama-Toba Y, Mizuguchi H. Functional intestinal monolayers from organoids derived from human iPS cells for drug discovery research. Stem Cell Res Ther 2024; 15:57. [PMID: 38424603 PMCID: PMC10905936 DOI: 10.1186/s13287-024-03685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem (iPS) cell-derived enterocyte-like cells (ELCs) are expected to be useful for evaluating the intestinal absorption and metabolism of orally administered drugs. However, it is difficult to generate large amounts of ELCs with high quality because they cannot proliferate and be passaged. METHODS To solve the issue above, we have established intestinal organoids from ELCs generated using our protocol. Furthermore, monolayers were produced from the organoids. We evaluated the usefulness of the monolayers by comparing their functions with those of the original ELCs and the organoids. RESULTS We established organoids from ELCs (ELC-org) that could be passaged and maintained for more than a year. When ELC-org were dissociated into single cells and seeded on cell culture inserts (ELC-org-mono), they formed a tight monolayer in 3 days. Both ELC-org and ELC-org-mono were composed exclusively of epithelial cells. Gene expressions of many drug-metabolizing enzymes and drug transporters in ELC-org-mono were enhanced, as compared with those in ELC-org, to a level comparable to those in adult human small intestine. The CYP3A4 activity level in ELC-org-mono was comparable or higher than that in primary cryopreserved human small intestinal cells. ELC-org-mono had the efflux activities of P-gp and BCRP. Importantly, ELC-org-mono maintained high intestinal functions without any negative effects even after long-term culture (for more than a year) or cryopreservation. RNA-seq analysis showed that ELC-org-mono were more mature as intestinal epithelial cells than ELCs or ELC-org. CONCLUSIONS We have successfully improved the function and convenience of ELCs by utilizing organoid technology.
Collapse
Affiliation(s)
- Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Yusei Uraya
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Okada
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|