1
|
Scholtes MP, Akbarzadeh M, Galaras A, Nakauma-Gonzáles JA, Bazrafshan A, Solanki V, Torenvliet B, Beikmohammadi L, Lozovanu V, Romal S, Moulos P, Vavouraki N, Kan TW, Algoe M, van Royen ME, Sacchetti A, van den Bosch TPP, Eussen B, de Klein A, van Leenders GJLH, Boormans JL, Hatzis P, Palstra RJ, Zuiverloon TCM, Mahmoudi T. Integrative analysis of patient-derived tumoroids and ex vivo organoid modelling of ARID1A loss in bladder cancer reveals therapeutic molecular targets. Cancer Lett 2025; 614:217506. [PMID: 39892702 DOI: 10.1016/j.canlet.2025.217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Somatic mutations in ARID1A (AT-rich interactive domain-containing protein 1A) are present in approximately 25 % of bladder cancers (BC) and are associated with poor prognosis. With a view to discover effective treatment options for ARID1A-deficient BC patients, we set out to identify targetable effectors dysregulated consequent to ARID1A deficiency. Integrative analyses of ARID1A depletion in normal organoids and data mining in publicly available datasets revealed upregulation of DNA repair and cell cycle-associated genes consequent to loss of ARID1A and identified CHEK1 (Checkpoint kinase 1) and chromosomal passenger complex member BIRC5 (Baculoviral IAP Repeat Containing 5) as therapeutically drug-able candidate molecular effectors. Ex vivo treatment of patient-derived BC tumoroids with clinically advanced small molecule inhibitors targeting CHEK1 or BIRC5 was associated with increased DNA damage signalling and apoptosis, and selectively induced cell death in tumoroids lacking ARID1A protein expression. Thus, integrating public datasets with patient-derived organoid modelling and ex-vivo drug testing can uncover key molecular effectors and mechanisms of oncogenic transformation, potentially leading to novel therapeutic strategies. Our data point to ARID1A protein expression as a suitable candidate biomarker for the selection of BC patients responsive to therapies targeting BIRC5 and CHEK1.
Collapse
Affiliation(s)
- Mathijs P Scholtes
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Akbarzadeh
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandros Galaras
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - J Alberto Nakauma-Gonzáles
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ameneh Bazrafshan
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vandana Solanki
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bram Torenvliet
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Valeria Lozovanu
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shahla Romal
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikoleta Vavouraki
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Tsung Wai Kan
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mahesh Algoe
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Robert-Jan Palstra
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
3
|
Kole A, Bag AK, Pal AJ, De D. Generic model to unravel the deeper insights of viral infections: an empirical application of evolutionary graph coloring in computational network biology. BMC Bioinformatics 2024; 25:74. [PMID: 38365632 PMCID: PMC10874019 DOI: 10.1186/s12859-024-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Graph coloring approach has emerged as a valuable problem-solving tool for both theoretical and practical aspects across various scientific disciplines, including biology. In this study, we demonstrate the graph coloring's effectiveness in computational network biology, more precisely in analyzing protein-protein interaction (PPI) networks to gain insights about the viral infections and its consequences on human health. Accordingly, we propose a generic model that can highlight important hub proteins of virus-associated disease manifestations, changes in disease-associated biological pathways, potential drug targets and respective drugs. We test our model on SARS-CoV-2 infection, a highly transmissible virus responsible for the COVID-19 pandemic. The pandemic took significant human lives, causing severe respiratory illnesses and exhibiting various symptoms ranging from fever and cough to gastrointestinal, cardiac, renal, neurological, and other manifestations. METHODS To investigate the underlying mechanisms of SARS-CoV-2 infection-induced dysregulation of human pathobiology, we construct a two-level PPI network and employed a differential evolution-based graph coloring (DEGCP) algorithm to identify critical hub proteins that might serve as potential targets for resolving the associated issues. Initially, we concentrate on the direct human interactors of SARS-CoV-2 proteins to construct the first-level PPI network and subsequently applied the DEGCP algorithm to identify essential hub proteins within this network. We then build a second-level PPI network by incorporating the next-level human interactors of the first-level hub proteins and use the DEGCP algorithm to predict the second level of hub proteins. RESULTS We first identify the potential crucial hub proteins associated with SARS-CoV-2 infection at different levels. Through comprehensive analysis, we then investigate the cellular localization, interactions with other viral families, involvement in biological pathways and processes, functional attributes, gene regulation capabilities as transcription factors, and their associations with disease-associated symptoms of these identified hub proteins. Our findings highlight the significance of these hub proteins and their intricate connections with disease pathophysiology. Furthermore, we predict potential drug targets among the hub proteins and identify specific drugs that hold promise in preventing or treating SARS-CoV-2 infection and its consequences. CONCLUSION Our generic model demonstrates the effectiveness of DEGCP algorithm in analyzing biological PPI networks, provides valuable insights into disease biology, and offers a basis for developing novel therapeutic strategies for other viral infections that may cause future pandemic.
Collapse
Affiliation(s)
- Arnab Kole
- Department of Computer Application, The Heritage Academy, Kolkata, W.B., 700107, India.
| | - Arup Kumar Bag
- Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | | | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Nadia, W.B., 741249, India
| |
Collapse
|
4
|
Zhou F, Deng Z, Shen D, Lu M, Li M, Yu J, Xiao Y, Wang G, Qian K, Ju L, Wang X. DLGAP5 triggers proliferation and metastasis of bladder cancer by stabilizing E2F1 via USP11. Oncogene 2024; 43:594-607. [PMID: 38182895 DOI: 10.1038/s41388-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Bladder cancer (BLCA) is one of the most widespread malignancies worldwide, and displays significant tumor heterogeneity. Understanding the molecular mechanisms exploitable for treating aggressive BLCA represents a crucial objective. Despite the involvement of DLGAP5 in tumors, its precise molecular role in BLCA remains unclear. BLCA tissues exhibit a substantial increase in DLGAP5 expression compared with normal bladder tissues. This heightened DLGAP5 expression positively correlated with the tumor's clinical stage and significantly affected prognosis negatively. Additionally, experiments conducted in vitro and in vivo revealed that alterations in DLGAP5 expression notably influence cell proliferation and migration. Mechanistically, the findings demonstrated that DLGAP5 was a direct binding partner of E2F1 and that DLGAP5 stabilized E2F1 by preventing the ubiquitination of E2F1 through USP11. Furthermore, as a pivotal transcription factor, E2F1 fosters the transcription of DLGAP5, establishing a positive feedback loop between DLGAP5 and E2F1 that accelerates BLCA development. In summary, this study identified DLGAP5 as an oncogene in BLCA. Our research unveils a novel oncogenic mechanism in BLCA and offers a potential target for both diagnosing and treating BLCA.
Collapse
Affiliation(s)
- Fenfang Zhou
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengxin Lu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Nasuh S, Balci SO, Bozgeyik I, Ikeda MA, Tekayev M, Saadat KASM. ARID3A and ARID3B exert direct regulatory control over the long non-coding RNAs (lncRNAs) MALAT1 and NORAD within the context of non-small cell lung cancer (NSCLC). Pathol Res Pract 2023; 252:154948. [PMID: 37977034 DOI: 10.1016/j.prp.2023.154948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Lung cancer, known for its high mortality rates and poor prognosis, remains one of the most prevalent cancer types. Early detection and effective treatment methods are crucial for improving survival rates. Non-small cell lung cancer (NSCLC) accounts for approximately 85 % of all lung cancer cases. Long non-coding RNAs (lncRNAs), which play vital roles in various biological processes, have been implicated in the development of cancer and can impact key therapeutic targets in different cancer types. In NSCLC, the dysregulation of specific lncRNAs, such as MALAT1 and NORAD, has been associated with neoplastic initiation, progression, metastasis, tumor angiogenesis, chemoresistance, and genomic instability. Both MALAT1 and NORAD directly regulate the expression of the transcription factor E2F1, thereby influencing cell cycle progression. Additionally, MALAT1 has been reported to affect the expression of p53 target genes, leading to cell cycle progression through the repression of p53 promoter activity. NORAD, on the other hand, is indirectly regulated by p53. The AT-rich interaction domain (ARID) family of DNA-binding proteins, particularly ARID3A and ARID3B, are involved in various biological processes such as cell proliferation, differentiation, and development. They also play significant roles in E2F-dependent transcription and are transcriptional targets of p53. The intricate balance between promoting cellular proliferation through the pRB-E2F pathway and inducing growth arrest through the p53 pathway underscores the crucial regulatory role of ARID3A, ARID3B, and their interaction with lncRNAs MALAT1 and NORAD. In this study, we aimed to investigate the potential interactive and functional connections among ARID3A, ARID3B, MALAT1, and NORAD in NSCLC, considering their involvement in the pRB-E2F and p53 pathways. Our findings strongly suggest that ARID3A and ARID3B play a regulatory role in controlling MALAT1 and NORAD in NSCLC. Specifically, our study demonstrates that the activities of MALAT1 and NORAD were markedly increased upon the overexpression of ARID3A and ARID3B. Therefore, we can conclude that ARID3A and ARID3B likely contribute significantly to the oncogenic functions of MALAT1 and NORAD in NSCLC. Consequently, targeting ARID3A and ARID3B could hold promise as a therapeutic approach in NSCLC, given their direct control over the expression of MALAT1 and NORAD.
Collapse
Affiliation(s)
- Sedin Nasuh
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey
| | - Sibel Oguzkan Balci
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine Adiyaman University, Adiyaman 02040, Turkey
| | - Masa-Aki Ikeda
- Department of Regenerative and Reconstructive Dental Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Muhammetnur Tekayev
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey; Department of Histology and Embryology, Hamidiye Faculty of Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey
| | - Khandakar A S M Saadat
- Department of Medical Biology and Genetics, Faculty of Medicine, Graduate Institute of Health Sciences, Gaziantep University, Gaziantep 27310, Turkey.
| |
Collapse
|
6
|
Shah ZA, Nouroz F, Ejaz S, Tayyeb A. An Insight into the Role of E2F1 in Breast Cancer Progression, Drug Resistance, and Metastasis. Curr Mol Med 2023; 23:365-376. [PMID: 35260053 DOI: 10.2174/1566524022666220308095834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
AIMS This study aimed to investigate the role of E2F1 in breast cancer biology. BACKGROUND Expression of E2F1, a transcription factor of many oncogenes and tumor suppressor genes, is lowered in several malignancies, including breast carcinoma. OBJECTIVES In the present study, we analyzed the status of E2F1 expression in association with diverse attributes of breast malignancy and its impact on cancer progression. METHODS For this purpose, we used various freely available online applications for gene enrichment, expression, and methylation analysis to extract mutation-based E2F1 map, to measure E2F1 drug sensitivity, and to determine E2F1 association with DNA damage response proteins. RESULTS Results revealed tissue-specific regulatory behavior of E2F1. Moreover, the key role of E2F1 in the promotion of metastasis, stem cell-mediated carcinogenesis, estrogen-mediated cell proliferation, and cellular defense system, has therefore highlighted it as a metaplastic marker and hot member of key resistome pathways. CONCLUSION The information thus generated can be employed for future implications in devising rational therapeutic strategies. Moreover, this study has provided a more detailed insight into the diagnostic and prognostic potential of E2F1.
Collapse
Affiliation(s)
- Zafar Abbas Shah
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Lai HH, Hung LY, Yen CJ, Hung HC, Chen RY, Ku YC, Lo HT, Tsai HW, Lee YP, Yang TH, Chen YY, Huang YS, Huang W. NEIL3 promotes hepatoma epithelial-mesenchymal transition by activating the BRAF/MEK/ERK/TWIST signaling pathway. J Pathol 2022; 258:339-352. [PMID: 36181299 DOI: 10.1002/path.6001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent visceral neoplasms. So far, reliable biomarkers for predicting HCC recurrence in patients undergoing surgery are far from adequate. In the aim of searching for genetic biomarkers involved in HCC development, we performed analyses of cDNA microarrays and found that the DNA repair gene NEIL3 was remarkably overexpressed in tumors. NEIL3 belongs to the Fpg/Nei protein superfamily, which contains DNA glycosylase activity required for the base excision repair for DNA lesions. Notably, the other Fpg/Nei family proteins NEIL1 and NEIL2, which have the same glycosylase activity as NEIL3, were not elevated in HCC; NEIL3 was specifically induced to participate in HCC development independently of its glycosylase activity. Using RNA-seq and invasion/migration assays, we found that NEIL3 elevated the expression of epithelial-mesenchymal transition (EMT) factors, including the E/N-cadherin switch and the transcription of MMP genes, and promoted the invasion, migration, and stemness phenotypes of HCC cells. Moreover, NEIL3 directly interacted with the key EMT player TWIST1 to enhance invasion and migration activities. In mouse orthotopic HCC studies, NEIL3 overexpression also caused a prominent E-cadherin decrease, tumor volume increase, and lung metastasis, indicating that NEIL3 led to EMT and tumor metastasis in mice. We further found that NEIL3 induced the transcription of MDR1 (ABCB1) and BRAF genes through the canonical E-box (CANNTG) promoter region, which the TWIST1 transcription factor recognizes and binds to, leading to the BRAF/MEK/ERK pathway-mediated cell proliferation as well as anti-cancer drug resistance, respectively. In the HCC cohort, the tumor NEIL3 level demonstrated a high positive correlation with disease-free and overall survival after surgery. In conclusion, NEIL3 activated the BRAF/MEK/ERK/TWIST pathway-mediated EMT and therapeutic resistances, leading to HCC progression. Targeted inhibition of NEIL3 in HCC individuals with NEIL3 induction is a promising therapeutic approach. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hui-Huang Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsu-Chin Hung
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ruo-Yu Chen
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chao Ku
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hang-Tat Lo
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yun-Ping Lee
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tz-Hsuan Yang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Yu Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Pandey N, Vinod PK. Model scenarios for cell cycle re-entry in Alzheimer's disease. iScience 2022; 25:104543. [PMID: 35747391 PMCID: PMC9209725 DOI: 10.1016/j.isci.2022.104543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. Aberrant production and aggregation of amyloid beta (Aβ) peptide into plaques is a frequent feature of AD, but therapeutic approaches targeting Aβ accumulation fail to inhibit disease progression. The approved cholinesterase inhibitor drugs are symptomatic treatments. During human brain development, the progenitor cells differentiate into neurons and switch to a postmitotic state. However, cell cycle re-entry often precedes loss of neurons. We developed mathematical models of multiple routes leading to cell cycle re-entry in neurons that incorporate the crosstalk between cell cycle, neuronal, and apoptotic signaling mechanisms. We show that the integration of multiple feedback loops influences disease severity making the switch to pathological state irreversible. We observe that the transcriptional changes associated with this transition are also characteristics of the AD brain. We propose that targeting multiple arms of the feedback loop may bring about disease-modifying effects in AD. Developed mathematical models of cell cycle re-entry in Alzheimer's disease (AD) Integration of multiple feedback loops drives irreversible transition to AD Predicted transcriptional dysregulation is validated using AD gene expression data Inhibition of self-amplifying feedback loops brings about disease-modifying effects
Collapse
Affiliation(s)
- Nishtha Pandey
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032 India
| | - P K Vinod
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032 India
| |
Collapse
|
9
|
Otaegi-Ugartemendia M, Matheu A, Carrasco-Garcia E. Impact of Cancer Stem Cells on Therapy Resistance in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14061457. [PMID: 35326607 PMCID: PMC8946717 DOI: 10.3390/cancers14061457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death worldwide, with an average 5-year survival rate of 32%, being of 6% for patients presenting distant metastasis. Despite the advances made in the treatment of GC, chemoresistance phenomena arise and promote recurrence, dissemination and dismal prognosis. In this context, gastric cancer stem cells (gCSCs), a small subset of cancer cells that exhibit unique characteristics, are decisive in therapy failure. gCSCs develop different protective mechanisms, such as the maintenance in a quiescent state as well as enhanced detoxification procedures and drug efflux activity, that make them insusceptible to current treatments. This, together with their self-renewal capacity and differentiation ability, represents major obstacles for the eradication of this disease. Different gCSC regulators have been described and used to isolate and characterize these cell populations. However, at the moment, no therapeutic strategy has achieved the effective targeting of gCSCs. This review will focus on the properties of cancer stem cells in the context of therapy resistance and will summarize current knowledge regarding the impact of the gCSC regulators that have been associated with GC chemoradioresistance.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-943-006296
| |
Collapse
|
10
|
Rodrigues D, de Souza T, Coyle L, Di Piazza M, Herpers B, Ferreira S, Zhang M, Vappiani J, Sévin DC, Gabor A, Lynch A, Chung SW, Saez-Rodriguez J, Jennen DGJ, Kleinjans JCS, de Kok TM. New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol 2021; 95:2691-2718. [PMID: 34151400 PMCID: PMC8298376 DOI: 10.1007/s00204-021-03092-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity. In this study, well-established 3D organoid models of human colon and small intestine (SI) were used to characterize 5-FU transcriptomic and metabolomic responses. Clinically relevant 5-FU concentrations for in vitro testing in organoids were established using physiologically based pharmacokinetic simulation of dosing regimens recommended for cancer patients, resulting in exposures to 10, 100 and 1000 µM. After treatment, different measurements were performed: cell viability and apoptosis; image analysis of cell morphological changes; RNA sequencing; and metabolome analysis of supernatant from organoids cultures. Based on analysis of the differentially expressed genes, the most prominent molecular pathways affected by 5-FU included cell cycle, p53 signalling, mitochondrial ATP synthesis and apoptosis. Short time-series expression miner demonstrated tissue-specific mechanisms affected by 5-FU, namely biosynthesis and transport of small molecules, and mRNA translation for colon; cell signalling mediated by Rho GTPases and fork-head box transcription factors for SI. Metabolomic analysis showed that in addition to the effects on TCA cycle and oxidative stress in both organoids, tissue-specific metabolic alterations were also induced by 5-FU. Multi-omics integration identified transcription factor E2F1, a regulator of cell cycle and apoptosis, as the best key node across all samples. These results provide new insights into 5-FU toxicity mechanisms and underline the relevance of human organoid models in the safety assessment in drug development.
Collapse
Affiliation(s)
- Daniela Rodrigues
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Terezinha de Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Luke Coyle
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Matteo Di Piazza
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Bram Herpers
- OcellO B.V., BioPartner Center, Leiden, the Netherlands
| | - Sofia Ferreira
- Certara UK Limited, Simcyp Division, Sheffield, S1 2BJ, UK
| | - Mian Zhang
- Certara UK Limited, Simcyp Division, Sheffield, S1 2BJ, UK
| | | | - Daniel C Sévin
- GSK Functional Genomics/Cellzome, 69117, Heidelberg, Germany
| | - Attila Gabor
- Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - Seung-Wook Chung
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Julio Saez-Rodriguez
- GSK Non-Clinical Safety, Ware, SG12 0DP, UK
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg University, Heidelberg, Germany
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Apurinic/Apyrimidinic Endonuclease 2 (APE2): An ancillary enzyme for contextual base excision repair mechanisms to preserve genome stability. Biochimie 2021; 190:70-90. [PMID: 34302888 DOI: 10.1016/j.biochi.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The genome of living organisms frequently undergoes various types of modifications which are recognized and repaired by the relevant repair mechanisms. These repair pathways are increasingly being deciphered to understand the mechanisms. Base excision repair (BER) is indispensable to maintain genome stability. One of the enigmatic repair proteins of BER, Apurinic/Apyrimidinic Endonuclease 2 (APE2), like APE1, is truly multifunctional and demonstrates the independent and non-redundant function in maintaining the genome integrity. APE2 is involved in ATR-Chk1 mediated DNA damage response. It also resolves topoisomerase1 mediated cleavage complex intermediate which is formed while repairing misincorporated ribonucleotides in the absence of functional RNase H2 mediated excision repair pathway. BER participates in the demethylation pathway and the role of Arabidopsis thaliana APE2 is demonstrated in this process. Moreover, APE2 is synthetically lethal to BRCA1, BRCA2, and RNase H2, and its homolog, APE1 fails to complement the function. Hence, the role of APE2 is not just an alternate to the repair mechanisms but has implications in diverse functional pathways related to the maintenance of genome integrity. This review analyses genomic features of APE2 and delineates its enzyme function as error-prone as well as efficient and accurate repair protein based on the studies on mammalian or its homolog proteins from model systems such as Arabidopsis thaliana, Schizosaccharomyces pombe, Trypanosoma curzi, Xenopus laevis, Danio rerio, Mus musculus, and Homo sapiens.
Collapse
|
12
|
Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Chen X. An Update on the Potential Roles of E2F Family Members in Colorectal Cancer. Cancer Manag Res 2021; 13:5509-5521. [PMID: 34276228 PMCID: PMC8277564 DOI: 10.2147/cmar.s320193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide, and thus, optimised diagnosis and treatments are imperative. E2F transcription factors (E2Fs) are a family of transcription factors consisting of eight genes, contributing to the oncogenesis and development of CRC. Importantly, E2Fs control not only the cell cycle but also apoptosis, senescence, DNA damage response, and drug resistance by interacting with multiple signaling pathways. However, the specific functions and intricate machinery of these eight E2Fs in human CRC remain unclear in many respects. Evidence on E2Fs and CRC has been scattered on the related regulatory genes, microRNAs (miRNAs), and competing endogenous RNAs (ceRNAs). Accordingly, some drugs targeting E2Fs have been transferred from preclinical to clinical application. Herein, we have systemically reviewed the current literature on the roles of various E2Fs in CRC with the purpose of providing possible clinical implications for patient diagnosis and prognosis and future treatment strategy design, thereby furthering the understanding of the E2Fs.
Collapse
Affiliation(s)
- ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hui Qu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hyok Ju Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| |
Collapse
|
13
|
Reprogramming of microRNA expression via E2F1 downregulation promotes Salmonella infection both in infected and bystander cells. Nat Commun 2021; 12:3392. [PMID: 34099666 PMCID: PMC8184997 DOI: 10.1038/s41467-021-23593-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells’ susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection. Cells infected with pathogens can release signals that instruct neighbouring cells to mount an immune response or that reduce these cells’ susceptibility to infection. Here, Aguilar et al. show the opposite effect: cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells by activating their ER-stress response.
Collapse
|
14
|
E2F1 Maintains Gastric Cancer Stemness Properties by Regulating Stemness-Associated Genes. JOURNAL OF ONCOLOGY 2021; 2021:6611327. [PMID: 33986804 PMCID: PMC8093057 DOI: 10.1155/2021/6611327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Purpose To determine the regulatory role of E2F1 in maintaining gastric cancer stemness properties and the clinical significance of E2F1 in gastric cancer. Materials and Methods We conducted a tumor spheroid formation assay to enrich gastric cancer stem-like cells. The protein and mRNA expression levels of genes were measured using Western Blot and qRT-PCR. Lentivirus-mediated overexpression and downregulation of E2F1 were performed to evaluate the effect of E2F1 on the stemness properties of gastric cancer cells. The effect of E2F1 on gastric cancer cell sensitivity of 5-Fu was evaluated using cell viability assay and TdT-mediated dUTP Nick-End Labeling staining. We also analyzed the association between E2F1 expression and clinical characteristics in gastric cancer patients. The KM plotter database was used to analyze the relationship between E2F1 and overall survival in GC patients. Results We found that E2F1 expression was significantly higher in gastric cancer tissues than in the paired adjacent normal tissues (p < 0.05) and was positively correlated with tumor size (p < 0.05), T stage (p < 0.05), and differentiation degree (p < 0.05). KM plotter database demonstrated a close association between higher E2F1 expression level and worse overall survival of gastric cancer patients (p < 0.05). In vitro assay illustrated that E2F1 could regulate the expression of stemness-associated genes, such as BMI1, OCT4, Nanog, and CD44, and maintain the tumor spheroid formation ability of gastric cancer cells. E2F1 enhanced 5-Fu resistance in gastric cancer cells, and the E2F1 expression level was correlated with the prognosis of gastric cancer patients receiving 5-Fu therapy. The expression levels of stemness-associated genes were also significantly higher in gastric cancer tissues than the paired adjacent normal tissues (p < 0.05). A positive correlation was observed between E2F1 and BMI1 (r = 0.422, p < 0.05), CD44 (r = 0.634, p < 0.05), OCT4 (r = 0.456, p < 0.05), and Nanog (r = 0.337, p < 0.05) in gastric cancer tissues. The co-overexpression of E2F1 and stemness-associated genes was associated with worse overall survival. Conclusion E2F1 plays a significant role in gastric cancer progression by maintaining gastric cancer stemness properties through the regulation of stemness-associated genes. The close association between E2F1 and poor prognosis of patients suggests that E2F1 could serve as a prognostic biomarker and a therapeutic target in gastric cancer patients.
Collapse
|
15
|
Kirunda JB, Yang L, Lu L, Jia Y. Effects of noise and time delay on E2F's expression level in a bistable Rb-E2F gene's regulatory network. IET Syst Biol 2021; 15:111-125. [PMID: 33881232 PMCID: PMC8675803 DOI: 10.1049/syb2.12017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
The bistable Rb-E2F gene regulatory network plays a central role in regulating cellular proliferation-quiescence transition. Based on Gillespie's chemical Langevin method, the stochastic bistable Rb-E2F gene's regulatory network with time delays is proposed. It is found that under the moderate intensity of internal noise, delay in the Cyclin E synthesis rate can greatly increase the average concentration value of E2F. When the delay is considered in both E2F-related positive feedback loops, within a specific range of delay (3-13) hr , the average expression of E2F is significantly increased. Also, this range is in the scope with that experimentally given by Dong et al. [65]. By analysing the quasi-potential curves at different delay times, simulation results show that delay regulates the dynamic behaviour of the system in the following way: small delay stabilises the bistable system; the medium delay is conducive to a high steady-state, making the system fluctuate near the high steady-state; large delay induces approximately periodic transitions between high and low steady-state. Therefore, by regulating noise and time delay, the cell itself can control the expression level of E2F to respond to different situations. These findings may provide an explanation of some experimental result intricacies related to the cell cycle.
Collapse
Affiliation(s)
- John Billy Kirunda
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Lijian Yang
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Lulu Lu
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Ya Jia
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| |
Collapse
|
16
|
Rather GM, Anyanwu M, Minko T, Garbuzenko O, Szekely Z, Bertino JR. Anti-Tumor Effects of a Penetratin Peptide Targeting Transcription of E2F-1, 2 and 3a Is Enhanced When Used in Combination with Pemetrexed or Cisplatin. Cancers (Basel) 2021; 13:cancers13050972. [PMID: 33652640 PMCID: PMC7956530 DOI: 10.3390/cancers13050972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The E2F family of transcription factors are essential for cell proliferation, differentiation, and DNA repair. They are commonly overexpressed or dysregulated in cancer as a consequence of inactivation or mutations in the retinoblastoma protein. Therefore, one or more of the activating E2Fs (E2F-1, 2, and 3a) have been recognized as antitumor targets. The combination of a peptide targeting transcription of E2F-1, 2, and 3a, with cisplatin, and especially with pemetrexed, showed enhanced antitumor activity in-vitro and in-vivo and has promise for the treatment of patients with various tumors, and in particular, lung adenocarcinoma. Abstract Background: We tested the antitumor effects of a modified E2F peptide substituting D-Arg for L-Arg, conjugated to penetratin (PEP) against solid tumor cell lines and the CCRF-leukemia cell line, alone and in combination with pemetrexed or with cisplatin. For in-vivo studies, the peptide was encapsulated in PEGylated liposomes (PL-PEP) to increase half-life and stability. Methods: Prostate cancer (DU145 and PC3), breast cancer (MCF7, MDA-MB-468, and 4T1), lymphoma (CCRF-CEM), and non-small cell lung cancer (NSCLC) cell lines (H2009, H441, H1975, and H2228) were treated with D-Arg PEP in combination with cisplatin or pemetrexed. Western blot analysis was performed on the NSCLC for E2F-1, pRb, thymidylate synthase, and thymidine kinase. The H2009 cell line was selected for an in-vivo study. Results: When the PEP was combined with cisplatin and tested against solid tumor cell lines and the CCRF-CEM leukemia cell line, there was a modest synergistic effect. A marked synergistic effect was seen when the combination of pemetrexed and the PEP was tested against the adenocarcinoma lung cancer cell lines. The addition of the PEP to pemetrexed enhanced the antitumor effects of pemetrexed in a xenograft of the H2009 in mice. Conclusions: The D-Arg PEP in combination with cisplatin caused synergistic cell kill against prostate, breast, lung cancers, and the CCRF-CEM cell line. Marked synergy resulted when the D-Arg PEP was used in combination with pemetrexed against the lung adenocarcinoma cell lines. A xenograft study using the PL-PEP in combination with pemetrexed showed enhanced anti-tumor effects compared to each drug alone.
Collapse
Affiliation(s)
- Gulam Mohmad Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
| | - Michael Anyanwu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
| | - Tamara Minko
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA;
| | - Olga Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA;
| | - Zoltan Szekely
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (G.M.R.); (M.A.); (T.M.); (Z.S.)
- Department of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence: ; Tel.: +1-732-235-8510; Fax: +1-732-235-8181
| |
Collapse
|
17
|
miR-1258 Regulates Cell Proliferation and Cell Cycle to Inhibit the Progression of Breast Cancer by Targeting E2F1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1480819. [PMID: 32733928 PMCID: PMC7378599 DOI: 10.1155/2020/1480819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
Objective This study is designed to clarify that miR-1258 targets E2F1 to regulate the proliferation and cell cycle of breast cancer (BC) cells and consequently suppress the progression of BC. Methods Bioinformatics analysis was used to analyze the differentially expressed genes in BC. The expression of miR-1258 and E2F1 mRNA in BC cell lines and immortalized breast epithelial cell lines were detected by qRT-PCR. The proliferation and growth activity of BC cells were detected by MTT and colony formation assays. The apoptosis and cell cycle of BC cells were detected by flow cytometry and the targeting relationship between miR-1258 and E2F1 was identified by dual-luciferase assay. Results The expression of miR-1258 was decreased while that of E2F1 was increased in BC cells. Overexpression of miR-1258 and silencing E2F1 could inhibit the cell proliferation and growth, block cells in the G0/G1 phase, and promote cell apoptosis. Besides, miR-1258 inhibited cell proliferation and growth, block cells in the G0/G1 phase, and promote cell apoptosis by downregulating E2F1. Conclusion miR-1258 regulates the proliferation and cell cycle to inhibit the progression of BC by targeting and downregulating E2F1.
Collapse
|
18
|
E2F1/IGF-1R Loop Contributes to BRAF Inhibitor Resistance in Melanoma. J Invest Dermatol 2019; 140:1295-1299.e1. [PMID: 31705876 DOI: 10.1016/j.jid.2019.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023]
|
19
|
Tormo E, Ballester S, Adam-Artigues A, Burgués O, Alonso E, Bermejo B, Menéndez S, Zazo S, Madoz-Gúrpide J, Rovira A, Albanell J, Rojo F, Lluch A, Eroles P. The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci Rep 2019; 9:5316. [PMID: 30926829 PMCID: PMC6441107 DOI: 10.1038/s41598-019-41472-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
The mechanisms of chemotherapy resistance in triple negative breast cancer remain unclear, and so, new molecules which might mediate this resistance could optimize treatment response. Here we analyzed the involvement of the miRNA-449 family in the response to doxorubicin. The cell viability, cell-cycle phases, and the expression of in silico target genes and proteins of sensitive/resistant triple negative breast cancer cell lines were evaluated in response to doxorubicin treatment and after gain/loss of miRNAs-449 function achieved by transient transfection. Triple negative breast cancer patients were selected for ex vivo experiments and to evaluate gene and miRNAs expression changes after treatment, as well as survival analysis by Kaplan-Meier. Doxorubicin treatment upregulated miRNAs-449 and DNA-damage responder factors E2F1 and E2F3 in triple negative breast cancer sensitive breast cancer cells, while expression remained unaltered in resistant ones. In vitro overexpression of miRNAs-449 sensitized cells to the treatment and significantly reduced the resistance to doxorubicin. These changes showed also a strong effect on cell cycle regulation. Finally, elevated levels of miRNA-449a associated significantly with better survival in chemotherapy-treated triple negative breast cancer patients. These results reveal for the first time the involvement of the miRNA-449 family in doxorubicin resistance and their predictive and prognostic value in triple negative breast cancer patients.
Collapse
Affiliation(s)
- Eduardo Tormo
- INCLIVA Biomedical Research Institute, Valencia, Spain.,Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | | | | | - Octavio Burgués
- INCLIVA Biomedical Research Institute, Valencia, Spain.,Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain.,Pathology Department, Hospital Clínico Universitario, Valencia, Spain
| | - Elisa Alonso
- INCLIVA Biomedical Research Institute, Valencia, Spain.,Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain.,Pathology Department, Hospital Clínico Universitario, Valencia, Spain
| | - Begoña Bermejo
- INCLIVA Biomedical Research Institute, Valencia, Spain.,Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain
| | - Silvia Menéndez
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | - Sandra Zazo
- Pathology Department, IIS- Fundación Jiménez Díaz- CIBERONC, Madrid, Spain
| | - Juan Madoz-Gúrpide
- Pathology Department, IIS- Fundación Jiménez Díaz- CIBERONC, Madrid, Spain
| | - Ana Rovira
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Rojo
- Pathology Department, IIS- Fundación Jiménez Díaz- CIBERONC, Madrid, Spain
| | - Ana Lluch
- INCLIVA Biomedical Research Institute, Valencia, Spain.,Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain.,Universidad de Valencia, Valencia, Spain
| | - Pilar Eroles
- INCLIVA Biomedical Research Institute, Valencia, Spain. .,Oncology and Hematology Department, Hospital Clínico Universitario-CIBERONC, Valencia, Spain. .,COST action CA15204, Brussels, Belgium.
| |
Collapse
|
20
|
McGrory CL, Ryan KM, Kolshus E, McLoughlin DM. Peripheral blood E2F1 mRNA in depression and following electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:380-385. [PMID: 30365982 DOI: 10.1016/j.pnpbp.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022]
Abstract
The E2F transcription factors are a group of proteins that bind to the promotor region of the adenovirus E2 gene. E2F1, the first family member to be cloned, is linked to functions including cell proliferation and apoptosis, DNA repair, cell senescence and metabolism. We recently performed a deep sequencing study of micro-RNA changes in whole blood following ECT. Two micro-RNAs (miR-126-3p and miR-106a-5p) were identified and gene targeting analysis identified E2F1 as a shared target of these miRNAs. To our knowledge, no studies have examined E2F1 mRNA levels in patients with depression. Peripheral blood E2F1 mRNA levels were therefore examined in patients with depression, compared to healthy controls, and the effects of a course of ECT on peripheral blood E2F1 mRNA was investigated. Depressed patient and healthy control groups were balanced on the basis of age and sex. E2F1 mRNA levels were significantly lower in depressed patients in comparison to controls (p = .009) but did not change with ECT. There was no relationship between baseline E2F1 levels and depression severity, response to treatment, presence of psychosis or polarity of depression. There were no significant correlations between E2F1 levels and mood scores based on the HAM-D24. These results indicate that reduced peripheral blood E2F1 mRNA could be a trait feature of depression.
Collapse
Affiliation(s)
- Claire L McGrory
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Erik Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland.
| |
Collapse
|
21
|
Yang X, Pan Y, Qiu Z, Du Z, Zhang Y, Fa P, Gorityala S, Ma S, Li S, Chen C, Wang H, Xu Y, Yan C, Ruth K, Ma Z, Zhang J. RNF126 as a Biomarker of a Poor Prognosis in Invasive Breast Cancer and CHEK1 Inhibitor Efficacy in Breast Cancer Cells. Clin Cancer Res 2018; 24:1629-1643. [PMID: 29326282 DOI: 10.1158/1078-0432.ccr-17-2242] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/10/2017] [Accepted: 01/05/2018] [Indexed: 01/20/2023]
Abstract
Purpose: (i) To investigate the expression of the E3 ligase, RNF126, in human invasive breast cancer and its links with breast cancer outcomes; and (ii) to test the hypothesis that RNF126 determines the efficacy of inhibitors targeting the cell-cycle checkpoint kinase, CHEK1.Experimental Design: A retrospective analysis by immunohistochemistry (IHC) compared RNF126 staining in 110 invasive breast cancer and 78 paired adjacent normal tissues with clinicopathologic data. Whether RNF126 controls CHEK1 expression was determined by chromatin immunoprecipitation and a CHEK1 promoter driven luciferase reporter. Staining for these two proteins by IHC using tissue microarrays was also conducted. Cell killing/replication stress induced by CHEK1 inhibition was evaluated in cells, with or without RNF126 knockdown, by MTT/colony formation, replication stress biomarker immunostaining and DNA fiber assays.Results: RNF126 protein expression was elevated in breast cancer tissue samples. RNF126 was associated with a poor clinical outcome after multivariate analysis and was an independent predictor. RNF126 promotes CHEK1 transcript expression. Critically, a strong correlation between RNF126 and CHEK1 proteins was identified in breast cancer tissue and cell lines. The inhibition of CHEK1 induced a greater cell killing and a higher level of replication stress in breast cancer cells expressing RNF126 compared to RNF126 depleted cells.Conclusions: RNF126 protein is highly expressed in invasive breast cancer tissue. The high expression of RNF126 is an independent predictor of a poor prognosis in invasive breast cancer and is considered a potential biomarker of a cancer's responsiveness to CHEK1 inhibitors. CHEK1 inhibition targets breast cancer cells expressing higher levels of RNF126 by enhancing replication stress. Clin Cancer Res; 24(7); 1629-43. ©2018 AACR.
Collapse
Affiliation(s)
- Xiaosong Yang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - You Pan
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Zhanwen Du
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yao Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Pengyan Fa
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | - Shanhuai Ma
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Shunqiang Li
- Division of Oncology Breast Oncology Section, Washington University Medical School, St. Louis, Missouri
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Keri Ruth
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Zhefu Ma
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Department of Breast Surgery & Plastic Surgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio. .,Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
Denechaud PD, Fajas L, Giralt A. E2F1, a Novel Regulator of Metabolism. Front Endocrinol (Lausanne) 2017; 8:311. [PMID: 29176962 PMCID: PMC5686046 DOI: 10.3389/fendo.2017.00311] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
In the past years, several lines of evidence have shown that cell cycle regulatory proteins also can modulate metabolic processes. The transcription factor E2F1 is a central player involved in cell cycle progression, DNA-damage response, and apoptosis. Its crucial role in the control of cell fate has been extensively studied and reviewed before; however, here, we focus on the participation of E2F1 in the regulation of metabolism. We summarize recent findings about the cell cycle-independent roles of E2F1 in various tissues that contribute to global metabolic homeostasis and highlight that E2F1 activity is increased during obesity. Finally, coming back to the pivotal role of E2F1 in cancer development, we discuss how E2F1 links cell cycle progression with different metabolic adaptations required for cell growth and survival.
Collapse
Affiliation(s)
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Albert Giralt
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Albert Giralt,
| |
Collapse
|
23
|
Cohen A, Kupiec M, Weisman R. Gad8 Protein Is Found in the Nucleus Where It Interacts with the MluI Cell Cycle Box-binding Factor (MBF) Transcriptional Complex to Regulate the Response to DNA Replication Stress. J Biol Chem 2016; 291:9371-81. [PMID: 26912660 DOI: 10.1074/jbc.m115.705251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
The target of rapamycin (TOR) kinase is found at the core of two evolutionarily conserved complexes known as TOR complexes 1 and 2 (TORC1 and TORC2). In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. We have previously reported that loss of function of TORC2 renders cells highly sensitive to DNA replication stress; however, the mechanism underlying this sensitivity is unknown. TORC2 has one known direct substrate, the kinase Gad8, which is related to AKT in human cells. Here we show that both TORC2 and its substrate Gad8 are found in the nucleus and are bound to the chromatin. We also demonstrate that Gad8 physically interacts with the MluI cell cycle box-binding factor (MBF) transcription complex that regulates the G1/S progression and the response to DNA stress. In mutant cells lacking TORC2 or Gad8, the binding of the MBF complex to its cognate promoters is compromised, and the induction of MBF target genes in response to DNA replication stress is reduced. Consistently, the protein levels of Cdt2 and Cig2, two MBF target genes, are reduced in the absence of TORC2-Gad8 signaling. Taken together, our findings highlight critical functions of TORC2 in the nucleus and suggest a role in surviving DNA replication stress via transcriptional regulation of MBF target genes.
Collapse
Affiliation(s)
- Adiel Cohen
- From the Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Raanana, Israel and
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ronit Weisman
- From the Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Raanana, Israel and
| |
Collapse
|
24
|
Morgunova E, Yin Y, Jolma A, Dave K, Schmierer B, Popov A, Eremina N, Nilsson L, Taipale J. Structural insights into the DNA-binding specificity of E2F family transcription factors. Nat Commun 2015; 6:10050. [PMID: 26632596 PMCID: PMC4686757 DOI: 10.1038/ncomms10050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
The mammalian cell cycle is controlled by the E2F family of transcription factors. Typical E2Fs bind to DNA as heterodimers with the related dimerization partner (DP) proteins, whereas the atypical E2Fs, E2F7 and E2F8 contain two DNA-binding domains (DBDs) and act as repressors. To understand the mechanism of repression, we have resolved the structure of E2F8 in complex with DNA at atomic resolution. We find that the first and second DBDs of E2F8 resemble the DBDs of typical E2F and DP proteins, respectively. Using molecular dynamics simulations, biochemical affinity measurements and chromatin immunoprecipitation, we further show that both atypical and typical E2Fs bind to similar DNA sequences in vitro and in vivo. Our results represent the first crystal structure of an E2F protein with two DBDs, and reveal the mechanism by which atypical E2Fs can repress canonical E2F target genes and exert their negative influence on cell cycle progression.
Collapse
Affiliation(s)
- Ekaterina Morgunova
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Yimeng Yin
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Arttu Jolma
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Kashyap Dave
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Bernhard Schmierer
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Alexander Popov
- European Synchrotron Radiation Facility, Division of Experiments, 38 000 Grenoble, France
| | - Nadejda Eremina
- Department of Biochemistry and Biophysics, Stockholm University, SE 106 91, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Jussi Taipale
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden.,Genome-Scale Biology Research Program, Faculty of Medicine, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| |
Collapse
|
25
|
Cheraghi S, Razi M, Malekinejad H. Involvement of cyclin D1 and E2f1 in zearalenone-induced DNA damage in testis of rats. Toxicon 2015; 106:108-16. [DOI: 10.1016/j.toxicon.2015.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022]
|
26
|
Ricardo-Lax I, Ramanan V, Michailidis E, Shamia T, Reuven N, Rice CM, Shlomai A, Shaul Y. Hepatitis B virus induces RNR-R2 expression via DNA damage response activation. J Hepatol 2015; 63:789-96. [PMID: 26026873 DOI: 10.1016/j.jhep.2015.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/21/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infects and replicates in quiescent hepatocytes, which are deficient in dNTPs, the critical precursors of HBV replication. Most tumor viruses promote dNTP production in host cells by inducing cell proliferation. Although HBV is known as a major cause of hepatocellular carcinoma, it does not lead to cellular proliferation. Instead, HBV acquires dNTPs by activating the expression of the R2 subunit of the Ribonucleotide Reductase (RNR) holoenzyme, the cell cycle gene that is rate-limiting for generation of dNTPs, without inducing the cell cycle. We wished to elucidate the molecular basis of HBV-dependent R2 expression in quiescent cells. METHODS Quiescent HepG2 cells were transduced with an HBV-containing lentiviral vector, and primary human hepatocytes were infected with HBV. DNA damage response and RNR-R2 gene expression were monitored under this condition. RESULTS We report here that HBV-induced R2 expression is mediated by the E2F1 transcription factor, and that HBV induces E2F1 accumulation, modification and binding to the R2 promoter. We found that Chk1, a known E2F1 kinase that functions in response to DNA damage, was activated by HBV. In cells where Chk1 was pharmacologically inhibited, or depleted by shRNA-mediated knockdown, HBV-mediated R2 expression was severely attenuated. Furthermore, we found that HBV attenuates DNA repair, thus reducing cellular dNTP consumption. CONCLUSIONS Our findings demonstrate that HBV exploits the Chk1-E2F1 axis of the DNA damage response pathway to induce R2 expression in a cell cycle-independent manner. This suggests that inhibition of this pathway may have a therapeutic value for HBV carriers.
Collapse
Affiliation(s)
- Inna Ricardo-Lax
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vyas Ramanan
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States
| | - Tal Shamia
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, United States.
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
27
|
Zhang K, Dai L, Zhang B, Xu X, Shi J, Fu L, Chen X, Li J, Bai Y. miR-203 is a direct transcriptional target of E2F1 and causes G1 arrest in esophageal cancer cells. J Cell Physiol 2015; 230:903-10. [PMID: 25216463 DOI: 10.1002/jcp.24821] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
miR-203 act as tumor repressor by inhibiting cell proliferation and is repressed in a variety of human tumors, although the molecular mechanisms responsible have not been elucidated. Here, we reveal that miR-203 is regulated by E2F1, an important transcription factor that can induce cell proliferation by controlling cell cycle progression. We found that miR-203 expression was induced by cisplatin, which also induced E2F1 protein accumulation in esophageal squamous cell carcinoma (ESCC) cell lines. miR-203 expression was elevated upon activation of ectopic E2F1, whereas this induction was abolished when the E2F1 gene was silenced. Moreover, with luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays, we demonstrated that E2F1 transactivates miR-203 by directly binding to the miR-203 gene promoter. In addition, we found that miR-203 inhibited cell proliferation by inducing G1/S cell cycle arrest, but not apoptosis, in ESCC cell lines. Finally, we observed that miR-203 negatively inhibited the expression of CDK6, subsequently decreasing E2F1 expression possibly through Rb phosphorylation. Taken together, our data show that cancer-related miR-203 is a novel transcriptional target of E2F1 and that it regulates cell cycle arrest by participating in a feedback loop with E2F1.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xie X, Bansal N, Shaik T, Kerrigan JE, Minko T, Garbuzenko O, Abali EE, Johnson-Farley N, Banerjee D, Scotto KW, Bertino JR. A novel peptide that inhibits E2F transcription and regresses prostate tumor xenografts. Oncotarget 2015; 5:901-7. [PMID: 24658650 PMCID: PMC4011592 DOI: 10.18632/oncotarget.1809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
E2F-1, a key transcription factor necessary for cell growth, DNA repair and differentiation, is an attractive target for development of useful anticancer drugs in tumors that are E2F "oncogene addicted". A peptide, isolated from phage clones, based on its binding to an E2F-1 consensus sequence, was cytotoxic against a wide range of cancer cell lines. The peptide was coupled to penetratin (PEP) and tested against prostate cancer cell lines, and a fresh sample from a patient with metastatic cancer. As the PEP was found to be relatively unstable in serum, it was encapsulated in PEGylated liposomes for in vivo studies. The peptide was cytotoxic against prostate cell lines and a fresh sample from a patient with metastatic prostate cancer. Treatment of mice bearing the human Du-145 human prostate tumor with the PEP encapsulated in PEGylated liposomes (PL-PEP) caused tumor regression without significant toxicity. The liposome encapsulated PEP has promise as an antitumor agent, alone or in combination with inhibitors of DNA synthesis.
Collapse
|
29
|
Chandra V, Bhagyaraj E, Parkesh R, Gupta P. Transcription factors and cognate signalling cascades in the regulation of autophagy. Biol Rev Camb Philos Soc 2015; 91:429-51. [PMID: 25651938 DOI: 10.1111/brv.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 01/04/2015] [Accepted: 01/11/2015] [Indexed: 12/11/2022]
Abstract
Autophagy is a process that maintains the equilibrium between biosynthesis and the recycling of cellular constituents; it is critical for avoiding the pathophysiology that results from imbalance in cellular homeostasis. Recent reports indicate the need for the design of high-throughput screening assays to identify targets and small molecules for autophagy modulation. For such screening, however, a better understanding of the regulation of autophagy is essential. In addition to regulation by various signalling cascades, regulation of gene expression by transcription factors is also critical. This review focuses on the various transcription factors as well as the corresponding signalling molecules that act together to translate the stimuli to effector molecules that up- or downregulate autophagy. This review rationalizes the importance of these transcription factors functioning in tandem with cognate signalling molecules and their interfaces as possible therapeutic targets for more specific pharmacological interventions.
Collapse
Affiliation(s)
- Vemika Chandra
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Ella Bhagyaraj
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Raman Parkesh
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Pawan Gupta
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
30
|
Cao JX, Li SY, An GS, Mao ZB, Jia HT, Ni JH. E2F1-regulated DROSHA promotes miR-630 biosynthesis in cisplatin-exposed cancer cells. Biochem Biophys Res Commun 2014; 450:470-5. [DOI: 10.1016/j.bbrc.2014.05.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 05/30/2014] [Indexed: 01/07/2023]
|
31
|
Bao Z, Hua J. Interaction of CPR5 with cell cycle regulators UVI4 and OSD1 in Arabidopsis. PLoS One 2014; 9:e100347. [PMID: 24945150 PMCID: PMC4063785 DOI: 10.1371/journal.pone.0100347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/24/2014] [Indexed: 12/28/2022] Open
Abstract
The impact of cell cycle on plant immunity was indicated by the enhancement of disease resistance with overexpressing OSD1 and UVI4 genes that are negative regulators of cell cycle controller APC (anaphase promoting complex). CPR5 is another gene that is implicated in cell cycle regulation and plant immunity, but its mode of action is not known. Here we report the analysis of genetic requirement for the function of UVI4 and OSD1 in cell cycle progression control and in particular the involvement of CPR5 in this regulation. We show that the APC activator CCS52A1 partially mediates the function of OSD1 and UVI4 in female gametophyte development. We found that the cpr5 mutation suppresses the endoreduplication defect in the uvi4 single mutant and partially rescued the gametophyte development defect in the osd1 uvi4 double mutant while the uvi4 mutation enhances the cpr5 defects in trichome branching and plant disease resistance. In addition, cyclin B1 genes CYCB1;1, CYCB1;2, and CYCB1;4 are upregulated in cpr5. Therefore, CPR5 has a large role in cell cycle regulation and this role has a complex interaction with that of UVI4 and OSD1. This study further indicates an intrinsic link between plant defense responses and cell cycle progression.
Collapse
Affiliation(s)
- Zhilong Bao
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Biswas AK, Mitchell DL, Johnson DG. E2F1 responds to ultraviolet radiation by directly stimulating DNA repair and suppressing carcinogenesis. Cancer Res 2014; 74:3369-77. [PMID: 24741006 DOI: 10.1158/0008-5472.can-13-3216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In response to DNA damage, the E2F1 transcription factor is phosphorylated at serine 31 (serine 29 in mouse) by the ATM or ATR kinases, which promotes E2F1 protein stabilization. Phosphorylation of E2F1 also leads to the recruitment of E2F1 to sites of DNA damage, where it functions to enhance DNA repair. To study the role of this E2F1 phosphorylation event in vivo, a knock-in mouse model was generated, in which serine 29 was mutated to alanine. The S29A mutation impairs E2F1 stabilization in response to ultraviolet (UV) radiation and doxorubicin treatment, but has little effect on the expression of E2F target genes. The apoptotic and proliferative responses to acute UV radiation exposure are also similar between wild-type and E2f1(S29A/) (S29A) mice. As expected, the S29A mutation prevents E2F1 association with damaged DNA and reduces DNA repair efficiency. Moreover, E2f1(S29A/) (S29A) mice display increased sensitivity to UV-induced skin carcinogenesis. This knock-in mouse model thus links the ability of E2F1 to directly promote DNA repair with the suppression of tumor development.
Collapse
Affiliation(s)
- Anup Kumar Biswas
- Authors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - David L Mitchell
- Authors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TexasAuthors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - David G Johnson
- Authors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TexasAuthors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
33
|
Jin YQ, An GS, Ni JH, Li SY, Jia HT. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage. Cell Cycle 2014; 13:1627-38. [PMID: 24675884 DOI: 10.4161/cc.28605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein-protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage.
Collapse
Affiliation(s)
- Ya-Qiong Jin
- Department of Biochemistry and Molecular Biology; Peking University Health Science Center; Beijing, PR China
| | - Guo-Shun An
- Department of Biochemistry and Molecular Biology; Peking University Health Science Center; Beijing, PR China
| | - Ju-Hua Ni
- Department of Biochemistry and Molecular Biology; Peking University Health Science Center; Beijing, PR China
| | - Shu-Yan Li
- Department of Biochemistry and Molecular Biology; Peking University Health Science Center; Beijing, PR China
| | - Hong-Ti Jia
- Department of Biochemistry and Molecular Biology; Peking University Health Science Center; Beijing, PR China; Department of Biochemistry and Molecular Biology; Capital Medical University; Beijing, PR China
| |
Collapse
|
34
|
Zheng S, Moehlenbrink J, Lu YC, Zalmas LP, Sagum CA, Carr S, McGouran JF, Alexander L, Fedorov O, Munro S, Kessler B, Bedford MT, Yu Q, La Thangue NB. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 2013; 52:37-51. [PMID: 24076217 PMCID: PMC4129656 DOI: 10.1016/j.molcel.2013.08.039] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/10/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022]
Abstract
The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase 1 (PRMT1) and symmetric dimethylating PRMT5 and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favors proliferation by antagonizing methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell-cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN downregulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity.
Collapse
Affiliation(s)
- Shunsheng Zheng
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology, and Research), Biopolis, Singapore 138672, Republic of Singapore
| | - Jutta Moehlenbrink
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Yi-Chien Lu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lykourgos-Panagiotis Zalmas
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Cari A. Sagum
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Centre, Smithville, TX78957, USA
| | - Simon Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Joanna F. McGouran
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Leila Alexander
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Oleg Fedorov
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shonagh Munro
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Mark T. Bedford
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Centre, Smithville, TX78957, USA
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology, and Research), Biopolis, Singapore 138672, Republic of Singapore
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
35
|
Braun F, de Carné Trécesson S, Bertin-Ciftci J, Juin P. Protect and serve: Bcl-2 proteins as guardians and rulers of cancer cell survival. Cell Cycle 2013; 12:2937-47. [PMID: 23974114 PMCID: PMC3875667 DOI: 10.4161/cc.25972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is widely accepted that anti-apoptotic Bcl-2 family members promote cancer cell survival by binding to their pro-apoptotic counterparts, thereby preventing mitochondrial outer membrane permeabilization (MOMP) and cytotoxic caspase activation. Yet, these proteins do not only function as guardians of mitochondrial permeability, preserving it, and maintaining cell survival in the face of acute or chronic stress, they also regulate non-apoptotic functions of caspases and biological processes beyond MOMP from diverse subcellular localizations and in complex with numerous binding partners outside of the Bcl-2 family. In particular, some of the non-canonical effects and functions of Bcl-2 homologs lead to an interplay with E2F-1, NFκB, and Myc transcriptional pathways, which themselves influence cancer cell growth and survival. We thus propose that, by feedback loops that we currently have only hints of, Bcl-2 proteins may act as rulers of survival signaling, predetermining the apoptotic threshold that they also directly scaffold. This underscores the robustness of the control exerted by Bcl-2 homologs over cancer cell survival, and implies that small molecules compounds currently used in the clinic to inhibit their mitochondrial activity may be not always be fully efficient to override this control.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 892 INSERM/6299 CNRS/Université de Nantes; Team 8 "Cell survival and tumor escape in breast cancer"; Institut de Recherche en Santé de l'Université de Nantes; Nantes, France
| | | | | | | |
Collapse
|
36
|
Autophagy and genomic integrity. Cell Death Differ 2013; 20:1444-54. [PMID: 23933813 DOI: 10.1038/cdd.2013.103] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/07/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023] Open
Abstract
DNA lesions, constantly produced by endogenous and exogenous sources, activate the DNA damage response (DDR), which involves detection, signaling and repair of the damage. Autophagy, a lysosome-dependent degradation pathway that is activated by stressful situations such as starvation and oxidative stress, regulates cell fate after DNA damage and also has a pivotal role in the maintenance of nuclear and mitochondrial genomic integrity. Here, we review important evidence regarding the role played by autophagy in preventing genomic instability and tumorigenesis, as well as in micronuclei degradation. Several pathways governing autophagy activation after DNA injury and the influence of autophagy upon the processing of genomic lesions are also discussed herein. In this line, the mechanisms by which several proteins participate in both DDR and autophagy, and the importance of this crosstalk in cancer and neurodegeneration will be presented in an integrated fashion. At last, we present a hypothetical model of the role played by autophagy in dictating cell fate after genotoxic stress.
Collapse
|
37
|
Xie X, Kerrigan JE, Minko T, Garbuzenko O, Lee KC, Scarborough A, Abali EE, Budak-Alpdogan T, Johnson-Farley N, Banerjee D, Scotto KW, Bertino JR. Antitumor and modeling studies of a penetratin-peptide that targets E2F-1 in small cell lung cancer. Cancer Biol Ther 2013; 14:742-51. [PMID: 23792570 DOI: 10.4161/cbt.25184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
E2F-1, a key transcription factor necessary for cell growth, DNA repair, and differentiation, is an attractive target for development of anticancer drugs in tumors that are E2F "oncogene addicted". We identified a peptide isolated from phage clones that bound tightly to the E2F-1 promoter consensus sequence. The peptide was coupled to penetratin to enhance cellular uptake. Modeling of the penetratin-peptide (PEP) binding to the DNA E2F-1 promoter demonstrated favorable interactions that also involved the participation of most of the penetratin sequence. The penetratin-peptide (PEP) demonstrated potent in vitro cytotoxic effects against a range of cancer cell lines, particularly against Burkitt lymphoma cells and small cell lung cancer (SCLC) cells. Further studies in the H-69 SCLC cell line showed that the PEP inhibited transcription of E2F-1 and also several important E2F-regulated enzymes involved in DNA synthesis, namely, thymidylate synthase, thymidine kinase, and ribonucleotide reductase. As the PEP was found to be relatively unstable in serum, it was encapsulated in PEGylated liposomes for in vivo studies. Treatment of mice bearing the human small cell lung carcinoma H-69 with the PEP encapsulated in PEGylated liposomes (PL-PEP) caused tumor regression without significant toxicity. The liposome encapsulated PEP has promise as an antitumor agent, alone or in combination with inhibitors of DNA synthesis.
Collapse
Affiliation(s)
- Xiaoqi Xie
- Department of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ogara MF, Sirkin PF, Carcagno AL, Marazita MC, Sonzogni SV, Ceruti JM, Cánepa ET. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA. PLoS One 2013; 8:e61143. [PMID: 23593412 PMCID: PMC3625165 DOI: 10.1371/journal.pone.0061143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/06/2013] [Indexed: 12/29/2022] Open
Abstract
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.
Collapse
Affiliation(s)
- María F. Ogara
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Pablo F. Sirkin
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Abel L. Carcagno
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Mariela C. Marazita
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Silvina V. Sonzogni
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Julieta M. Ceruti
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Eduardo T. Cánepa
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
39
|
pRb/E2F-1-mediated caspase-dependent induction of Noxa amplifies the apoptotic effects of the Bcl-2/Bcl-xL inhibitor ABT-737. Cell Death Differ 2013; 20:755-64. [PMID: 23429261 DOI: 10.1038/cdd.2013.6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although Bcl-2 family members control caspase activity by regulating mitochondrial permeability, caspases can, in turn, amplify the apoptotic process upstream of mitochondria by ill-characterized mechanisms. We herein show that treatment with a potent inhibitor of Bcl-2 and Bcl-xL, ABT-737, triggers caspase-dependent induction of the BH3-only protein, Mcl-1 inhibitor, Noxa. RNA interference experiments reveal that induction of Noxa, and subsequent cell death, rely not only on the transcription factor E2F-1 but also on its regulator pRb. In response to ABT-737, pRb is cleaved by caspases into a p68Rb form that still interacts with E2F-1. Moreover, pRb occupies the noxa promoter together with E2F-1, in a caspase-dependent manner upon ABT-737 treatment. Thus, caspases contribute to trigger the mitochondrial apoptotic pathway by coupling Bcl-2/Bcl-xL inhibition to that of Mcl-1, via the pRb/E2F-1-dependent induction of Noxa.
Collapse
|
40
|
Li Y, Shao J, Shen K, Xu Y, Liu J, Qian X. E2F1-dependent pathways are involved in amonafide analogue 7-d-induced DNA damage, G2/M arrest, and apoptosis in p53-deficient K562 cells. J Cell Biochem 2013; 113:3165-77. [PMID: 22593008 DOI: 10.1002/jcb.24194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up- and down-stream events involved in the activation of the E2F1-dependent pro-apoptotic pathway. For this purpose, a amonafide analogue, 7-d (2-(3-(2-(Dimethylamino)ethylamino)propyl)-6-(dodecylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione) was screened, which exhibited high antitumor activity against p53-deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7-d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time-dependent manner via p53-independent pathway. A striking increase in "Comet tail" formation and γ-H2AX expression showed that DNA double strand breaks (DSB) were caused by 7-d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7-d-induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7-d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf-1 and p73 dissociation from HDM2 was induced by 7-d treatment, however, knockout of E2F1 expression reversed p73, Apaf-1, and p21(Cip1/WAF1) expression, reactivated cell cycle progression, and inhibited 7-d-induced apoptosis. Altogether our results for the first time indicate that 7-d mediates its growth inhibitory effects on CML p53-deficient cells via the activation of an E2F1-dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf-1, and p21(Cip1/WAF1).
Collapse
Affiliation(s)
- Yiquan Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Ni HJ, Chang YN, Kao PH, Chai SP, Hsieh YH, Wang DH, Fong JC. Depletion of SUMO ligase hMMS21 impairs G1 to S transition in MCF-7 breast cancer cells. Biochim Biophys Acta Gen Subj 2012; 1820:1893-900. [DOI: 10.1016/j.bbagen.2012.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 07/20/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
|
42
|
Nicolay BN, Dyson NJ. It's all in the timing: too much E2F is a bad thing. PLoS Genet 2012; 8:e1002909. [PMID: 22916039 PMCID: PMC3420940 DOI: 10.1371/journal.pgen.1002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Brandon N. Nicolay
- Massachusetts General Hospital Cancer Research Center, Charlestown, Massachusetts, United States of America
| | - Nicholas J. Dyson
- Massachusetts General Hospital Cancer Research Center, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zeng H, Cheng WH, Johnson LK. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice. J Nutr Biochem 2012; 24:776-80. [PMID: 22841391 DOI: 10.1016/j.jnutbio.2012.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
Abstract
It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Huawei Zeng
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | | | | |
Collapse
|
44
|
Hung JJ, Hsueh CT, Chen KH, Hsu WH, Wu YC. Clinical significance of E2F1 protein expression in non-small cell lung cancer. Exp Hematol Oncol 2012; 1:18. [PMID: 23210897 PMCID: PMC3514097 DOI: 10.1186/2162-3619-1-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/02/2012] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED BACKGROUND The transcription factor E2F1 has been implicated in cell cycle control and DNA damage response. Paradoxically, E2F1 can promote apoptosis and function as tumor suppressor. In non-small cell lung cancer (NSCLC), there are conflicting data for clinical significance of E2F1 expression. In this study, we investigated the protein expression of E2F1 in patients with stage I-III NSCLC, and its correlation with clinical outcome. RESULTS 56 paired adjacent non-tumor/tumor matched samples were prospectively obtained from patients undergoing surgery for stage I-III NSCLC at Taipei Veterans General Hospital. The protein expression of E2F1 was determined by Western blot analysis. The levels of E2F1 protein were significantly higher in tumor samples than in non-tumor lung specimens (P = 0.008). Overexpression of E2F1 was defined as a more than 2-fold expression in the tumorous sample compared with the corresponding nontumorous one, and was noted in 21 patients (37.5%). There was no significant difference in overall survival (P = 0.44) or probability of freedom from recurrence (P = 0.378) between patients with E2F1 overexpression vs. non-overexpressors. Additionally, there was no significant association between E2F1 overexpression and any clinicopathologic parameter such as histological type, stage, or angiolymphatic invasion of tumor. CONCLUSION E2F1 protein is frequently overexpressed in NSCLC. There is no correlation between E2F1 protein expression and clinical outcome such as survival and freedom from progression.
Collapse
Affiliation(s)
- Jung-Jyh Hung
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
| | | | | | | | | |
Collapse
|
45
|
A novel topoisomerase inhibitor, daurinol, suppresses growth of HCT116 cells with low hematological toxicity compared to etoposide. Neoplasia 2012; 13:1043-57. [PMID: 22131880 DOI: 10.1593/neo.11972] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Revised: 09/08/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022]
Abstract
We report that daurinol, a novel arylnaphthalene lignan, is a promising potential anticancer agent with adverse effects that are less severe than those of etoposide, a clinical anticancer agent. Despite its potent antitumor activity, clinical use of etoposide is limited because of its adverse effects, including myelosuppression and the development of secondary leukemia. Here, we comprehensively compared the mechanistic differences between daurinol and etoposide because they have similar chemical structures. Etoposide, a topoisomerase II poison, is known to attenuate cancer cell proliferation through the inhibition of DNA synthesis. Etoposide treatment induces G(2)/M arrest, severe DNA damage, and the formation of giant nuclei in HCT116 cells. We hypothesized that the induction of DNA damage and nuclear enlargement due to abnormal chromosomal conditions could give rise to genomic instability in both tumor cells and in actively dividing normal cells, resulting in the toxic adverse effects of etoposide. We found that daurinol is a catalytic inhibitor of human topoisomerase IIa, and it induces S-phase arrest through the enhanced expression of cyclins E and A and by activation of the ATM/Chk/Cdc25A pathway in HCT116 cells. However, daurinol treatment did not cause DNA damage or nuclear enlargement in vitro. Finally, we confirmed the in vivo antitumor effects and adverse effects of daurinol and etoposide in nude mice xenograft models. Daurinol displayed potent antitumor effects without any significant loss of body weight or changes in hematological parameters, whereas etoposide treatment led to decreased body weight and white blood cell, red blood cell, and hemoglobin concentration.
Collapse
|
46
|
Lang J, Smetana O, Sanchez-Calderon L, Lincker F, Genestier J, Schmit AC, Houlné G, Chabouté ME. Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. THE NEW PHYTOLOGIST 2012; 194:353-363. [PMID: 22339405 DOI: 10.1111/j.1469-8137.2012.04062.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellular responses to DNA double-strand breaks (DSBs) are linked in mammals and yeasts to the phosphorylated histones H2AX (γH2AX) repair foci which are multiproteic nuclear complexes responsible for DSB sensing and signalling. However, neither the components of these foci nor their role are yet known in plants. In this paper, we describe the effects of γH2AX deficiency in Arabidopsis thaliana plants challenged with DSBs in terms of genotoxic sensitivity and E2F-mediated transcriptional responses. We further establish the existence, restrictive to the G1/S transition, of specific DSB-induced foci containing tobacco E2F transcription factors, in both A. thaliana roots and BY-2 tobacco cells. These E2F foci partially colocalize with γH2AX foci while their formation is ataxia telangiectasia mutated (ATM)-dependent, requires the E2F transactivation domain with its retinoblastoma-binding site and is optimal in the presence of functional H2AXs. Overall, our results unveil a new interplay between plant H2AX and E2F transcriptional activators during the DSB response.
Collapse
Affiliation(s)
- Julien Lang
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Ondrej Smetana
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Lenin Sanchez-Calderon
- Laboratorio de Biología Molecular de Plantas Unidad Académica de Biología Experimental Universidad Autónoma de Zacatecas, Av. Revolución S/N Col. Tierra y Libertad CP, 98615 Guadalupe, Zacatecas, México
| | - Frédéric Lincker
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Julie Genestier
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Guy Houlné
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
47
|
Arginine methylation controls growth regulation by E2F-1. EMBO J 2012; 31:1785-97. [PMID: 22327218 DOI: 10.1038/emboj.2012.17] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 01/04/2012] [Indexed: 01/19/2023] Open
Abstract
E2F transcription factors are implicated in diverse cellular functions. The founding member, E2F-1, is endowed with contradictory activities, being able to promote cell-cycle progression and induce apoptosis. However, the mechanisms that underlie the opposing outcomes of E2F-1 activation remain largely unknown. We show here that E2F-1 is directly methylated by PRMT5 (protein arginine methyltransferase 5), and that arginine methylation is responsible for regulating its biochemical and functional properties, which impacts on E2F-1-dependent growth control. Thus, depleting PRMT5 causes increased E2F-1 protein levels, which coincides with decreased growth rate and associated apoptosis. Arginine methylation influences E2F-1 protein stability, and the enhanced transcription of a variety of downstream target genes reflects increased E2F-1 DNA-binding activity. Importantly, E2F-1 is methylated in tumour cells, and a reduced level of methylation is evident under DNA damage conditions that allow E2F-1 stabilization and give rise to apoptosis. Significantly, in a subgroup of colorectal cancer, high levels of PRMT5 frequently coincide with low levels of E2F-1 and reflect a poor clinical outcome. Our results establish that arginine methylation regulates the biological activity of E2F-1 activity, and raise the possibility that arginine methylation contributes to tumourigenesis by influencing the E2F pathway.
Collapse
|
48
|
Van Den Broeck A, Nissou D, Brambilla E, Eymin B, Gazzeri S. Activation of a Tip60/E2F1/ERCC1 network in human lung adenocarcinoma cells exposed to cisplatin. Carcinogenesis 2012; 33:320-325. [DOI: 10.1093/carcin/bgr292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
49
|
Donati G, Montanaro L, Derenzini M. Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res 2012; 72:1602-7. [PMID: 22282659 DOI: 10.1158/0008-5472.can-11-3992] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell growth is a prerequisite for cell proliferation, and ribosome biogenesis is a limiting factor for cell growth. In mammalian cells, the tumor suppressor p53 has been shown to induce cell-cycle arrest in response to impaired ribosome biogenesis. Recently, p53-independent mechanisms of cell-cycle arrest in response to alterations of ribosome biogenesis have been described. These findings provide a rational basis for the use of drugs that specifically impact ribosome biogenesis for the treatment of cancers lacking active p53 and extend the scenario of mechanisms involved in the relationship between cell growth and cell proliferation.
Collapse
Affiliation(s)
- Giulio Donati
- Department of Experimental Pathology, Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | | | | |
Collapse
|
50
|
Hazar-Rethinam M, Endo-Munoz L, Gannon O, Saunders N. The role of the E2F transcription factor family in UV-induced apoptosis. Int J Mol Sci 2011; 12:8947-60. [PMID: 22272113 PMCID: PMC3257110 DOI: 10.3390/ijms12128947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022] Open
Abstract
The E2F transcription factor family is traditionally associated with cell cycle control. However, recent data has shown that activating E2Fs (E2F1-3a) are potent activators of apoptosis. In contrast, the recently cloned inhibitory E2Fs (E2F7 and 8) appear to antagonize E2F-induced cell death. In this review we will discuss (i) the potential role of E2Fs in UV-induced cell death and (ii) the implications of this to the development of UV-induced cutaneous malignancies.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Liliana Endo-Munoz
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Orla Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Nicholas Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3176-5894; Fax: +61-7-3176-5946
| |
Collapse
|