1
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
3
|
Ling R, Wang J, Fang Y, Yu Y, Su Y, Sun W, Li X, Tang X. HDAC-an important target for improving tumor radiotherapy resistance. Front Oncol 2023; 13:1193637. [PMID: 37503317 PMCID: PMC10368992 DOI: 10.3389/fonc.2023.1193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Radiotherapy is an important means of tumor treatment, but radiotherapy resistance has been a difficult problem in the comprehensive treatment of clinical tumors. The mechanisms of radiotherapy resistance include the repair of sublethal damage and potentially lethal damage of tumor cells, cell repopulation, cell cycle redistribution, and reoxygenation. These processes are closely related to the regulation of epigenetic modifications. Histone deacetylases (HDACs), as important regulators of the epigenetic structure of cancer, are widely involved in the formation of tumor radiotherapy resistance by participating in DNA damage repair, cell cycle regulation, cell apoptosis, and other mechanisms. Although the important role of HDACs and their related inhibitors in tumor therapy has been reviewed, the relationship between HDACs and radiotherapy has not been systematically studied. This article systematically expounds for the first time the specific mechanism by which HDACs promote tumor radiotherapy resistance in vivo and in vitro and the clinical application prospects of HDAC inhibitors, aiming to provide a reference for HDAC-related drug development and guide the future research direction of HDAC inhibitors that improve tumor radiotherapy resistance.
Collapse
Affiliation(s)
- Rui Ling
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, Affiliated Yancheng First Hospital of Nanjing University Medical School, First People’s Hospital of Yancheng, Yancheng, China
| | - Yuan Fang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunpeng Yu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Tang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Mowat C, Dhatt J, Bhatti I, Hamie A, Baker K. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. Front Immunol 2023; 14:1190810. [PMID: 37304266 PMCID: PMC10248408 DOI: 10.3389/fimmu.2023.1190810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a leading cause of death worldwide and its growth can either be promoted or inhibited by the metabolic activities of intestinal microbiota. Short chain fatty acids (SCFAs) are microbial metabolites with potent immunoregulatory properties yet there is a poor understanding of how they directly regulate immune modulating pathways within the CRC cells. Methods We used engineered CRC cell lines, primary organoid cultures, orthotopic in vivo models, and patient CRC samples to investigate how SCFA treatment of CRC cells regulates their ability to activate CD8+ T cells. Results CRC cells treated with SCFAs induced much greater activation of CD8+ T cells than untreated CRC cells. CRCs exhibiting microsatellite instability (MSI) due to inactivation of DNA mismatch repair were much more sensitive to SCFAs and induced much greater CD8+ T cell activation than chromosomally instable (CIN) CRCs with intact DNA repair, indicating a subtype-dependent response to SCFAs. This was due to SCFA-induced DNA damage that triggered upregulation of chemokine, MHCI, and antigen processing or presenting genes. This response was further potentiated by a positive feedback loop between the stimulated CRC cells and activated CD8+ T cells in the tumor microenvironment. The initiating mechanism in the CRCs was inhibition of histone deacetylation by the SCFAs that triggered genetic instability and led to an overall upregulation of genes associated with SCFA signaling and chromatin regulation. Similar gene expression patterns were found in human MSI CRC samples and in orthotopically grown MSI CRCs independent of the amount of SCFA producing bacteria in the intestine. Discussion MSI CRCs are widely known to be more immunogenic than CIN CRCs and have a much better prognosis. Our findings indicate that a greater sensitivity to microbially produced SCFAs contributes to the successful activation of CD8+ T cells by MSI CRCs, thereby identifying a mechanism that could be therapeutically targeted to improve antitumor immunity in CIN CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Dhatt
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ilsa Bhatti
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Angela Hamie
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Wang L, Lv WQ, Yang JT, Lin X, Liu HM, Tan HJ, Quan RP, Long PP, Shen H, Shen J, Deng HW, Xiao HM. Enteric nervous system damage caused by abnormal intestinal butyrate metabolism may lead to functional constipation. Front Microbiol 2023; 14:1117905. [PMID: 37228368 PMCID: PMC10203953 DOI: 10.3389/fmicb.2023.1117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Functional constipation (FC) is a high morbidity gastrointestinal disease for which dysfunction in the enteric nervous system is a major pathogenesis mechanism. To enhance our understanding of the involvement of intestinal microbiota and its metabolites in the pathogenesis of FC, we conducted a shotgun metagenomic sequencing analysis of gut microbiota and serum short-chain fatty acids (SCFAs) analysis in 460 Chinese women with different defecation frequencies. We observed that the abundance ofFusobacterium_varium, a butyric acid-producing bacterium, was positively correlated (P = 0.0096) with the frequency of defecation; however, the concentrations of serum butyric acid was negatively correlated (P = 3.51E-05) with defecation frequency. These results were verified in an independent cohort (6 patients with FC and 6 controls). To further study the effects of butyric acid on intestinal nerve cells, we treated mouse intestinal neurons in vitro with various concentrations of butyrate (0.1, 0.5, 1, and 2.5 mM). We found that intestinal neurons treated with 0.5 mM butyrate proliferated better than those in the other treatment groups, with significant differences in cell cycle and oxidative phosphorylation signal pathways. We suggest that the decreased butyrate production resulting from the reduced abundance of Fusobacterium in gut microbiota affects the proliferation of intestinal neurons and the energy supply of intestinal cells. However, with FC disease advancing, the consumption and excretion of butyric acid reduce, leading to its accumulation in the intestine. Moreover, the accumulation of an excessively high amount of butyric acid inhibits the proliferation of nerve cells and subsequently exacerbates the disease.
Collapse
Affiliation(s)
- Le Wang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- School of Basic Medical Science, Hunan University of Medicine, Huaihua, Hunan, China
| | - Wan-Qiang Lv
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun-Ting Yang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui-Min Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hang-Jing Tan
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ru-Ping Quan
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Pan-Pan Long
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Xu K, Yao Y, Liu H, Yang M, Yuan L, Du X, Yang Y, Qin L, Wang W, Zhou K, Wu X, Liu C. ITGB4 deficiency induces DNA damage by downregulating HDAC1 in airway epithelial cells under stress stimulation. Pediatr Allergy Immunol 2022; 33:e13871. [PMID: 36282138 DOI: 10.1111/pai.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND DNA damage in airway epithelia under exogenous disruptors can trigger various pulmonary diseases. Integrin beta 4 (ITGB4) is a structural adhesion molecule, which is indicated to regulate the process of DNA damage in airway epithelia for its unique long cytoplasmic domain subunit. METHODS The expression level of ITGB4 and the degree of DNA damage were observed in the house dust mite (HDM)-stressed model and ozone-challenged model, respectively. Besides, ITGB4 conditional knockout mice and ITGB4-deficient airway epithelial cells were constructed to observe the influence of ITGB4 deficiency on DNA damage. Furthermore, the influence of ITGB4 deficiency on HDAC1 expression in airway epithelia was determined under stress stimulation. Finally, corresponding intervention strategies were carried out to verify the involvement of the ITGB4-mediated HDAC1 pathway in DNA damage of airway epithelial cells. RESULTS HDM stress and ozone challenge reduced the expression of ITGB4, which is accompanied by the increased expression of 8-oxoG and γ-H2AX both in vivo and in vitro. Moreover, ITGB4 deficiency in airway epithelia aggravates the degree of DNA damage under HDM stimulation and ozone stress, respectively. Furthermore, ITGB4 deficiency downregulated the expression of HDAC1 during DNA damage, and restoring HDAC1 can reverse the enhanced DNA damage in airway epithelial cells after exogenous stress. CONCLUSIONS This study confirmed the involvement of ITGB4 in the regulation of DNA damage through mediating HDAC1 in airway epithelial cells under exogenous stress. These results supply some useful insights into the mechanism of DNA damage in airway epithelial cells, which would provide possible targets for early prediction and intervention of pulmonary diseases.
Collapse
Affiliation(s)
- Kun Xu
- School of Medicine, Hunan Normal University, Changsha, China
| | - Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, China
| |
Collapse
|
7
|
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use. Cancers (Basel) 2022; 14:2640. [PMID: 35681619 PMCID: PMC9179544 DOI: 10.3390/cancers14112640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.
Collapse
Affiliation(s)
- Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Anna J. Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Fernandez A, O’Leary C, O’Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Front Mol Biosci 2021; 8:685440. [PMID: 34307454 PMCID: PMC8292790 DOI: 10.3389/fmolb.2021.685440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Upon the induction of DNA damage, the chromatin structure unwinds to allow access to enzymes to catalyse the repair. The regulation of the winding and unwinding of chromatin occurs via epigenetic modifications, which can alter gene expression without changing the DNA sequence. Epigenetic mechanisms such as histone acetylation and DNA methylation are known to be reversible and have been indicated to play different roles in the repair of DNA. More importantly, the inhibition of such mechanisms has been reported to play a role in the repair of double strand breaks, the most detrimental type of DNA damage. This occurs by manipulating the chromatin structure and the expression of essential proteins that are critical for homologous recombination and non-homologous end joining repair pathways. Inhibitors of histone deacetylases and DNA methyltransferases have demonstrated efficacy in the clinic and represent a promising approach for cancer therapy. The aims of this review are to summarise the role of histone deacetylase and DNA methyltransferase inhibitors involved in DNA double strand break repair and explore their current and future independent use in combination with other DNA repair inhibitors or pre-existing therapies in the clinic.
Collapse
Affiliation(s)
- Alejandra Fernandez
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O’Leary
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Kenneth J O’Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Joshua Burgess
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Amila Suraweera
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
9
|
Goel N, Foxall ME, Scalise CB, Wall JA, Arend RC. Strategies in Overcoming Homologous Recombination Proficiency and PARP Inhibitor Resistance. Mol Cancer Ther 2021; 20:1542-1549. [PMID: 34172532 DOI: 10.1158/1535-7163.mct-20-0992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the second most common gynecologic malignancy in the United States and the most common cause of gynecologic cancer-related death. The majority of ovarian cancers ultimately recur despite excellent response rates to upfront platinum- and taxane-based chemotherapy. Maintenance therapy after frontline treatment has emerged in recent years as an effective tool for extending the platinum-free interval of these patients. Maintenance therapy with PARP inhibitors (PARPis), in particular, has become part of standard of care in the upfront setting and in patients with platinum-sensitive disease. Homologous recombination deficient (HRD) tumors have a nonfunctioning homologous recombination repair (HRR) pathway and respond well to PARPis, which takes advantage of synthetic lethality by concomitantly impairing DNA repair mechanisms. Conversely, patients with a functioning HRR pathway, that is, HR-proficient tumors, can still elicit benefit from PARPi, but the efficacy is not as remarkable as what is seen in HRD tumors. PARPis are ineffective in some patients due to HR proficiency, which is either inherent to the tumor or potentially acquired as a method of therapeutic resistance. This review seeks to outline current strategies employed by clinicians and scientists to overcome PARPi resistance-either acquired or inherent to the tumor.
Collapse
Affiliation(s)
- Nidhi Goel
- University of Alabama School of Medicine, Birmingham, Alabama
| | - McKenzie E Foxall
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carly Bess Scalise
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaclyn A Wall
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
10
|
Role of chromatin modulation in the establishment of protozoan parasite infection for developing targeted chemotherapeutics. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00356-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Angel SO, Vanagas L, Ruiz DM, Cristaldi C, Saldarriaga Cartagena AM, Sullivan WJ. Emerging Therapeutic Targets Against Toxoplasma gondii: Update on DNA Repair Response Inhibitors and Genotoxic Drugs. Front Cell Infect Microbiol 2020; 10:289. [PMID: 32656097 PMCID: PMC7325978 DOI: 10.3389/fcimb.2020.00289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis in animals and humans. This infection is transmitted to humans through oocysts released in the feces of the felines into the environment or by ingestion of undercooked meat. This implies that toxoplasmosis is a zoonotic disease and T. gondii is a foodborne pathogen. In addition, chronic toxoplasmosis in goats and sheep is the cause of recurrent abortions with economic losses in the sector. It is also a health problem in pets such as cats and dogs. Although there are therapies against this infection in its acute stage, they are not able to permanently eliminate the parasite and sometimes they are not well tolerated. To develop better, safer drugs, we need to elucidate key aspects of the biology of T. gondii. In this review, we will discuss the importance of the homologous recombination repair (HRR) pathway in the parasite's lytic cycle and how components of these processes can be potential molecular targets for new drug development programs. In that sense, the effect of different DNA damage agents or HHR inhibitors on the growth and replication of T. gondii will be described. Multitarget drugs that were either associated with other targets or were part of general screenings are included in the list, providing a thorough revision of the drugs that can be tested in other scenarios.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Diego M Ruiz
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - Ana M Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas (CONICET)-Universidad Nacional General San Martin (UNSAM), Chascomús, Argentina
| | - William J Sullivan
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Paillas S, Then CK, Kilgas S, Ruan JL, Thompson J, Elliott A, Smart S, Kiltie AE. The Histone Deacetylase Inhibitor Romidepsin Spares Normal Tissues While Acting as an Effective Radiosensitizer in Bladder Tumors in Vivo. Int J Radiat Oncol Biol Phys 2020; 107:212-221. [PMID: 31987970 PMCID: PMC7181176 DOI: 10.1016/j.ijrobp.2020.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE Muscle-invasive bladder cancer has a 40% to 60% 5-year survival rate with radical treatment by surgical removal of the bladder or radiation therapy-based bladder preservation techniques, including concurrent chemoradiation. Elderly patients cannot tolerate current chemoradiation therapy regimens and often receive only radiation therapy, which is less effective. We urgently need effective chemotherapy agents for use with radiation therapy combinations that are nontoxic to normal tissues and tolerated by elderly patients. METHODS AND MATERIALS We have identified histone deacetylase (HDAC) inhibitors as promising agents to study. Pan-HDAC inhibition, using panobinostat, is a good strategy for radiosensitization, but more selective agents may be more useful radiosensitizers in a clinical setting, resulting in fewer systemic side effects. Herein, we study the HDAC class I-selective agent romidepsin, which we predict to have fewer off-target effects than panobinostat while maintaining an effective level of tumor radiosensitization. RESULTS In vitro effects of romidepsin were assessed by clonogenic assay and showed that romidepsin was effective in the nanomolar range in different bladder cancer cells and radiosensitized these cells. The radiosensitizing effect of romidepsin was confirmed in vivo using superficial xenografts. The drug/irradiation combination treatment resulted in significant tumor growth delay but did not increase the severity of acute (3.75 days) intestinal normal tissue toxicity or late toxicity at 29 weeks. Moreover, we showed that romidepsin treatment impaired both homologous recombination and nonhomologous end joining DNA repair pathways, suggesting that the disruption of DNA repair pathways caused by romidepsin is a key mechanism for its radiosensitizing effect in bladder cancer cells. CONCLUSIONS This study demonstrates that romidepsin is an effective radiosensitizer in vitro and in vivo and does not increase the acute and late toxicity after ionizing radiation. Romidepsin is already in clinical use for the cutaneous T-cell lymphoma, but a phase 1 clinical trial of romidepsin as a radiosensitizer could be considered in muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Salome Paillas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Chee K Then
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Susan Kilgas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Jia-Ling Ruan
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - James Thompson
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Amy Elliott
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Sean Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Anne E Kiltie
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom.
| |
Collapse
|
13
|
Topuz RD, Gunduz O, Tastekin E, Karadag CH. Effects of hippocampal histone acetylation and HDAC inhibition on spatial learning and memory in the Morris water maze in rats. Fundam Clin Pharmacol 2019; 34:222-228. [PMID: 31617237 DOI: 10.1111/fcp.12512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 01/31/2023]
Abstract
In recent years, it has been pointed out that epigenetic changes affect learning and memory formation. Particularly, it has been shown that histone acetylation and DNA methylation work in concert to regulate learning and memory formation. We aimed to examine whether acetylation of H2B within the rat hippocampus alters by trainings in the Morris water maze test. Male, 2-3 months old, Sprague Dawley rats were trained in Morris water maze task. Animals were given four trials per day for five consecutive days to locate a hidden platform. On the sixth day, the platform was removed and the animals were swum for 60 s. The effects of sodium butyrate, histone deacetylase inhibitor, were tested on normal and scopolamine-induced memory-impaired rats. The histone deacetylase inhibitor, sodium butyrate, increased histone H2B acetylation in normal rats. Sodium butyrate had no effect on learning and memory performance of normal rats; however, it partially ameliorated learning and memory disruption induced by scopolamine. So, the histone deacetylase inhibitors can be new treatment agent for cognitive disorders.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ebru Tastekin
- Department of Pathology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Cetin Hakan Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| |
Collapse
|
14
|
Autin P, Blanquart C, Fradin D. Epigenetic Drugs for Cancer and microRNAs: A Focus on Histone Deacetylase Inhibitors. Cancers (Basel) 2019; 11:E1530. [PMID: 31658720 PMCID: PMC6827107 DOI: 10.3390/cancers11101530] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Over recent decades, it has become clear that epigenetic abnormalities are involved in the hallmarks of cancer. Histone modifications, such as acetylation, play a crucial role in cancer development and progression, by regulating gene expression, such as for oncogenes or tumor suppressor genes. Therefore, histone deacetylase inhibitors (HDACi) have recently shown efficacy against both hematological and solid cancers. Designed to target histone deacetylases (HDAC), these drugs can modify the expression pattern of numerous genes including those coding for micro-RNAs (miRNA). miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger RNA. Current research has found that miRNAs from a tumor can be investigated in the tumor itself, as well as in patient body fluids. In this review, we summarized current knowledge about HDAC and HDACi in several cancers, and described their impact on miRNA expression. We discuss briefly how circulating miRNAs may be used as biomarkers of HDACi response and used to investigate response to treatment.
Collapse
Affiliation(s)
- Pierre Autin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Christophe Blanquart
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, 44007 Nantes, France.
| |
Collapse
|
15
|
Blanquart C, Linot C, Cartron PF, Tomaselli D, Mai A, Bertrand P. Epigenetic Metalloenzymes. Curr Med Chem 2019; 26:2748-2785. [PMID: 29984644 DOI: 10.2174/0929867325666180706105903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Epigenetics controls the expression of genes and is responsible for cellular phenotypes. The fundamental basis of these mechanisms involves in part the post-translational modifications (PTMs) of DNA and proteins, in particular, the nuclear histones. DNA can be methylated or demethylated on cytosine. Histones are marked by several modifications including acetylation and/or methylation, and of particular importance are the covalent modifications of lysine. There exists a balance between addition and removal of these PTMs, leading to three groups of enzymes involved in these processes: the writers adding marks, the erasers removing them, and the readers able to detect these marks and participating in the recruitment of transcription factors. The stimulation or the repression in the expression of genes is thus the result of a subtle equilibrium between all the possibilities coming from the combinations of these PTMs. Indeed, these mechanisms can be deregulated and then participate in the appearance, development and maintenance of various human diseases, including cancers, neurological and metabolic disorders. Some of the key players in epigenetics are metalloenzymes, belonging mostly to the group of erasers: the zinc-dependent histone deacetylases (HDACs), the iron-dependent lysine demethylases of the Jumonji family (JMJ or KDM) and for DNA the iron-dependent ten-eleven-translocation enzymes (TET) responsible for the oxidation of methylcytosine prior to the demethylation of DNA. This review presents these metalloenzymes, their importance in human disease and their inhibitors.
Collapse
Affiliation(s)
- Christophe Blanquart
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Camille Linot
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Universite d'Angers, Universite de Nantes, Nantes, France.,Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.,Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Philippe Bertrand
- Réseau Epigénétique du Cancéropôle Grand Ouest, France.,Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B27, 86073, Poitiers cedex 09, France
| |
Collapse
|
16
|
Perona M, Thomasz L, Rossich L, Rodriguez C, Pisarev MA, Rosemblit C, Cremaschi GA, Dagrosa MA, Juvenal GJ. Radiosensitivity enhancement of human thyroid carcinoma cells by the inhibitors of histone deacetylase sodium butyrate and valproic acid. Mol Cell Endocrinol 2018; 478:141-150. [PMID: 30125607 DOI: 10.1016/j.mce.2018.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
Abstract
Radiotherapy is one of the leading treatments for clinical cancer therapy. External beam radiotherapy has been proposed as an adjuvant treatment for patients bearing differentiated thyroid cancer refractory to conventional therapy. Our purpose was to study the combined effect of HDAC inhibitors (HDACi) and ionizing irradiation in thyroid cancer cell lines (Nthy-ori 3-1, WRO, TPC-1 and 8505c). HDACi radiosensitized thyroid cancer cells as evidenced by the reduction of survival fraction, whereas they had no effect in the normal cells. HDACi enhanced radiation-induced cell death in WRO cells. Gamma-H2AX foci number increased and persisted long after ionizing exposure in the HDACi-treated cells (WRO and TPC-1). Moreover, the expression of the repair-related gene Ku80 was differentially modulated only in the cancer cells, by the compounds at the protein and/or mRNA levels. We present in vitro evidence that HDACi can enhance the radiosensitivity of human thyroid cancer cells.
Collapse
Affiliation(s)
- Marina Perona
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lisa Thomasz
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciano Rossich
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina
| | - Carla Rodriguez
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina
| | - Mario A Pisarev
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina
| | - Cinthia Rosemblit
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - María Alejandra Dagrosa
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo J Juvenal
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
17
|
Lettieri-Barbato D, Aquilano K. Pushing the Limits of Cancer Therapy: The Nutrient Game. Front Oncol 2018; 8:148. [PMID: 29868472 PMCID: PMC5951973 DOI: 10.3389/fonc.2018.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
The standard cancer treatments include chemotherapy, radiotherapy, or their combination, which are generally associated with a multitude of side effects ranging from discomfort to the development of secondary tumors and severe toxicity to multiple systems including immune system. Mounting evidence has highlighted that the fine-tuning of nutrients may selectively sensitize cancer cells to conventional cancer therapies, while simultaneously protecting normal cells from their side effects. Nutrient modulation through diet also improves cancer immunesurveillance in a way that severe immunosuppression could be avoided or even the immune response or immune-based cancer therapies be potentiated also through patient microbiota remodeling. Here, we review recent advances in cancer therapy focusing on the effects of adjuvant dietary interventions (e.g., ketogenic diets, fasting) on the metabolic pathways within cancer cells and tumor environment (e.g., microbiota, immune system, tumor microenvironment) that are involved in cancer progression and resistance as well as cancer cell death. Finally, based on the overall literature data, we designed a nutritional intervention consisting in a plant-based moderate ketogenic diet that could be exploited for future preclinical research in cancer therapy.
Collapse
|
18
|
Saito K, Funayama T, Yokota Y, Murakami T, Kobayashi Y. Histone Deacetylase Inhibitors Sensitize Murine B16F10 Melanoma Cells to Carbon Ion Irradiation by Inducing G1 Phase Arrest. Biol Pharm Bull 2018; 40:844-851. [PMID: 28566628 DOI: 10.1248/bpb.b16-01025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epigenetic processes, in addition to genetic abnormalities, play a critical role in refractory malignant diseases and cause the unresponsiveness to various chemotherapeutic regimens and radiotherapy. Herein we demonstrate that histone deacetylase inhibitors (HDACis) can be used to sensitize malignant melanoma B16F10 cells to carbon ion irradiation. The cells were first treated with HDACis (romidepsin [FK228, depsipeptide], trichostatin A [TSA], valproic acid [VPA], and suberanilohydroxamic acid [SAHA, vorinostat]) and were then exposed to two types of radiation (carbon ions and gamma-rays). We found that HDACis enhanced the radiation-induced apoptosis and suppression of clonogenicity that was induced by irradiation, having a greater effect with carbon ion irradiation than with gamma-rays. Carbon ion irradiation and the HDACi treatment induced G2/M and G0/G1 cell cycle arrest, respectively. Thus, it is considered that HDACi treatment enhanced the killing effects of carbon ion irradiation against melanoma cells by inducing the arrest of G1 phase cells, which are sensitive to radiation due to a lack of DNA homologous recombination repair. Based on these findings, we propose that pretreatment with HDACis as radiosensitizers to induce G1 arrest combined with carbon ion irradiation may have clinical efficacy against refractory cancer.
Collapse
Affiliation(s)
- Katsuyo Saito
- Department of Quantum Biology, Graduate School of Medicine, Gunma University.,Laboratory of Tumor Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare.,Department of Radiation-Applied Biology, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Tomoo Funayama
- Department of Quantum Biology, Graduate School of Medicine, Gunma University.,Department of Radiation-Applied Biology, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Yuichiro Yokota
- Department of Radiation-Applied Biology, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST)
| | - Takashi Murakami
- Laboratory of Tumor Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Yasuhiko Kobayashi
- Department of Quantum Biology, Graduate School of Medicine, Gunma University.,Department of Radiation-Applied Biology, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST)
| |
Collapse
|
19
|
Liu G, Wang H, Zhang F, Tian Y, Tian Z, Cai Z, Lim D, Feng Z. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats. Int J Mol Sci 2017; 18:ijms18051027. [PMID: 28489060 PMCID: PMC5454939 DOI: 10.3390/ijms18051027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.
Collapse
Affiliation(s)
- Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan 250012, China.
| | - Hui Wang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan 250012, China.
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan 250012, China.
| | - Youjia Tian
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan 250012, China.
| | - Zhujun Tian
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan 250012, China.
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan 250012, China.
| | - David Lim
- Flinders Rural Health South Australia, Victor Harbor, SA 5211, Australia.
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Shandong University, Jinan 250012, China.
| |
Collapse
|
20
|
Nguyen T, Parker R, Hawkins E, Holkova B, Yazbeck V, Kolluri A, Kmieciak M, Rahmani M, Grant S. Synergistic interactions between PLK1 and HDAC inhibitors in non-Hodgkin's lymphoma cells occur in vitro and in vivo and proceed through multiple mechanisms. Oncotarget 2017; 8:31478-31493. [PMID: 28416758 PMCID: PMC5458223 DOI: 10.18632/oncotarget.15649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023] Open
Abstract
Interactions between the polo-like kinase 1 (PLK1) inhibitor volasertib and the histone deacetylase inhibitor (HDACI) belinostat were examined in diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells in vitro and in vivo. Exposure of DLBCL cells to very low concentrations of volasertib in combination with belinostat synergistically increased cell death (apoptosis). Similar interactions occurred in GC-, ABC-, double-hit DLBCL cells, MCL cells, bortezomib-resistant cells and primary lymphoma cells. Co-exposure to volasertib/belinostat induced a marked increase in M-phase arrest, phospho-histone H3, mitotic errors, cell death in M-phase, and DNA damage. Belinostat diminished c-Myc mRNA and protein expression, an effect significantly enhanced by volasertib co-exposure. c-Myc knock-down increased DNA damage and cell death in response to volasertib, arguing that c-Myc down-regulation plays a functional role in the lethality of this regimen. Notably, PLK1 knock-down in DLBCL cells significantly increased belinostat-induced M-phase accumulation, phospho-histone H3, γH2AX, and cell death. Co-administration of volasertib and belinostat dramatically reduced tumor growth in an ABC-DLBCL flank model (U2932) and a systemic double-hit lymphoma model (OCI-Ly18), accompanied by a pronounced increase in survival without significant weight loss or other toxicities. Together, these findings indicate that PLK1/HDAC inhibition warrants attention as a therapeutic strategy in NHL.
Collapse
Affiliation(s)
- Tri Nguyen
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Rebecca Parker
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Elisa Hawkins
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Beata Holkova
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Victor Yazbeck
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Akhil Kolluri
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University Health Sciences Center, Richmond, VA, USA
| | - Mohamed Rahmani
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA, USA
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Pharmacology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University Health Sciences Center, Richmond, VA, USA
| |
Collapse
|
21
|
Roos WP, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res 2016; 44:10017-10030. [PMID: 27738139 PMCID: PMC5137451 DOI: 10.1093/nar/gkw922] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization.
Collapse
Affiliation(s)
- Wynand Paul Roos
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
22
|
Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol (Dordr) 2016; 40:21-32. [PMID: 27766591 DOI: 10.1007/s13402-016-0301-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Glioblastoma (GBM) ranks among the deadliest solid cancers worldwide and its prognosis has remained dismal, despite the use of aggressive chemo-irradiation treatment regimens. Limited drug delivery into the brain parenchyma and frequent resistance to currently available therapies are problems that call for a prompt development of novel therapeutic strategies. While only displaying modest efficacies as mono-therapy in pre-clinical settings, histone deacetylase inhibitors (HDACi) have shown promising sensitizing effects to a number of cytotoxic agents. Here, we sought to investigate the sensitizing effect of the HDACi trichostatin A (TSA) to the alkylating agent lomustine (CCNU), which is used in the clinic for the treatment of GBM. METHODS Twelve primary GBM cell cultures grown as neurospheres were used in this study, as well as one established GBM-derived cell line (U87 MG). Histone deacetylase (HDAC) expression levels were determined using quantitative real-time PCR and Western blotting. The efficacy of either CCNU alone or its combination with TSA was assessed using various assays, i.e., cell viability assays (MTT), cell cycle assays (flow cytometry, FACS), double-strand DNA break (DSB) quantification assays (microscopy/immunofluorescence) and expression profiling assays of proteins involved in apoptosis and cell stress (Western blotting and protein array). RESULTS We found that the HDAC1, 3 and 6 expression levels were significantly increased in GBM samples compared to non-neoplastic brain control samples. Additionally, we found that pre-treatment of GBM cells with TSA resulted in an enhancement of their sensitivity to CCNU, possibly via the accumulation of DSBs, decreased cell proliferation and viability rates, and an increased apoptotic rate. CONCLUSION From our data we conclude that the combined administration of TSA and CCNU eradicates GBM cells with a higher efficacy than either drug alone, thereby opening a novel avenue for the treatment of GBM.
Collapse
|
23
|
Li Y, Seto E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026831. [PMID: 27599530 DOI: 10.1101/cshperspect.a026831] [Citation(s) in RCA: 803] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last several decades, it has become clear that epigenetic abnormalities may be one of the hallmarks of cancer. Posttranslational modifications of histones, for example, may play a crucial role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear architecture. Histone acetylation, a well-studied posttranslational histone modification, is controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). By removing acetyl groups, HDACs reverse chromatin acetylation and alter transcription of oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone cellular substrates that govern a wide array of biological processes including cancer initiation and progression. This review will discuss the role of HDACs in cancer and the therapeutic potential of HDAC inhibitors (HDACi) as emerging drugs in cancer treatment.
Collapse
Affiliation(s)
- Yixuan Li
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| | - Edward Seto
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|
24
|
Liao Y, Niu X, Chen B, Edwards H, Xu L, Xie C, Lin H, Polin L, Taub JW, Ge Y, Qin Z. Synthesis and Antileukemic Activities of Piperlongumine and HDAC Inhibitor Hybrids against Acute Myeloid Leukemia Cells. J Med Chem 2016; 59:7974-90. [PMID: 27505848 PMCID: PMC6878111 DOI: 10.1021/acs.jmedchem.6b00772] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synergistic-to-additive antileukemic interactions of piperlongumine (PL) and HDAC inhibitor (HDACi) SAHA (Vorinostat) provide a compelling rationale to construct PL-HDACi hybrids, such as 1-58, which recapitulated the synergism between the parental compounds in high-risk and chemoresistant AML cells. Both PL and HDACi components, either in combination or in hybrid molecules, are essential for inducing significant DNA damage and apoptosis. Introducing C2-chloro substituent to 1-58 yielded 3-35 with increased cytotoxicity but decreased selectivity in noncancerous MCF-10A cells; eliminating C7-C8 olefin of PL obtained 3-31/3-98 scaffolds which were still more active than PL or SAHA in AML and were well-tolerated by MCF-10A cells. The HDACi function was crucial for modulating expression of DNA repair and apoptosis-related proteins. Collectively, PL and SAHA hybrids are potent, multifunctional anti-AML agents, acting in part, by interfering cellular GSH defense, suppressing expression of DNA repair and pro-survival proteins, and inducing expression of pro-apoptotic proteins.
Collapse
Affiliation(s)
- Yi Liao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Xiaojia Niu
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| | - Bailing Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Jeffrey W. Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, Michigan 48201, United States
| | - Yubin Ge
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Zhihui Qin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
25
|
Zhou L, Chen S, Zhang Y, Kmieciak M, Leng Y, Li L, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Rahmani M, Povirk L, Chalasani S, Berger AJ, Dai Y, Grant S. The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR. Blood 2016; 127:2219-2230. [PMID: 26851293 PMCID: PMC4859196 DOI: 10.1182/blood-2015-06-653717] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
Two classes of novel agents, NEDD8-activating enzyme (NAE) and histone deacetylase (HDAC) inhibitors, have shown single-agent activity in acute myelogenous leukemia (AML)/myelodysplastic syndrome (MDS). Here we examined mechanisms underlying interactions between the NAE inhibitor pevonedistat (MLN4924) and the approved HDAC inhibitor belinostat in AML/MDS cells. MLN4924/belinostat coadministration synergistically induced AML cell apoptosis with or without p53 deficiency or FLT3-internal tandem duplication (ITD), whereas p53 short hairpin RNA (shRNA) knockdown or enforced FLT3-ITD expression significantly sensitized cells to the regimen. MLN4924 blocked belinostat-induced antiapoptotic gene expression through nuclear factor-κB inactivation. Each agent upregulated Bim, and Bim knockdown significantly attenuated apoptosis. Microarrays revealed distinct DNA damage response (DDR) genetic profiles between individual vs combined MLN4924/belinostat exposure. Whereas belinostat abrogated the MLN4924-activated intra-S checkpoint through Chk1 and Wee1 inhibition/downregulation, cotreatment downregulated multiple homologous recombination and nonhomologous end-joining repair proteins, triggering robust double-stranded breaks, chromatin pulverization, and apoptosis. Consistently, Chk1 or Wee1 shRNA knockdown significantly sensitized AML cells to MLN4924. MLN4924/belinostat displayed activity against primary AML or MDS cells, including those carrying next-generation sequencing-defined poor-prognostic cancer hotspot mutations, and CD34(+)/CD38(-)/CD123(+) populations, but not normal CD34(+) progenitors. Finally, combined treatment markedly reduced tumor burden and significantly prolonged animal survival (P < .0001) in AML xenograft models with negligible toxicity, accompanied by pharmacodynamic effects observed in vitro. Collectively, these findings argue that MLN4924 and belinostat interact synergistically by reciprocally disabling the DDR in AML/MDS cells. This strategy warrants further consideration in AML/MDS, particularly in disease with unfavorable genetic aberrations.
Collapse
Affiliation(s)
- Liang Zhou
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Shuang Chen
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Yu Zhang
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Maciej Kmieciak
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Yun Leng
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA; Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Lihong Li
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA; Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Hui Lin
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Kathryn A Rizzo
- Division of Molecular Diagnostics, Department of Pathology and
| | | | | | - Mohamed Rahmani
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Lawrence Povirk
- Department of Pharmacology, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Sri Chalasani
- Department of Pharmacology, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Allison J Berger
- Oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc/Takeda Pharmaceutical Company Ltd, Cambridge, MA
| | - Yun Dai
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA; Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; and
| | - Steven Grant
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA; Department of Biochemistry, Virginia Commonwealth University and the Massey Cancer Center and the Virginia Institute of Molecular Medicine, Richmond, VA
| |
Collapse
|
26
|
Luo Y, Wang H, Zhao X, Dong C, Zhang F, Guo G, Guo G, Wang X, Powell SN, Feng Z. Valproic acid causes radiosensitivity of breast cancer cells via disrupting the DNA repair pathway. Toxicol Res (Camb) 2016; 5:859-870. [PMID: 30090395 DOI: 10.1039/c5tx00476d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 11/21/2022] Open
Abstract
Valproic acid (VPA) is one of the representative compounds of histone deacetylase inhibitors (HDACis) and is used widely for the clinical treatment of epilepsy and other convulsive diseases. Current reports indicate that HDACis may also be an attractive radiosensitizer for some tumor cells; however, it is unknown whether the safe blood concentration of VPA (0.3-0.8 mM) used for the treatment of epilepsy can also induce radiosensitivity in breast cancer cells. In addition, the mechanism by which VPA may induce radiosensitivity in breast cancer cells is yet to be determined. Our results clearly indicated that VPA at a safe dose (0.5 mM) could significantly increase the radiosensitivity of MCF7 breast cancer cells and result in more accumulation of DNA double strand breaks in response to DNA damage. After VPA treatment, the frequencies of homologous recombination (HR) and non-homologous end joining (NHEJ) tested by recombination substrates, pDR-GFP and EJ5-GFP, were dramatically decreased in the cells without the change of the cell cycle profile. It was further found that VPA could inhibit the recruitment of key repair proteins to DNA break areas, such as Rad51, BRCA1, and Ku80. Thus, our results demonstrated that a safe dose of VPA causes radiosensitivity in breast cancer cells through disrupting the molecular mechanisms of both BRCA1-Rad51-mediated HR and Ku80-mediated NHEJ pathways.
Collapse
Affiliation(s)
- Yue Luo
- Department of Occupational Health and Occupational Medicine , The Public Health School , Shandong University , Shandong , Jinan , China .
| | - Hui Wang
- Department of Occupational Health and Occupational Medicine , The Public Health School , Shandong University , Shandong , Jinan , China .
| | - Xipeng Zhao
- Department of Occupational Health and Occupational Medicine , The Public Health School , Shandong University , Shandong , Jinan , China .
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine , The Public Health School , Shandong University , Shandong , Jinan , China .
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine , The Public Health School , Shandong University , Shandong , Jinan , China .
| | - Gang Guo
- Image Center , Jinan Third People's Hospital , Shandong Province , Shandong , Jinan , China
| | - Gongshe Guo
- The Second Hospital of Shandong University , Shandong , Jinan , China
| | - Xiaowei Wang
- Department of Radiation Oncology , Washington University School of Medicine , St. Louis , USA
| | - Simon N Powell
- Department of Radiation Oncology and Molecular Biology Program , Memorial Sloan Kettering Cancer Center , New York , USA
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine , The Public Health School , Shandong University , Shandong , Jinan , China .
| |
Collapse
|
27
|
Zhou L, Zhang Y, Chen S, Kmieciak M, Leng Y, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Dai Y, Grant S. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia 2015; 29:807-818. [PMID: 25283841 PMCID: PMC4387110 DOI: 10.1038/leu.2014.296] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/09/2014] [Accepted: 09/22/2014] [Indexed: 02/05/2023]
Abstract
AZD1775 targets the cell cycle checkpoint kinase Wee1 and potentiates genotoxic agent cytotoxicity through p53-dependent or -independent mechanisms. Here, we report that AZD1775 interacted synergistically with histone deacetylase inhibitors (HDACIs, for example, Vorinostat), which interrupt the DNA damage response, to kill p53-wild type (wt) or -deficient as well as FLT3-ITD leukemia cells in association with pronounced Wee1 inhibition and diminished cdc2/Cdk1 Y15 phosphorylation. Similarly, Wee1 shRNA knockdown significantly sensitized cells to HDACIs. Although AZD1775 induced Chk1 activation, reflected by markedly increased Chk1 S296/S317/S345 phosphorylation leading to inhibitory T14 phosphorylation of cdc2/Cdk1, these compensatory responses were sharply abrogated by HDACIs. This was accompanied by premature mitotic entry, multiple mitotic abnormalities and accumulation of early S-phase cells displaying increased newly replicated DNA, culminating in robust DNA damage and apoptosis. The regimen was active against patient-derived acute myelogenous leukemia (AML) cells harboring either wt or mutant p53 and various next-generation sequencing-defined mutations. Primitive CD34(+)/CD123(+)/CD38(-) populations enriched for leukemia-initiating progenitors, but not normal CD34(+) hematopoietic cells, were highly susceptible to this regimen. Finally, combining AZD1775 with Vorinostat in AML murine xenografts significantly reduced tumor burden and prolonged animal survival. A strategy combining Wee1 with HDACI inhibition warrants further investigation in AML with poor prognostic genetic aberrations.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- CDC2 Protein Kinase
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Checkpoint Kinase 1
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- DNA Fragmentation/drug effects
- Drug Synergism
- Drug Therapy, Combination
- Gene Expression Regulation, Leukemic
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphorylation
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction
- Survival Analysis
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Vorinostat
- Xenograft Model Antitumor Assays
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Liang Zhou
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Yu Zhang
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shuang Chen
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Maciej Kmieciak
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Yun Leng
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
- Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, China
| | - Hui Lin
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Kathryn A. Rizzo
- Division of Molecular Diagnostics, Department of Pathology, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Catherine I. Dumur
- Division of Molecular Diagnostics, Department of Pathology, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Andrea Ferreira-Gonzalez
- Division of Molecular Diagnostics, Department of Pathology, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Yun Dai
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
| | - Steven Grant
- Division of Hematology and Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA 23298, USA
- Department of Biochemistry, Virginia Commonwealth University and the Massey Cancer Center and Institute of Molecular Medicine, Richmond, VA 23298, USA
| |
Collapse
|
28
|
Min A, Im SA, Kim DK, Song SH, Kim HJ, Lee KH, Kim TY, Han SW, Oh DY, Kim TY, O'Connor MJ, Bang YJ. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Res 2015; 17:33. [PMID: 25888415 PMCID: PMC4425881 DOI: 10.1186/s13058-015-0534-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/10/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, has been found to have therapeutic potential for treating cancers associated with impaired DNA repair capabilities, particularly those with deficiencies in the homologous recombination repair (HRR) pathway. Histone deacetylases (HDACs) are important for enabling functional HRR of DNA by regulating the expression of HRR-related genes and promoting the accurate assembly of HRR-directed sub-nuclear foci. Thus, HDAC inhibitors have recently emerged as a therapeutic agent for treating cancer by inhibiting DNA repair. Based on this, HDAC inhibition could be predicted to enhance the anti-tumor effect of PARP inhibitors in cancer cells by blocking the HRR pathway. Methods We determined whether suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, could enhance the anti-tumor effects of olaparib on breast cancer cell lines using a cytotoxic assay, cell cycle analysis, and Western blotting. We evaluated how exposure to SAHA affects the expression of HRR-associated genes. The accumulation of DNA double strand breaks (DSBs) induced by combination treatment was assessed. Induction of autophagy was monitored by imaging green fluorescent protein-tagged microtubule-associated protein 1A/1B-light chain 3 (LC3) expression following co-treatment with olaparib and SAHA. These in vitro data were validated in vivo using a human breast cancer xenograft model. Results Triple-negative breast cancer cell (TNBC) lines showed heterogeneous responses to the PARP and HDAC inhibitors. Co-administration of olaparib and SAHA synergistically inhibited the growth of TNBC cells that expressed functional Phosphatase and tensin homolog (PTEN). This effect was associated with down-regulation of the proliferative signaling pathway, increased apoptotic and autophagic cell death, and accumulation of DNA damage. The combined anti-tumor effect of olaparib and SAHA was also observed in a xenograft model. These data suggest that PTEN expression in TNBC cells can sensitize the cell response to simultaneous inhibition of PARP and HDAC both in vitro and in vivo. Conclusion Our findings suggest that expression of functional PTEN may serve as a biomarker for selecting TNBC patients that would favorably respond to a combination of olaparib with SAHA. This provides a strong rationale for treating TNBC patients with PTEN expression with a combination therapy consisting of olaparib and SAHA. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0534-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | | | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea.
| | - Hee-Jun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Chung Ang University College of Medicine, Seoul, 156-755, Korea.
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| | | | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-799, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 110-799, Korea.
| |
Collapse
|
29
|
Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 2015; 38:933-49. [PMID: 25653088 DOI: 10.1007/s12272-015-0571-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/28/2015] [Indexed: 01/23/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as promising anticancer drugs. Because aberrant activity and expression of HDACs have been implicated in various cancer types, a wide range of HDAC inhibitors are being investigated as anticancer agents. Furthermore, due to the demonstrable anticancer activity in both in vitro and in vivo studies, numerous HDAC inhibitors have undergone a rapid phase of clinical development in various cancer types, either as a monotherapy or in combination with other anticancer agents. Although preclinical trials show that HDAC inhibitors have a variety of biological effects across multiple pathways, including regulation of gene expression, inducing apoptosis and cell cycle arrest, inhibiting angiogenesis, and regulation of DNA damage and repair, the mechanism by which the clinical activity is mediated remains unclear. Understanding the mechanisms of anticancer activity of HDAC inhibitors is essential not only for rational drug design for targeted therapies, but for the design of optimized clinical protocols. This paper describes the links between HDACs and cancer, and the underlying mechanisms of action of HDAC inhibitors against hematological malignancies and solid tumors. Further, this review presents the clinical outcomes of vorinostat, romidepsin, and belinostat, which are approved by the United States Food and Drug Administration for the treatment of lymphomas.
Collapse
|
30
|
Li L, Sun Y, Liu J, Wu X, Chen L, Ma L, Wu P. Histone deacetylase inhibitor sodium butyrate suppresses DNA double strand break repair induced by etoposide more effectively in MCF-7 cells than in HEK293 cells. BMC BIOCHEMISTRY 2015; 16:2. [PMID: 25592494 PMCID: PMC4304611 DOI: 10.1186/s12858-014-0030-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/17/2014] [Indexed: 01/21/2023]
Abstract
Background Histone deacetylase inhibitors (HDACi’s) are emerging as promising anticancer drugs alone or in combination with chemotherapy or radiotherapy agents. Previous research suggests that HDACi’s have a high degree of selectivity for killing cancer cells, but little is known regarding the impact of different cellular contexts on HDACi treatment. It is likely that the molecular mechanisms of HDACi’s involve processes that depend on the chromatin template, such as DNA damage and repair. We sought to establish the connection between the HDACi sodium butyrate and DNA double-strand break (DSB) damage in human breast cancer MCF-7 and non-cancerous human embryonic kidney293 (HEK293) cells. Results Sodium butyrate inhibited the proliferation of both HEK293 and MCF-7 cells in a dose- and time- dependent manner, but the effects on MCF-7 cells were more obvious. This differential effect on cell growth was not explained by differences in cell cycle arrest, as sodium butyrate caused an arrest in G1/G2 phase and a decrease in S phase for both cell lines. At high doses of sodium butyrate or in combination with etoposide, MCF-7 cells formed fewer colonies than HEK293 cells. Furthermore, sodium butyrate enhanced the formation of etoposide-induced γ-H2AX foci to a greater extent in MCF-7 than in HEK293 cells. The two cells also displayed differential patterns in the nuclear expression of DNA DSB repair proteins, which could, in part, explain the cytotoxic effects of sodium butyrate. Conclusions These studies suggest that sodium butyrate treatment leads to a different degree of chromatin relaxation in HEK293 and cancerous MCF-7 cells, which results in differential sensitivity to the toxic effects of etoposide in controlling damaged DNA repair.
Collapse
Affiliation(s)
- Liping Li
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Xincheng Road, Dongguan, 523808, P R China. .,Department of Biochemistry, School of Basic Medicine, Guangdong Medical College, Dongguan, 523808, P R China.
| | - Youxiang Sun
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Xincheng Road, Dongguan, 523808, P R China. .,Department of Biochemistry, School of Basic Medicine, Guangdong Medical College, Dongguan, 523808, P R China.
| | - Jiangqin Liu
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Xincheng Road, Dongguan, 523808, P R China.
| | - Xiaodan Wu
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Xincheng Road, Dongguan, 523808, P R China. .,Department of Biochemistry, School of Basic Medicine, Guangdong Medical College, Dongguan, 523808, P R China.
| | - Lijun Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Xincheng Road, Dongguan, 523808, P R China. .,Department of Biochemistry, School of Basic Medicine, Guangdong Medical College, Dongguan, 523808, P R China.
| | - Li Ma
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Xincheng Road, Dongguan, 523808, P R China.
| | - Pengfei Wu
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Xincheng Road, Dongguan, 523808, P R China. .,Department of Biochemistry, School of Basic Medicine, Guangdong Medical College, Dongguan, 523808, P R China.
| |
Collapse
|
31
|
Targeting leukemia stem cells with HDAC inhibitors and modulators of the DNA damage response. Leuk Suppl 2014; 3:S14-5. [PMID: 27175263 DOI: 10.1038/leusup.2014.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
32
|
Abramova MV, Svetlikova SB, Kukushkin AN, Aksenov ND, Pospelova TV, Pospelov VA. HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of γH2AX foci. Cancer Biol Ther 2014; 12:1069-77. [DOI: 10.4161/cbt.12.12.18365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
33
|
Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 2014; 143:323-36. [PMID: 24769080 PMCID: PMC4117710 DOI: 10.1016/j.pharmthera.2014.04.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Initially regarded as "epigenetic modifiers" acting predominantly through chromatin remodeling via histone acetylation, HDACIs, alternatively referred to as lysine deacetylase or simply deacetylase inhibitors, have since been recognized to exert multiple cytotoxic actions in cancer cells, often through acetylation of non-histone proteins. Some well-recognized mechanisms of HDACI lethality include, in addition to relaxation of DNA and de-repression of gene transcription, interference with chaperone protein function, free radical generation, induction of DNA damage, up-regulation of endogenous inhibitors of cell cycle progression, e.g., p21, and promotion of apoptosis. Intriguingly, this class of agents is relatively selective for transformed cells, at least in pre-clinical studies. In recent years, additional mechanisms of action of these agents have been uncovered. For example, HDACIs interfere with multiple DNA repair processes, as well as disrupt cell cycle checkpoints, critical to the maintenance of genomic integrity in the face of diverse genotoxic insults. Despite their pre-clinical potential, the clinical use of HDACIs remains restricted to certain subsets of T-cell lymphoma. Currently, it appears likely that the ultimate role of these agents will lie in rational combinations, only a few of which have been pursued in the clinic to date. This review focuses on relatively recently identified mechanisms of action of HDACIs, with particular emphasis on those that relate to the DNA damage response (DDR), and discusses synergistic strategies combining HDACIs with several novel targeted agents that disrupt the DDR or antagonize anti-apoptotic proteins that could have implications for the future use of HDACIs in patients with cancer.
Collapse
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
34
|
Furutani A, Sowa Y, Fujiwara H, Otsuji E, Sakai T. The Novel HDAC Inhibitor OBP-801/YM753 Enhances the Effects of 5-Fluorouracil With Radiation on Esophageal Squamous Carcinoma Cells. Oncol Res 2014; 21:281-6. [DOI: 10.3727/096504014x13890370410249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Khabele D. The therapeutic potential of class I selective histone deacetylase inhibitors in ovarian cancer. Front Oncol 2014; 4:111. [PMID: 24904826 PMCID: PMC4033132 DOI: 10.3389/fonc.2014.00111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/30/2014] [Indexed: 01/07/2023] Open
Abstract
Epithelial ovarian cancer remains the deadliest gynecologic malignancy. Despite advances in treatment, new approaches are needed. Histone deacetylases (HDACs) are a family of enzymes that regulate gene expression by removing acetyl groups from lysine residues on histones and non-histone proteins. Inhibition of HDACs with small molecules has led to the development of histone deacetylase inhibitors (HDACi) that are in clinical use, primarily for hematologic malignancies. Although clinical trials with HDACi as single agents in solid tumors have been disappointing, data from independent labs and recent work by our group show that class I selective HDACi have potent anti-tumor effects in pre-clinical models of ovarian cancer. This review summarizes the role of HDACs in ovarian cancer and the potential niche for selective class I HDACi, particularly HDAC3 in ovarian cancer therapy.
Collapse
Affiliation(s)
- Dineo Khabele
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University , Nashville, TN , USA ; Vanderbilt-Ingram Cancer Center , Nashville, TN , USA
| |
Collapse
|
36
|
Plotnikoff GA. Three measurable and modifiable enteric microbial biotransformations relevant to cancer prevention and treatment. Glob Adv Health Med 2014; 3:33-43. [PMID: 24891992 PMCID: PMC4030612 DOI: 10.7453/gahmj.2014.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interdisciplinary scientific evaluation of the human microbiota has identified three enteric microbial biotransformations of particular relevance for human health and well-being, especially cancer. Two biotransformations are counterproductive; one is productive. First, selective bacteria can reverse beneficial hepatic hydroxylation to produce toxic secondary bile acids, especially deoxycholic acid. Second, numerous bacterial species can reverse hepatic detoxification-in a sense, retoxify hormones and xeonobiotics-by deglucuronidation. Third, numerous enteric bacteria can effect a very positive biotransformation through the production of butyrate, a small chain fatty acid with anti-cancer activity. Each biotransformation is addressed in sequence for its relevance in representative gastrointestinal and extra-intestinal cancers. This is not a complete review of their connection with every type of cancer. The intent is to introduce the reader to clinically relevant microbial biochemistry plus the emerging evidence that links these to both carcinogenesis and treatment. Included is the evidence base to guide counseling for potentially helpful dietary adjustments.
Collapse
Affiliation(s)
- Gregory A Plotnikoff
- Penny George Institute for Health and Healing, Abbott Northwestern Hospital, Minneapolis, Minnesota, United States
| |
Collapse
|
37
|
Konstantinopoulos PA, Wilson AJ, Saskowski J, Wass E, Khabele D. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer. Gynecol Oncol 2014; 133:599-606. [PMID: 24631446 DOI: 10.1016/j.ygyno.2014.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Approximately 50% of serous epithelial ovarian cancers (EOC) contain molecular defects in homologous recombination (HR) DNA repair pathways. Poly(ADP-ribose) polymerase inhibitors (PARPi) have efficacy in HR-deficient, but not in HR-proficient, EOC tumors as a single agent. Our goal was to determine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize HR-proficient ovarian cancer cells to the PARPi AZD-2281 (olaparib). METHODS Ovarian cancer cell lines (SKOV-3, OVCAR-8, NCI/ADR-Res, UWB1.289 BRCA1null and UWB1.289+BRCA1 wild-type) were treated with saline vehicle, olaparib, SAHA or olaparib/SAHA. Sulforhodamine B (SRB) assessed cytotoxicity and immunofluorescence and Western blot assays assessed markers of apoptosis (cleaved PARP) and DNA damage (pH2AX and RAD51). Drug effects were also tested in SKOV-3 xenografts in Nude mice. Affymetrix microarray experiments were performed in vehicle and SAHA-treated SKOV-3 cells. RESULTS In a microarray analysis, SAHA induced coordinated down-regulation of HR pathway genes, including RAD51 and BRCA1. Nuclear co-expression of RAD51 and pH2AX, a marker of efficient HR repair, was reduced approximately 40% by SAHA treatment alone and combined with olaparib. SAHA combined with olaparib induced apoptosis and pH2AX expression to a greater extent than either drug alone. Olaparib reduced cell viability at increasing concentrations and SAHA enhanced these effects in 4 of 5 cell lines, including BRCA1 null and wild-type cells, in vitro and in SKOV-3 xenografts in vivo. CONCLUSIONS These results provide preclinical rationale for targeting DNA damage response pathways by combining small molecule PARPi with HDACi as a mechanism for reducing HR efficiency in ovarian cancer.
Collapse
Affiliation(s)
- Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew J Wilson
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeanette Saskowski
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erica Wass
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
38
|
HDAC inhibitors reverse acquired radio resistance of KYSE-150R esophageal carcinoma cells by modulating Bmi-1 expression. Toxicol Lett 2014. [DOI: 10.1016/j.toxlet.2013.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Činčárová L, Zdráhal Z, Fajkus J. New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 2013; 22:1535-47. [DOI: 10.1517/13543784.2013.853037] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Ali A, Bluteau O, Messaoudi K, Palazzo A, Boukour S, Lordier L, Lecluse Y, Rameau P, Kraus-Berthier L, Jacquet-Bescond A, Lelièvre H, Depil S, Dessen P, Solary E, Raslova H, Vainchenker W, Plo I, Debili N. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis 2013; 4:e738. [PMID: 23887629 PMCID: PMC3730430 DOI: 10.1038/cddis.2013.260] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 12/02/2022]
Abstract
Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34+ cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.
Collapse
Affiliation(s)
- A Ali
- Institut National de la Santé et de la Recherche Médicale, UMR 1009, Equipe labellisée Ligue Contre le Cancer, Laboratoire d'Excellence GR-Ex.114 rue Edouard Vaillant, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Butyrate is physiologically produced by the microbial fermentation of dietary fibers and plays a plurifunctional role in intestinal cells. This review examines the recent findings regarding the role and mechanisms by which butyrate regulates intestinal metabolism and discusses how these findings could improve the treatment of several gastrointestinal disorders. RECENT FINDINGS Butyrate is more than a primary nutrient that provides energy to colonocytes and acts as a cellular mediator in those cells through several mechanisms. One remarkable property of butyrate is its ability to inhibit histone deacetylases, which is associated with the direct effects of butyrate and results in gene regulation, immune modulation, cancer suppression, cell differentiation, intestinal barrier regulation, oxidative stress reduction, diarrhea control, visceral sensitivity and intestinal motility modulation. All of these actions make butyrate an important factor for the maintenance of gut health. SUMMARY From studies published over 30 years, there is no doubt of the important role that butyrate plays in maintaining intestinal homeostasis. However, despite these effects, clinical studies are still required to validate the routine use of butyrate in clinical practice and, specifically, in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Alda J Leonel
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
42
|
Manova V, Singh SK, Iliakis G. Processing of DNA double strand breaks by alternative non-homologous end-joining in hyperacetylated chromatin. Genome Integr 2012; 3:4. [PMID: 22908892 PMCID: PMC3471266 DOI: 10.1186/2041-9414-3-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 01/01/2023] Open
Abstract
Background Mammalian cells employ at least two subpathways of non-homologous end-joining for the repair of ionizing radiation induced DNA double strand breaks: The canonical DNA-PK-dependent form of non-homologous end-joining (D-NHEJ) and an alternative, slowly operating, error-prone backup pathway (B-NHEJ). In contrast to D-NHEJ, which operates with similar efficiency throughout the cell cycle, B-NHEJ operates more efficiently in G2-phase. Notably, B-NHEJ also shows strong and as of yet unexplained dependency on growth activity and is markedly compromised in serum-deprived cells, or in cells that enter the plateau-phase of growth. The molecular mechanisms underpinning this response remain unknown. Since chromatin structure or changes in chromatin structure are prime candidate-B-NHEJ-modulators, we study here the role of chromatin hyperacetylation, either by HDAC2 knockdown or treatment with the HDAC inhibitor TSA, on the repair by B-NHEJ of IR-induced DSBs. Results siRNA-mediated knockdown of HDAC2 fails to provoke histone hyperacetylation in Lig4-/- MEFs and has no detectable effect on B-NHEJ function. Treatment with TSA that inhibits multiple HDACs causes efficient, reversible chromatin hyperacetylation in Lig4-/- MEFs, as well as in human HCT116 Lig4-/- cells and the human glioma cell line M059K. The IR yield of DSBs in TSA-treated cells remains similar to that of untreated cells despite the expected chromatin relaxation. In addition, chromatin hyperacetylation leaves unchanged repair of DSBs by B-NHEJ in irradiated exponentially growing, or plateau-phase cells. Notably, under the experimental conditions employed here, chromatin hyperacetylation fails to detectably modulate B-NHEJ in M059K cells as well. Conclusions In summary, the results show that chromatin acetylation or deacetylation does not affect the kinetics of alternative NHEJ in all types of cells examined both in exponentially growing and serum deprived cultures. We conclude that parameters beyond chromatin acetylation determine B-NHEJ efficiency in the plateau-phase of growth.
Collapse
Affiliation(s)
- Vasilissa Manova
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Hufelandstr, 55, 45122, Essen, Germany.
| | | | | |
Collapse
|
43
|
Gospodinov A, Popova S, Vassileva I, Anachkova B. The inhibitor of histone deacetylases sodium butyrate enhances the cytotoxicity of mitomycin C. Mol Cancer Ther 2012; 11:2116-26. [PMID: 22891039 DOI: 10.1158/1535-7163.mct-12-0193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of histone deacetylase inhibitors has been proposed as a promising approach to increase the cell killing effect of DNA damage-inducing drugs in chemotherapy. However, the molecular mechanism of their action remains understudied. In the present article, we have assessed the effect of the histone deacetylase inhibitor sodium butyrate on the DNA damage response induced by the crosslinking agent mitomycin C. Sodium butyrate increased mitomycin C cytotoxicity, but did not impair the repair pathways required to remove mitomycin C-induced lesions as neither the rate of nucleotide excision repair nor the homologous recombination repair rate were diminished. Sodium butyrate treatment abrogated the S-phase cell-cycle checkpoint in mitomycin C-treated cells and induced the G(2)-M checkpoint. However, sodium butyrate treatment alone resulted in accumulation of reactive oxygen species, double-strand breaks in DNA, and apoptosis. These results imply that the accumulation of reactive oxygen species-mediated increase in DNA lesion burden may be the major mechanism by which sodium butyrate enhances the cytotoxicity of mitomycin C.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 21, 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
44
|
Yao H, Rahman I. Role of histone deacetylase 2 in epigenetics and cellular senescence: implications in lung inflammaging and COPD. Am J Physiol Lung Cell Mol Physiol 2012; 303:L557-66. [PMID: 22842217 DOI: 10.1152/ajplung.00175.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.
Collapse
Affiliation(s)
- Hongwei Yao
- Dept. of Environmental Medicine, Lung Biology and Disease Program, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
45
|
Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JYC. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res 2012; 10:1052-64. [PMID: 22729783 DOI: 10.1158/1541-7786.mcr-11-0587] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase inhibitors (HDI) have shown promise as candidate radiosensitizers for many types of cancers. However, the mechanisms of action are not well understood, and whether they could sensitize multiple myeloma (MM) to radiation therapy is unclear. In this study, we show that suberoylanilide hydroxamic acid (SAHA) at low concentrations has minimal cytotoxic effects, yet can significantly increase radiosensitivity of MM cells. SAHA seems to block RAD51 protein response to ionizing radiation, consistent with an inhibitory effect on the formation of RAD51 focus in irradiated MM cells. These effects of SAHA on RAD51 focus are independent of cell-cycle distribution changes. Furthermore, we show that SAHA selectively inhibits the homology-directed repair (HDR) pathway. The results of this study suggest that SAHA, a recently approved HDI in clinical trials for malignancies, at lower concentrations may act as a radiosensitizer via disruption of the RAD51-dependent HDR pathway.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Radiation Oncology, City of Hope Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
46
|
Botrugno OA, Robert T, Vanoli F, Foiani M, Minucci S. Molecular pathways: old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy. Clin Cancer Res 2012; 18:2436-42. [PMID: 22512979 DOI: 10.1158/1078-0432.ccr-11-0767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDAC) modulate acetylation and the function of histone and non-histone proteins. HDAC inhibitors have been developed to block the aberrant action of HDACs in cancer, and several are in clinical use (vorinostat, romidepsin, and valproic acid). Detailed understanding of their action is lacking, however, and their clinical activity is limited in most cases. Recently, HDACs have been involved in the control of the DNA damage response (DDR) at several levels and in directly regulating the acetylation of a number of DDR proteins (including CtIP and Exo1). Mechanistically, acetylation leads to the degradation of double-strand break repair enzymes through autophagy, providing a novel, direct link between DDR and autophagy. These observations, obtained in yeast cells, should now be translated to mammalian model systems and cancer cells to reveal whether this acetylation link is maintained in mammals, and if and how it is deregulated in cancer. In addition to HDACs, DDR and autophagy have been addressed pharmacologically, suggesting that the acetylation link, if involved in cancer, can be exploited for the design of new anticancer treatments.
Collapse
|