1
|
Mohajeri Khorasani A, Raghibi A, Haj Mohammad Hassani B, Bolbolizadeh P, Amali A, Sadeghi M, Farshidi N, Dehghani A, Mousavi P. Decoding the Role of NEIL1 Gene in DNA Repair and Lifespan: A Literature Review with Bioinformatics Analysis. Adv Biol (Weinh) 2024; 8:e2300708. [PMID: 39164210 DOI: 10.1002/adbi.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/21/2024] [Indexed: 08/22/2024]
Abstract
Longevity, the length of an organism's lifespan, is impacted by environmental factors, metabolic processes, and genetic determinants. The base excision repair (BER) pathway is crucial for maintaining genomic integrity by repairing oxidatively modified base lesions. Nei-like DNA Glycosylase 1 (NEIL1), part of the BER pathway, is vital in repairing oxidative bases in G-rich DNA regions, such as telomeres and promoters. Hence, in this comprehensive review, it have undertaken a meticulous investigation of the intricate association between NEIL1 and longevity. The analysis delves into the multifaceted aspects of the NEIL1 gene, its various RNA transcripts, and the diverse protein isoforms. In addition, a combination of bioinformatic analysis is conducted to identify NEIL1 mutations, transcription factors, and epigenetic modifications, as well as its lncRNA/pseudogene/circRNA-miRNA-mRNA regulatory network. The findings suggest that the normal function of NEIL1 is a significant factor in human health and longevity, with defects in NEIL1 potentially leading to various cancers and related syndromes, Alzheimer's disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pedram Bolbolizadeh
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Arian Amali
- School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahboubeh Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Narges Farshidi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- USERN Office, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| |
Collapse
|
2
|
Basaran MM, Hazar M, Aydın M, Uzuğ G, Özdoğan İ, Pala E, Aydın Dilsiz S, Basaran N. Effects of COVID-19 Disease on DNA Damage, Oxidative Stress and Immune Responses. TOXICS 2023; 11:386. [PMID: 37112613 PMCID: PMC10145820 DOI: 10.3390/toxics11040386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has posed a great threat to public health and has caused concern due to its fatal consequences over the last few years. Most people with COVID-19 show mild-to-moderate symptoms and recover without the need for special treatment, while others become seriously ill and need medical attention. Additionally, some serious outcomes, such as heart attacks and even stroke, have been later reported in patients who had recovered. There are limited studies on how SARS-CoV-2 infection affects some molecular pathways, including oxidative stress and DNA damage. In this study, we aimed to evaluate DNA damage, using the alkaline comet assay, and its relationship with oxidative stress and immune response parameters in COVID-19-positive patients. Our results show that DNA damage, oxidative stress parameters and cytokine levels significantly increased in SARS-CoV-2-positive patients when compared with healthy controls. The effects of SARS-CoV-2 infection on DNA damage, oxidative stress and immune responses may be crucial in the pathophysiology of the disease. It is suggested that the illumination of these pathways will contribute to the development of clinical treatments and to reduce adverse effects in the future.
Collapse
Affiliation(s)
- M. Mert Basaran
- Department of Otolaryngology, Faculty of Medicine, Kafkas University, 36000 Kars, Türkiye
| | - Merve Hazar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İbrahim Cecen University, 04100 Ağrı, Türkiye;
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye;
| | - Mehtap Aydın
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, Ümraniye Training and Research Hospital, 34764 İstanbul, Türkiye; (M.A.); (G.U.); (İ.Ö.)
| | - Gülsüm Uzuğ
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, Ümraniye Training and Research Hospital, 34764 İstanbul, Türkiye; (M.A.); (G.U.); (İ.Ö.)
| | - İlkima Özdoğan
- Department of Infectious Diseases and Clinical Microbiology, Health Sciences University, Ümraniye Training and Research Hospital, 34764 İstanbul, Türkiye; (M.A.); (G.U.); (İ.Ö.)
| | - Emin Pala
- Department of Family Medicine, Health Sciences University, Ümraniye Training and Research Hospital, 34764 İstanbul, Türkiye;
| | - Sevtap Aydın Dilsiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye;
| | - Nursen Basaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Başkent University, 06490 Ankara, Türkiye
| |
Collapse
|
3
|
Chatgilialoglu C, Krokidis MG, Masi A, Barata-Vallejo S, Ferreri C, Pascucci B, D’Errico M. Assessing the Formation of Purine Lesions in Mitochondrial DNA of Cockayne Syndrome Cells. Biomolecules 2022; 12:1630. [PMID: 36358980 PMCID: PMC9687895 DOI: 10.3390/biom12111630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial (mt) DNA and nuclear (n) DNA have known structures and roles in cells; however, they are rarely compared under specific conditions such as oxidative or degenerative environments that can create damage to the DNA base moieties. Six purine lesions were ascertained in the mtDNA of wild type (wt) CSA (CS3BE-wtCSA) and wtCSB (CS1AN-wtCSB) cells and defective counterparts CS3BE and CS1AN in comparison with the corresponding total (t) DNA (t = n + mt). In particular, the four 5',8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. The 8-oxo-Pu levels were found to be in the range of 25-50 lesions/107 nucleotides in both the mtDNA and tDNA. The four cPu were undetectable in the mtDNA both in defective cells and in the wt counterparts (CSA and CSB), contrary to their detection in tDNA, indicating a nonappearance of hydroxyl radical (HO•) reactivity within the mtDNA. In order to assess the HO• reactivity towards purine nucleobases in the two genetic materials, we performed γ-radiolysis experiments coupled with the 8-oxo-Pu and cPu quantifications on isolated mtDNA and tDNA from wtCSB cells. In the latter experiments, all six purine lesions were detected in both of the DNA, showing a higher resistance to HO• attack in the case of mtDNA compared with tDNA, likely due to their different DNA helical topology influencing the relative abundance of the lesions.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61–614 Poznań, Poland
| | - Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis, 15310 Athens, Greece
| | - Annalisa Masi
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Sebastian Barata-Vallejo
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquimíca, Universidad de Buenos Aires, Junin 954, Buenos Aires CP 1113, Argentina
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
4
|
The Usefulness of Autoradiography for DNA Repair Proteins Activity Detection in the Cytoplasm towards Radiolabeled Oligonucleotides Containing 5′,8-Cyclo-2′-deoxyAdenosine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Autoradiography of 32P-radiolabeled oligonucleotides is one of the most precise detection methods of DNA repair processes. In this study, autoradiography allowed assessing the activity of proteins in the cytoplasm involved in DNA repair. The cytoplasm is the site of protein biosynthesis but is also a target cellular compartment of synthetic therapeutic oligonucleotide (STO) delivery. The DNA-based drugs may be impaired by radiation-induced lesions, such as clustered DNA lesions (CDL) and/or 5′,8-cyclo-2′-deoxypurines (cdPu). CDL and cdPu may appear in the sequence of STO after irradiation and subsequently impair DNA repair, as shown in previous studies. Hence, the interesting questions are (1) is it safe to combine STO treatment with radiotherapy; (2) are repair proteins active in the cytoplasm; and (3) is their activity different in the cytoplasm than in the nucleus? This unique study examined whether the proteins involved in the DNA repair are affected by the CDL while they are still present in the cytoplasm of xrs5, BJ, and XPC cells. Double-stranded oligonucleotides with bi-stranded CDL were used (containing AP site in one strand and a (5′S) or (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA) in the other strand located 1 or 4 bp in both directions). The results have shown that the proteins involved in the repair were active in the cytoplasm, but less than in the nucleus. The general trends aligned for cytoplasm and nucleus—lesions located in the 5′-end direction inhibited the course of DNA repair. The combination of STO with radiotherapy should be applied carefully, as unrepaired lesions within STO may impair their therapeutic efficiency.
Collapse
|
5
|
Kaźmierczak-Barańska J, Boguszewska K, Szewczuk M, Karwowski BT. Effects of 5',8'-Cyclo-2'-Deoxypurines on the Base Excision Repair of Clustered DNA Lesions in Nuclear Extracts of the XPC Cell Line. Cells 2021; 10:cells10113254. [PMID: 34831476 PMCID: PMC8618216 DOI: 10.3390/cells10113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Clustered DNA lesions (CDL) containing 5′,8-cyclo-2′-deoxypurines (cdPus) are an example of extensive abnormalities occurring in the DNA helix and may impede cellular repair processes. The changes in the efficiency of nuclear base excision repair (BER) were investigated using (a) two cell lines, one of the normal skin fibroblasts as a reference (BJ) and the second from Xeroderma pigmentosum patients’ skin (XPC), and (b) synthetic oligonucleotides with single- and double-stranded CDL (containing 5′,8-cyclo-2′-deoxyadenosine (cdA) and the abasic (AP) site at various distances between lesions). The nuclear BER has been observed and the effect of both cdA isomers (5′R and 5′S) presence in the DNA was tested. CdPus affected the repair of the second lesion within the CDL. The BER system more efficiently processed damage in the vicinity of the ScdA isomer and changes located in the 3′-end direction for dsCDL and in the 5′-end direction for ssCDL. The presented study is the very first investigation of the repair processes of the CDL containing cdPu considering cells derived from a Xeroderma pigmentosum patient.
Collapse
|
6
|
When UDG and hAPE1 Meet Cyclopurines. How (5' R) and (5' S) 5',8-Cyclo-2'-deoxyadenosine and 5',8-Cyclo-2'-deoxyguanosine Affect UDG and hAPE1 Activity? Molecules 2021; 26:molecules26175177. [PMID: 34500606 PMCID: PMC8434022 DOI: 10.3390/molecules26175177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation is a factor that seriously damages cellular mechanisms/macromolecules, e.g., by inducing damage in the human genome, such as 5′,8-cyclo-2′-deoxypurines (cdPus). CdPus may become a component of clustered DNA lesions (CDL), which are notably unfavorable for the base excision repair system (BER). In this study, the influence of 5′S and 5′R diastereomers of 5′,8-cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) on the uracil-DNA glycosylase (UDG) and human AP site endonuclease 1 (hAPE1) activity has been taken under consideration. Synthetic oligonucleotides containing 2′-deoxyuridine (dU) and cdPu were used as a model of single-stranded CDL. The activity of the UDG and hAPE1 enzymes decreased in the presence of RcdG compared to ScdG. Contrary to the above, ScdA reduced enzyme activity more than RcdA. The presented results show the influence of cdPus lesions located within CDL on the activity of the initial stages of BER dependently on their position toward dU. Numerous studies have shown the biological importance of cdPus (e.g., as a risk of carcinogenesis). Due to that, it is important to understand how to recognize and eliminate this type of DNA damage from the genome.
Collapse
|
7
|
Szewczuk M, Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT. The Influence of 5' R and 5' S cdA and cdG on the Activity of BsmAI and SspI Restriction Enzymes. Molecules 2021; 26:molecules26123750. [PMID: 34205449 PMCID: PMC8234751 DOI: 10.3390/molecules26123750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Restriction endonucleases (REs) are intra-bacterial scissors that are considered tools in the fight against foreign genetic material. SspI and BsmAI, examined in this study, cleave dsDNA at their site of recognition or within a short distance of it. Both enzymes are representatives of type II REs, which have played an extremely important role in research on the genetics of organisms and molecular biology. Therefore, the study of agents affecting their activity has become highly important. Ionizing radiation may damage basic cellular mechanisms by inducing lesions in the genome, with 5',8-cyclo-2'-deoxypurines (cdPus) as a model example. Since cdPus may become components of clustered DNA lesions (CDLs), which are unfavorable for DNA repair pathways, their impact on other cellular mechanisms is worthy of attention. This study investigated the influence of cdPus on the elements of the bacterial restriction-modification system. In this study, it was shown that cdPus present in DNA affect the activity of REs. SspI was blocked by any cdPu lesion present at the enzyme's recognition site. When lesions were placed near the recognition sequence, the SspI was inhibited up to 46%. Moreover, (5'S)-5',8-cyclo-2'-deoxyadenosine (ScdA) present in the oligonucleotide sequence lowered BsmAI activity more than (5'R)-5',8-cyclo-2'-deoxyadenosine (RcdA). Interestingly, in the case of 5',8-cyclo-2'-deoxyguanosine (cdG), both 5'S and 5'R diastereomers inhibited BsmAI activity (up to 55% more than cdA). The inhibition was weaker when cdG was present at the recognition site rather than the cleavage site.
Collapse
|
8
|
Krasikova Y, Rechkunova N, Lavrik O. Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities. Int J Mol Sci 2021; 22:ijms22126220. [PMID: 34207557 PMCID: PMC8228863 DOI: 10.3390/ijms22126220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway, which can remove diverse bulky DNA lesions destabilizing a DNA duplex. NER defects cause several autosomal recessive genetic disorders. Xeroderma pigmentosum (XP) is one of the NER-associated syndromes characterized by low efficiency of the removal of bulky DNA adducts generated by ultraviolet radiation. XP patients have extremely high ultraviolet-light sensitivity of sun-exposed tissues, often resulting in multiple skin and eye cancers. Some XP patients develop characteristic neurodegeneration that is believed to derive from their inability to repair neuronal DNA damaged by endogenous metabolites. A specific class of oxidatively induced DNA lesions, 8,5′-cyclopurine-2′-deoxynucleosides, is considered endogenous DNA lesions mainly responsible for neurological problems in XP. Growing evidence suggests that XP is accompanied by defective mitophagy, as in primary mitochondrial disorders. Moreover, NER pathway is absent in mitochondria, implying that the mitochondrial dysfunction is secondary to nuclear NER defects. In this review, we discuss the current understanding of the NER molecular mechanism and focuses on the NER linkage with the neurological degeneration in patients with XP. We also present recent research advances regarding NER involvement in oxidative DNA lesion repair. Finally, we highlight how mitochondrial dysfunction may be associated with XP.
Collapse
Affiliation(s)
- Yuliya Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Nadejda Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
9
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. How (5'S) and (5'R) 5',8-Cyclo-2'-Deoxypurines Affect Base Excision Repair of Clustered DNA Damage in Nuclear Extracts of xrs5 Cells? A Biochemical Study. Cells 2021; 10:725. [PMID: 33805115 PMCID: PMC8064110 DOI: 10.3390/cells10040725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The clustered DNA lesions (CDLs) are a characteristic feature of ionizing radiation's impact on the human genetic material. CDLs impair the efficiency of cellular repair machinery, especially base excision repair (BER). When CDLs contain a lesion repaired by BER (e.g., apurinic/apyrimidinic (AP) sites) and a bulkier 5',8-cyclo-2'-deoxypurine (cdPu), which is not a substrate for BER, the repair efficiency of the first one may be affected. The cdPus' influence on the efficiency of nuclear BER in xrs5 cells have been investigated using synthetic oligonucleotides with bi-stranded CDL (containing (5'S) 5',8-cyclo-2'-deoxyadenosine (ScdA), (5'R) 5',8-cyclo-2'-deoxyadenosine (RcdA), (5'S) 5',8-cyclo-2'-deoxyguanosine (ScdG) or (5'R) 5',8-cyclo-2'-deoxyguanosine (RcdG) in one strand and an AP site in the other strand at different interlesion distances). Here, for the first time, the impact of ScdG and RcdG was experimentally tested in the context of nuclear BER. This study shows that the presence of RcdA inhibits BER more than ScdA; however, ScdG decreases repair level more than RcdG. Moreover, AP sites located ≤10 base pairs to the cdPu on its 5'-end side were repaired less efficiently than AP sites located ≤10 base pairs on the 3'-end side of cdPu. The strand with an AP site placed opposite cdPu or one base in the 5'-end direction was not reconstituted for cdA nor cdG. CdPus affect the repair of the other lesion within the CDL. It may translate to a prolonged lifetime of unrepaired lesions leading to mutations and impaired cellular processes. Therefore, future research should focus on exploring this subject in more detail.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
10
|
Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res 2020; 48:11227-11243. [PMID: 33010169 PMCID: PMC7672477 DOI: 10.1093/nar/gkaa777] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
The six major mammalian DNA repair pathways were discovered as independent processes, each dedicated to remove specific types of lesions, but the past two decades have brought into focus the significant interplay between these pathways. In particular, several studies have demonstrated that certain proteins of the nucleotide excision repair (NER) and base excision repair (BER) pathways work in a cooperative manner in the removal of oxidative lesions. This review focuses on recent data showing how the NER proteins, XPA, XPC, XPG, CSA, CSB and UV-DDB, work to stimulate known glycosylases involved in the removal of certain forms of base damage resulting from oxidative processes, and also discusses how some oxidative lesions are probably directly repaired through NER. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we detail how we believe UV-DDB may be the first responder in altering the structure of damage containing-nucleosomes, allowing access to BER enzymes.
Collapse
Affiliation(s)
- Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
| | - Sripriya Raja
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Bennett Van Houten
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Purine DNA Lesions at Different Oxygen Concentration in DNA Repair-Impaired Human Cells (EUE-siXPA). Cells 2019; 8:cells8111377. [PMID: 31683970 PMCID: PMC6912421 DOI: 10.3390/cells8111377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Xeroderma Pigmentosum (XP) is a DNA repair disease characterized by nucleotide excision repair (NER) malfunction, leading to photosensitivity and increased incidence of skin malignancies. The role of XP-A in NER pathways has been well studied while discrepancies associated with ROS levels and the role of radical species between normal and deficient XPA cell lines have been observed. Using liquid chromatography tandem mass spectrometry we have determined the four 5’,8-cyclopurines (cPu) lesions (i.e., 5′R-cdG, 5′S-cdG, 5′R-cdA and 5′S-cdA), 8-oxo-dA and 8-oxo-dG in wt (EUE-pBD650) and XPA-deficient (EUE-siXPA) human embryonic epithelial cell lines, under different oxygen tension (hyperoxic 21%, physioxic 5% and hypoxic 1%). The levels of Fe and Cu were also measured. The main findings of our study were: (i) the total amount of cPu (1.82–2.52 lesions/106 nucleotides) is the same order of magnitude as 8-oxo-Pu (3.10–4.11 lesions/106 nucleotides) in both cell types, (ii) the four cPu levels are similar in hyperoxic and physioxic conditions for both wt and deficient cell lines, whereas 8-oxo-Pu increases in all cases, (iii) both wt and deficient cell lines accumulated high levels of cPu under hypoxic compared to physioxic conditions, whereas the 8-oxo-Pu levels show an opposite trend, (iv) the diastereoisomeric ratios 5′R/5′S are independent of oxygen concentration being 0.29 for cdG and 2.69 for cdA for EUE-pBD650 (wt) and 0.32 for cdG and 2.94 for cdA for EUE-siXPA (deficient), (v) in deficient cell lines Fe levels were significantly higher. The data show for the first time the connection of oxygen concentration in cells with different DNA repair ability and the levels of different DNA lesions highlighting the significance of cPu. Membrane lipidomic data at 21% O2 indicated differences in the fatty acid contents between wild type and deficient cells, envisaging functional effects on membranes associated with the different repair capabilities, to be further investigated.
Collapse
|
12
|
5',8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 2019; 8:cells8060513. [PMID: 31141888 PMCID: PMC6628319 DOI: 10.3390/cells8060513] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Purine 5′,8-cyclo-2′-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each 2′-deoxyadenosine and 2′-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2′-deoxyribose units generating C5′ radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.
Collapse
|
13
|
Shafirovich V, Kolbanovskiy M, Kropachev K, Liu Z, Cai Y, Terzidis MA, Masi A, Chatgilialoglu C, Amin S, Dadali A, Broyde S, Geacintov NE. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry 2019; 58:561-574. [PMID: 30570250 PMCID: PMC6373774 DOI: 10.1021/acs.biochem.8b01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Zhi Liu
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Yuquin Cai
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alexander Dadali
- Bronx College of the City University of New York, Bronx, NY 10453, United States
| | - Suse Broyde
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| |
Collapse
|
14
|
Karwowski BT. The AT Interstrand Cross-Link: Structure, Electronic Properties, and Influence on Charge Transfer in dsDNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:665-685. [PMID: 30500729 PMCID: PMC6258832 DOI: 10.1016/j.omtn.2018.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/01/2022]
Abstract
The interaction of chemical and physical agents with genetic material can lead to almost 80 different DNA damage formations. The targeted intentional DNA damage by radiotherapy or chemotherapy is a front-line anticancer therapy. An interstrand cross-link can result from ionization radiation or specific chemical agents, such as trans-/cisplatin activity. Here, the influence of the adenine and thymidine (AT) interstrand linkage, the covalent bond between the adenine N6 and thymidine C5 methylene group, on the isolated base pair as well as double-stranded DNA (dsDNA) was taken into quantum mechanical/molecular mechanical (QM/MM) consideration at the m062x/6-31+G*:UFF level of theory in the aqueous phase. All the results presented in this article, for the first time, show that an AT-interstrand cross-link (ICL) changes the positive and negative charge migration process due to a higher activation energy forced by the cross-link’s presence. However, the final radical cation destination in cross-linked DNA is left in the same place as in a native double-stranded-deoxyoligonucleotide. Additionally, the direction of the radical anion transfer was found to be opposite to that of native dsDNA. Therefore, it can be postulated that the appearance of the AT-ICL does not disturb the hole migration in the double helix, with subsequent effective changes in the electron migration process.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
15
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
16
|
Shafirovich V, Geacintov NE. Removal of oxidatively generated DNA damage by overlapping repair pathways. Free Radic Biol Med 2017; 107:53-61. [PMID: 27818219 PMCID: PMC5418118 DOI: 10.1016/j.freeradbiomed.2016.10.507] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/31/2022]
Abstract
It is generally believed that the mammalian nucleotide excision repair pathway removes DNA helix-distorting bulky DNA lesions, while small non-bulky lesions are repaired by base excision repair (BER). However, recent work demonstrates that the oxidativly generated guanine oxidation products, spiroimininodihydantoin (Sp), 5-guanidinohydantoin (Gh), and certain intrastrand cross-linked lesions, are good substrates of NER and BER pathways that compete with one another in human cell extracts. The oxidation of guanine by peroxynitrite is known to generate 5-guanidino-4-nitroimidazole (NIm) which is structurally similar to Gh, except that the 4-nitro group in NIm is replaced by a keto group in Gh. However, unlike Gh, NIm is an excellent substrate of BER, but not of NER. These and other related results are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA.
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| |
Collapse
|
17
|
Brooks PJ. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 2017; 107:90-100. [PMID: 28011151 DOI: 10.1016/j.freeradbiomed.2016.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Patients with the genetic disease xeroderma pigmentosum (XP) who lack the capacity to carry out nucleotides excision repair (NER) have a dramatically elevated risk of skin cancer on sun exposed areas of the body. NER is the DNA repair mechanism responsible for the removal of DNA lesions resulting from ultraviolet light. In addition, a subset of XP patients develop a progressive neurodegenerative disease, referred to as XP neurologic disease, which is thought to be the result of accumulation of endogenous DNA lesions that are repaired by NER but not other repair pathways. The 8,5-cyclopurine deoxynucleotides (cyPu) have emerged as leading candidates for such lesions, in that they result from the reaction of the hydroxyl radical with DNA, are strong blocks to transcription in human cells, and are repaired by NER but not base excision repair. Here I present a focused perspective on progress into understating the repair and biological effects of these lesions. In doing so, I emphasize the role of Tomas Lindahl and his laboratory in stimulating cyPu research. I also include a critical evaluation of the evidence supporting a role for cyPu lesions in XP neurologic disease, with a focus on outstanding questions, and conceptual and technologic challenges.
Collapse
Affiliation(s)
- Philip J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
18
|
Krokidis MG, Terzidis MA, Efthimiadou E, Zervou SK, Kordas G, Papadopoulos K, Hiskia A, Kletsas D, Chatgilialoglu C. Purine 5′,8-cyclo-2′-deoxynucleoside lesions: formation by radical stress and repair in human breast epithelial cancer cells. Free Radic Res 2017; 51:470-482. [DOI: 10.1080/10715762.2017.1325485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marios G. Krokidis
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - Eleni Efthimiadou
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - George Kordas
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | | | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
| | - Dimitris Kletsas
- Institute of Biosciences and Applications, NCSR “Demokritos”, Athens, Greece
| | - Chryssostomos Chatgilialoglu
- Institute of Nanoscience and Nanotechnology, NSCR “Demokritos”, Athens, Greece
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
19
|
Matkarimov BT, Saparbaev MK. Aberrant DNA glycosylase-initiated repair pathway of free radicals in-duced DNA damage: implications for age-related diseases and natural aging. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
21
|
Merecz A, Karwowski BT. DNA tandem lesion: 5′,8-cyclo-2′-deoxyadenosine. The influence on human health. Mol Biol 2016. [DOI: 10.1134/s0026893316050125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
|
23
|
Barbier E, Lagorce A, Hachemi A, Dutertre M, Gorlas A, Morand L, Saint-Pierre C, Ravanat JL, Douki T, Armengaud J, Gasparutto D, Confalonieri F, Breton J. Oxidative DNA Damage and Repair in the Radioresistant Archaeon Thermococcus gammatolerans. Chem Res Toxicol 2016; 29:1796-1809. [PMID: 27676238 DOI: 10.1021/acs.chemrestox.6b00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hyperthermophilic archaeon Thermococcus gammatolerans can resist huge doses of γ-irradiation, up to 5.0 kGy, without loss of viability. The potential to withstand such harsh conditions is probably due to complementary passive and active mechanisms, including repair of damaged chromosomes. In this work, we documented the formation and repair of oxidative DNA lesions in T. gammatolerans. The basal level of the oxidized nucleoside, 8-oxo-2'-deoxyguanosine (8-oxo-dGuo), was established at 9.2 (± 0.9) 8-oxo-dGuo per 106 nucleosides, a higher level than those usually measured in eukaryotic cells or bacteria. A significant increase in oxidative damage, i.e., up to 24.2 (± 8.0) 8-oxo-dGuo/106 nucleosides, was measured for T. gammatolerans exposed to a 5.0 kGy dose of γ-rays. Surprisingly, the yield of radiation-induced modifications was lower than those previously observed for human cells exposed to doses corresponding to a few grays. One hour after irradiation, 8-oxo-dGuo levels were significantly reduced, indicating an efficient repair. Two putative base excision repair (BER) enzymes, TGAM_1277 and TGAM_1653, were demonstrated both by proteomics and transcriptomics to be present in the cells without exposure to ionizing radiation. Their transcripts were moderately upregulated after gamma irradiation. After heterologous production and purification of these enzymes, biochemical assays based on electrophoresis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry indicated that both have a β-elimination cleavage activity. TGAM_1653 repairs 8-oxo-dGuo, whereas TGAM_1277 is also able to remove lesions affecting pyrimidines (1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd)). This work showed that in normal growth conditions or in the presence of a strong oxidative stress, T. gammatolerans has the potential to rapidly reduce the extent of DNA oxidation, with at least these two BER enzymes as bodyguards with distinct substrate ranges.
Collapse
Affiliation(s)
- Ewa Barbier
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Arnaud Lagorce
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France.,University of Perpignan, IHPE - UMR 5244 CNRS/IFREMER/Univ. Montpellier, Montpellier, F-34095, France
| | - Amine Hachemi
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Murielle Dutertre
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Aurore Gorlas
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Lucie Morand
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Christine Saint-Pierre
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Thierry Douki
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Jean Armengaud
- CEA, DSV-Li2D, Laboratory "Innovative Technologies for Detection and Diagnostics", BP 17171, Bagnols-sur-Cèze, F-30207, France
| | - Didier Gasparutto
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Fabrice Confalonieri
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Jean Breton
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| |
Collapse
|
24
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
25
|
Cai Y, Kropachev K, Terzidis MA, Masi A, Chatgilialoglu C, Shafirovich V, Geacintov NE, Broyde S. Differences in the Access of Lesions to the Nucleotide Excision Repair Machinery in Nucleosomes. Biochemistry 2015; 54:4181-5. [PMID: 26091016 PMCID: PMC4862310 DOI: 10.1021/acs.biochem.5b00564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nucleosomes, the access of DNA lesions to nucleotide excision repair is hindered by histone proteins. However, evidence that the nature of the DNA lesions may play a role in facilitating access is emerging, but these phenomena are not well-understood. We have used molecular dynamics simulations to elucidate the structural, dynamic, and energetic properties of the R and S 5'-8-cyclo-2'-dG and the (+)-cis-anti-B[a]P-dG lesions in a nucleosome. Our results show that the (+)-cis-anti-B[a]P-dG adduct is more dynamic and more destabilizing than the smaller and more constrained 5',8-cyclo-2'-dG lesions, suggesting more facile access to the more bulky (+)-cis-anti-B[a]P-dG lesion.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, 15341 Agia, Paraskevi, Athens, Greece
| | - Vladimir Shafirovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003, United States
| |
Collapse
|
26
|
Talhaoui I, Shafirovich V, Liu Z, Saint-Pierre C, Akishev Z, Matkarimov BT, Gasparutto D, Geacintov NE, Saparbaev M. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways. J Biol Chem 2015; 290:14610-7. [PMID: 25903131 DOI: 10.1074/jbc.m115.647487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- From the Groupe "Réparation de l'ADN," CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France
| | | | - Zhi Liu
- the Chemistry Department, New York University, New York, New York 10003-5180
| | | | - Zhiger Akishev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 530038, Almaty, Kazakhstan
| | - Bakhyt T Matkarimov
- Nazarbayev University Research and Innovation System, Astana 010000, Kazakhstan, and
| | - Didier Gasparutto
- Université Grenoble Alpes, CEA, INAC/SCIB-UMR E3/LAN, F-38000 Grenoble, France
| | | | - Murat Saparbaev
- From the Groupe "Réparation de l'ADN," CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France,
| |
Collapse
|
27
|
Capobianco A, Caruso T, Fusco S, Terzidis MA, Masi A, Chatgilialoglu C, Peluso A. The association constant of 5',8-cyclo-2'-deoxyguanosine with cytidine. Front Chem 2015; 3:22. [PMID: 25870853 PMCID: PMC4376000 DOI: 10.3389/fchem.2015.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/06/2015] [Indexed: 01/11/2023] Open
Abstract
The association of 5′,8-cyclo-2′-deoxyguanosine (cdG), a DNA tandem lesion, with its complementary base cytosine has been studied by voltammetry and NMR in chloroform, using properly silylated derivatives of the two nucleobases for increasing their solubilities. Both voltammetric data and NMR titrations indicated that the Watson-Crick complex of cytidine with cdG is weaker than that with guanosine, the difference being approximately of one order of magnitude between the two association constants.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia, Università di Salerno Fisciano, Salerno, Italy
| | - Tonino Caruso
- Dipartimento di Chimica e Biologia, Università di Salerno Fisciano, Salerno, Italy
| | - Sandra Fusco
- Dipartimento di Chimica e Biologia, Università di Salerno Fisciano, Salerno, Italy
| | - Michael A Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche Bologna, Italy ; Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos," Athens, Greece
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia, Università di Salerno Fisciano, Salerno, Italy
| |
Collapse
|
28
|
Xu W, Ouellette AM, Wawrzak Z, Shriver SJ, Anderson SM, Zhao L. Kinetic and structural mechanisms of (5'S)-8,5'-cyclo-2'-deoxyguanosine-induced dna replication stalling. Biochemistry 2015; 54:639-51. [PMID: 25569151 DOI: 10.1021/bi5014936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The (5'S)-8,5'-cyclo-2'-deoxyguanosine (S-cdG) lesion is produced from reactions of DNA with hydroxyl radicals generated from ionizing radiation or endogenous oxidative metabolisms. An elevated level of S-cdG has been detected in Xeroderma pigmentosum, Cockayne syndrome, breast cancer patients, and aged mice. S-dG blocks DNA replication and transcription in vitro and in human cells and produces mutant replication and transcription products in vitro and in vivo. Major cellular protection against S-dG includes nucleotide excision repair and translesion DNA synthesis. We used kinetic and crystallographic approaches to elucidate the molecular mechanisms of S-cdG-induced DNA replication stalling using model B-family Sulfolobus solfataricus P2 DNA polymerase B1 (Dpo1) and Y-family S. solfataricus P2 DNA polymerase IV (Dpo4). Dpo1 and Dpo4 inefficiently bypassed S-cdG with dCTP preferably incorporated and dTTP (for Dpo4) or dATP (for Dpo1) misincorporated. Pre-steady-state kinetics and crystallographic data mechanistically explained the low-efficiency bypass. For Dpo1, S-cdG attenuated Kd,dNTP,app and kpol. For Dpo4, the S-cdG-adducted duplex caused a 6-fold decrease in Dpo4:DNA binding affinity and significantly reduced the concentration of the productive Dpo4:DNA:dCTP complex. Consistent with the inefficient bypass, crystal structures of Dpo4:DNA(S-cdG):dCTP (error-free) and Dpo4:DNA(S-cdG):dTTP (error-prone) complexes were catalytically incompetent. In the Dpo4:DNA(S-cdG):dTTP structure, S-cdG induced a loop structure and caused an unusual 5'-template base clustering at the active site, providing the first structural evidence of the previously suggested template loop structure that can be induced by a cyclopurine lesion. Together, our results provided mechanistic insights into S-cdG-induced DNA replication stalling.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry and Biochemistry and ‡Science of Advanced Materials Program, Central Michigan University , Mount Pleasant, Michigan 48859, United States
| | | | | | | | | | | |
Collapse
|
29
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
30
|
Kropachev K, Ding S, Terzidis MA, Masi A, Liu Z, Cai Y, Kolbanovskiy M, Chatgilialoglu C, Broyde S, Geacintov NE, Shafirovich V. Structural basis for the recognition of diastereomeric 5',8-cyclo-2'-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Res 2014; 42:5020-32. [PMID: 24615810 PMCID: PMC4041128 DOI: 10.1093/nar/gku162] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The hydroxyl radical is a powerful oxidant that generates DNA lesions including the
stereoisomeric R and S
5′,8-cyclo-2′-deoxyadenosine (cdA) and
5′,8-cyclo-2′-deoxyguanosine (cdG) pairs that have been detected in cellular
DNA. Unlike some other oxidatively generated DNA lesions, cdG and cdA are repaired by the
human nucleotide excision repair (NER) apparatus. The relative NER efficiencies of all
four cyclopurines were measured and compared in identical human HeLa cell extracts for the
first time under identical conditions, using identical sequence contexts. The cdA and cdG
lesions were excised with similar efficiencies, but the efficiencies for both
5′R cyclopurines were greater by a factor of ∼2 than for the
5′S lesions. Molecular modeling and dynamics simulations have
revealed structural and energetic origins of this difference in NER-incision efficiencies.
These lesions cause greater DNA backbone distortions and dynamics relative to unmodified
DNA in 5′R than in 5′S stereoisomers,
producing greater impairment in van der Waals stacking interaction energies in the
5′R cases. The locally impaired stacking interaction energies
correlate with relative NER incision efficiencies, and explain these results on a
structural basis in terms of differences in dynamic perturbations of the DNA backbone
imposed by the R and S covalent 5′,8 bonds.
Collapse
Affiliation(s)
- Konstantin Kropachev
- Department of Chemistry New York University, 100 Washington Square East, New York, NY 10003, USA, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA and Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pednekar V, Weerasooriya S, Jasti VP, Basu AK. Mutagenicity and genotoxicity of (5'S)-8,5'-cyclo-2'-deoxyadenosine in Escherichia coli and replication of (5'S)-8,5'-cyclopurine-2'-deoxynucleosides in vitro by DNA polymerase IV, exo-free Klenow fragment, and Dpo4. Chem Res Toxicol 2014; 27:200-10. [PMID: 24392701 PMCID: PMC3952113 DOI: 10.1021/tx4002786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Reactive
oxygen species generate many lesions in DNA, including R and S diastereomers of 8,5′-cyclo-2′-deoxyadenosine
(cdA) and 8,5′-cyclo-2′-deoxyguanosine (cdG). Herein,
the result of replication of a plasmid containing S-cdA in Escherichia coli is reported. S-cdA was found mutagenic and highly genotoxic. Viability and mutagenicity
of the S-cdA construct were dependent on functional
pol V, but mutational frequencies (MFs) and types varied in pol II-
and pol IV-deficient strains relative to the wild-type strain. Both S-cdA → T and S-cdA → G substitutions
occurred in equal frequency in wild-type E. coli,
but the frequency of S-cdA → G dropped in
pol IV-deficient strain, especially when being SOS induced. This suggests
that pol IV plays a role in S-cdA → G mutations.
MF increased significantly in pol II-deficient strain, suggesting
pol II’s likely role in error-free translesion synthesis. Primer
extension and steady-state kinetic studies using pol IV, exo-free
Klenow fragment (KF (exo–)), and Dpo4 were performed
to further assess the replication efficiency and fidelity of S-cdA and S-cdG. Primer extension by pol
IV mostly stopped before the lesion, although a small fraction was
extended opposite the lesion. Kinetic studies showed that pol IV incorporated
dCMP almost as efficiently as dTMP opposite S-cdA,
whereas it incorporated the correct nucleotide dCMP opposite S-cdG 10-fold more efficiently than any other dNMP. Further
extension of each lesion containing pair, however, was very inefficient.
These results are consistent with the role of pol IV in S-cdA → G mutations in E. coli. KF (exo–) was also strongly blocked by both lesions, but it
could slowly incorporate the correct nucleotide opposite them. In
contrast, Dpo4 could extend a small fraction of the primer to a full-length
product on both S-cdG and S-cdA
templates. Dpo4 incorporated dTMP preferentially opposite S-cdA over the other dNMPs, but the discrimination was only
2- to 8-fold more proficient. Further extension of the S-cdA:T and S-cdA:C pair was not much different.
For S-cdG, conversely, the wrong nucleotide, dTMP,
was incorporated more efficiently than dCMP, although one-base extension
of the S-cdG:T pair was less efficient than the S-cdG:C pair. S-cdG, therefore, has the
propensity to cause G → A transition, as was reported to occur
in E. coli. The results of this study are consistent
with the strong replication blocking nature of S-cdA
and S-cdG, and their ability to initiate error-prone
synthesis by Y-family DNA polymerases.
Collapse
Affiliation(s)
- Varsha Pednekar
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
32
|
Ribonucleotides as nucleotide excision repair substrates. DNA Repair (Amst) 2013; 13:55-60. [PMID: 24290807 DOI: 10.1016/j.dnarep.2013.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022]
Abstract
The incorporation of ribonucleotides in DNA has attracted considerable notice in recent years, since the pool of ribonucleotides can exceed that of the deoxyribonucleotides by at least 10-20-fold, and single ribonucleotide incorporation by DNA polymerases appears to be a common event. Moreover ribonucleotides are potentially mutagenic and lead to genome instability. As a consequence, errantly incorporated ribonucleotides are rapidly repaired in a process dependent upon RNase H enzymes. On the other hand, global genomic nucleotide excision repair (NER) in prokaryotes and eukaryotes removes damage caused by covalent modifications that typically distort and destabilize DNA through the production of lesions derived from bulky chemical carcinogens, such as polycyclic aromatic hydrocarbon metabolites, or via crosslinking. However, a recent study challenges this lesion-recognition paradigm. The work of Vaisman et al. (2013) [34] reveals that even a single ribonucleotide embedded in a deoxyribonucleotide duplex is recognized by the bacterial NER machinery in vitro. In their report, the authors show that spontaneous mutagenesis promoted by a steric-gate pol V mutant increases in uvrA, uvrB, or uvrC strains lacking rnhB (encoding RNase HII) and to a greater extent in an NER-deficient strain lacking both RNase HI and RNase HII. Using purified UvrA, UvrB, and UvrC proteins in in vitro assays they show that despite causing little distortion, a single ribonucleotide embedded in a DNA duplex is recognized and doubly-incised by the NER complex. We present the hypothesis to explain the recognition and/or verification of this small lesion, that the critical 2'-OH of the ribonucleotide - with its unique electrostatic and hydrogen bonding properties - may act as a signal through interactions with amino acid residues of the prokaryotic NER complex that are not possible with DNA. Such a mechanism might also be relevant if it were demonstrated that the eukaryotic NER machinery likewise incises an embedded ribonucleotide in DNA.
Collapse
|
33
|
Guerrero CR, Wang J, Wang Y. Induction of 8,5'-cyclo-2'-deoxyadenosine and 8,5'-cyclo-2'-deoxyguanosine in isolated DNA by Fenton-type reagents. Chem Res Toxicol 2013; 26:1361-6. [PMID: 23961697 DOI: 10.1021/tx400221w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure of aqueous solutions of DNA to X- or γ-rays, which induces the hydroxyl radical as one of the major reactive oxygen species (ROS), can result in the generation of a battery of single-nucleobase and bulky DNA lesions. These include the (5'R) and (5'S) diastereomers of 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG), which were also found to be present at appreciable levels in DNA isolated from mammalian cells and tissues. However, it remains unexplored how efficiently the cdA and cdG can be induced by Fenton-type reagents. By employing HPLC coupled with tandem mass spectrometry (LC-MS/MS/MS) with the use of the isotope-dilution technique, here we demonstrated that treatment of calf thymus DNA with Cu(II) or Fe(II), together with H2O2 and ascorbate, could lead to dose-responsive formation of both the (5'R) and (5'S) diastereomers of cdA and cdG, though the yields of cdG were 2-4 orders of magnitude lower than that of 8-oxo-7,8-dihydro-2'-deoxyguanosine. This result suggests that the Fenton reaction may constitute an important endogenous source for the formation of the cdA and cdG. Additionally, the (5'R) diastereomers of cdA and cdG were induced at markedly higher levels than the (5'S) counterparts. This latter finding, in conjunction with the previous observations of similar or greater levels of the (5'S) than (5'R) diastereomers of the two lesions in mammalian tissues, furnishes an additional line of evidence to support the more efficient repair of the (5'R) diastereomers of the purine cyclonucleosides in mammalian cells.
Collapse
Affiliation(s)
- Candace R Guerrero
- Department of Chemistry-027, University of California, Riverside , California 92521-0403, United States
| | | | | |
Collapse
|
34
|
You C, Swanson AL, Dai X, Yuan B, Wang J, Wang Y. Translesion synthesis of 8,5'-cyclopurine-2'-deoxynucleosides by DNA polymerases η, ι, and ζ. J Biol Chem 2013; 288:28548-56. [PMID: 23965998 DOI: 10.1074/jbc.m113.480459] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Reactive oxygen species can give rise to a battery of DNA damage products including the 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) tandem lesions. The 8,5'-cyclopurine-2'-deoxynucleosides are quite stable lesions and are valid and reliable markers of oxidative DNA damage. However, it remains unclear how these lesions compromise DNA replication in mammalian cells. Previous in vitro biochemical assays have suggested a role for human polymerase (Pol) η in the insertion step of translesion synthesis (TLS) across the (5'S) diastereomers of cdA and cdG. Using in vitro steady-state kinetic assay, herein we showed that human Pol ι and a two-subunit yeast Pol ζ complex (REV3/REV7) could function efficiently in the insertion and extension steps, respectively, of TLS across S-cdA and S-cdG; human Pol κ and Pol η could also extend past these lesions, albeit much less efficiently. Results from a quantitative TLS assay showed that, in human cells, S-cdA and S-cdG inhibited strongly DNA replication and induced substantial frequencies of mutations at the lesion sites. Additionally, Pol η, Pol ι, and Pol ζ, but not Pol κ, had important roles in promoting replication through S-cdA and S-cdG in human cells. Based on these results, we propose a model for TLS across S-cdA and S-cdG in human cells, where Pol η and/or Pol ι carries out nucleotide insertion opposite the lesion, whereas Pol ζ executes the extension step.
Collapse
|
35
|
Khobta A, Epe B. Repair of oxidatively generated DNA damage in Cockayne syndrome. Mech Ageing Dev 2013; 134:253-60. [PMID: 23518175 DOI: 10.1016/j.mad.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
Abstract
Defects in the repair of endogenously (especially oxidatively) generated DNA modifications and the resulting genetic instability can potentially explain the clinical symptoms of Cockayne syndrome (CS), a hereditary disease characterized by developmental defects and neurological degeneration. In this review, we describe the evidence for the involvement of CSA and CSB proteins, which are mutated in most of the CS patients, in the repair and processing of DNA damage induced by reactive oxygen species and the implications for the induction of cell death and mutations. Taken together, the data demonstrate that CSA and CSB, in addition to their established role in transcription-coupled nucleotide excision repair, can modulate the base excision repair (BER) of oxidized DNA bases both directly (by interaction with BER proteins) and indirectly (by modulating the expression of the DNA repair genes). Both nuclear and mitochondrial DNA repair is affected by mutations in CSA and CSB genes. However, the observed retardations of repair and the resulting accumulation of unrepaired endogenously generated DNA lesions are often mild, thus pointing to the relevance of additional roles of the CS proteins, e.g. in the mitochondrial response to oxidatively generated DNA damage and in the maintenance of gene transcription.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| | | |
Collapse
|
36
|
Das RS, Samaraweera M, Morton M, Gascón JA, Basu AK. Stability of N-glycosidic bond of (5'S)-8,5'-cyclo-2'-deoxyguanosine. Chem Res Toxicol 2012; 25:2451-61. [PMID: 23025578 DOI: 10.1021/tx300302a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
8,5'-Cyclopurine deoxynucleosides are unique tandem lesions containing an additional covalent bond between the base and the sugar. These mutagenic and genotoxic lesions are repaired only by nucleotide excision repair. The N-glycosidic (or C1'-N9) bond of 2'-deoxyguanosine (dG) derivatives is usually susceptible to acid hydrolysis, but even after cleavage of this bond of the cyclopurine lesions, the base would remain attached to the sugar. Here, the stability of the N-glycosidic bond and the products formed by formic acid hydrolysis of (5'S)-8,5'-cyclo-2'-deoxyguanosine (S-cdG) were investigated. For comparison, the stability of the N-glycosidic bond of 8,5'-cyclo-2',5'-dideoxyguanosine (ddcdG), 8-methyl-2'-deoxyguanosine (8-Me-dG), 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-Oxo-dG), and dG was also studied. In various acid conditions, S-cdG and ddcdG exhibited similar stability to hydrolysis. Likewise, 8-Me-dG and dG showed comparable stability, but the half-lives of the cyclic dG lesions were at least 5-fold higher than those of dG or 8-Me-dG. NMR studies were carried out to investigate the products formed after the cleavage of the C1'-N9 bond. 2-Deoxyribose generated α and β anomers of deoxyribopyranose and deoxyribopyranose oligomers following acid treatment. S-cdG gave α- and β-deoxyribopyranose linked guanine as the major products, but α and β anomers of deoxyribofuranose linked guanine and other products were also detected. The N-glycosidic bond of 8-Oxo-dG was found exceptionally stable in acid. Computational studies determined that both the protonation of the N7 atom and the rate constant in the bond breaking step control the overall kinetics of hydrolysis, but both varied for the molecules studied indicating a delicate balance between the two steps. Nevertheless, the computational approach successfully predicted the trend observed experimentally. For 8-Oxo-dG, the low pK(a) of O(8) and N3 prevented appreciable protonation, making the free energy for N-glycosidic bond cleavage in the subsequent step very high.
Collapse
Affiliation(s)
- Rajat S Das
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|