1
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
2
|
Barszczewska-Pietraszek G, Czarny P, Drzewiecka M, Błaszczyk M, Radek M, Synowiec E, Wigner-Jeziorska P, Sitarek P, Szemraj J, Skorski T, Śliwiński T. Polθ Inhibitor (ART558) Demonstrates a Synthetic Lethal Effect with PARP and RAD52 Inhibitors in Glioblastoma Cells. Int J Mol Sci 2024; 25:9134. [PMID: 39273083 PMCID: PMC11395082 DOI: 10.3390/ijms25179134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.
Collapse
Affiliation(s)
- Gabriela Barszczewska-Pietraszek
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Małgorzata Drzewiecka
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Maciej Błaszczyk
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, 90-549 Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 92-151 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (G.B.-P.)
| |
Collapse
|
3
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-Derived DNA Polymerase Theta Variants Exhibit Altered DNA Polymerase Activity. Biochemistry 2024; 63:1107-1117. [PMID: 38671548 PMCID: PMC11080051 DOI: 10.1021/acs.biochem.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Lisbeth Avalos-Irving
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jorge Victorino
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Morgan Andrews
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Naisha Rodrigues
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sarah Ebirim
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Ayden Mudd
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jamie B. Towle-Weicksel
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| |
Collapse
|
4
|
Merker L, Feller L, Dorn A, Puchta H. Deficiency of both classical and alternative end-joining pathways leads to a synergistic defect in double-strand break repair but not to an increase in homology-dependent gene targeting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:242-254. [PMID: 38179887 DOI: 10.1111/tpj.16604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
In eukaryotes, double-strand breaks (DSBs) are either repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). In somatic plant cells, HR is very inefficient. Therefore, the vast majority of DSBs are repaired by two different pathways of NHEJ. The classical (cNHEJ) pathway depends on the heterodimer KU70/KU80, while polymerase theta (POLQ) is central to the alternative (aNHEJ) pathway. Surprisingly, Arabidopsis plants are viable, even when both pathways are impaired. However, they exhibit severe growth retardation and reduced fertility. Analysis of mitotic anaphases indicates that the double mutant is characterized by a dramatic increase in chromosome fragmentation due to defective DSB repair. In contrast to the single mutants, the double mutant was found to be highly sensitive to the DSB-inducing genotoxin bleomycin. Thus, both pathways can complement for each other efficiently in DSB repair. We speculated that in the absence of both NHEJ pathways, HR might be enhanced. This would be especially attractive for gene targeting (GT) in which predefined changes are introduced using a homologous template. Unexpectedly, the polq single mutant as well as the double mutant showed significantly lower GT frequencies in comparison to wildtype plants. Accordingly, we were able to show that elimination of both NHEJ pathways does not pose an attractive approach for Agrobacterium-mediated GT. However, our results clearly indicate that a loss of cNHEJ leads to an increase in GT frequency, which is especially drastic and attractive for practical applications, in which the in planta GT strategy is used.
Collapse
Affiliation(s)
- Laura Merker
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
5
|
Stroik S, Luthman AJ, Ramsden DA. Templated insertions-DNA repair gets acrobatic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:82-89. [PMID: 37438951 PMCID: PMC10962320 DOI: 10.1002/em.22564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Deletions associated with the repair of DNA double-strand breaks is a source of genetic alternation and a recognized source of disease-causing mutagenesis. Theta-mediated end joining is a DNA repair mechanism, which guarantees deletions by its employment of microhomology (MH) alignment to facilitate end joining. A lesser-characterized templated insertion ability of this pathway, on the other hand, is associated with both deletion and insertion. This mechanism is characterized by at least one round of polymerase θ-mediated synthesis, which does not result in successful repair, followed by a subsequent round of polymerase engagement and synthesis that does lead to repair. Here we focus on the mechanisms by which polymerase θ introduces these insertions-direct, inverse, and a new class which we have termed strand switching. We observe this new class of templated insertions at multiple loci and across multiple species, often at a comparable frequency to those previously characterized. Templated insertion mutations are often enriched in cancer genomes and repeat expansion disorders. This repair mechanism thus contributes to disease-associated mutagenesis, and may plausibly even promote disease. Characterization of the types of polymerase θ-dependent insertions can provide new insight into these diseases and clinical promise for treatment.
Collapse
Affiliation(s)
- Susanna Stroik
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam J. Luthman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
| | - Dale A. Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
van Vugt MATM, Tijsterman M. POLQ to the rescue for double-strand break repair during mitosis. Nat Struct Mol Biol 2023; 30:1828-1830. [PMID: 37996664 DOI: 10.1038/s41594-023-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Affiliation(s)
- Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-derived DNA polymerase theta variants exhibit altered DNA polymerase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566933. [PMID: 38014040 PMCID: PMC10680777 DOI: 10.1101/2023.11.14.566933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
DNA Polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through the alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error prone, yet critical for cell survival. We have identified several mutations in the POLQ gene from human melanoma tumors. Through biochemical analysis, we have demonstrated that all three cancer-associated variants experienced altered DNA polymerase activity including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Moreover, the variants are 30 fold less efficient at incorporating a nucleotide during repair and up to 70 fold less accurate at selecting the correct nucleotide opposite a templating base. Taken together, this suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. While this may be beneficial to normal cell survival, the variants were identified in established tumors suggesting that cancer cells may use this promiscuous polymerase to its advantage to promote metastasis and drug resistance.
Collapse
|
8
|
Riesenberg S, Kanis P, Macak D, Wollny D, Düsterhöft D, Kowalewski J, Helmbrecht N, Maricic T, Pääbo S. Efficient high-precision homology-directed repair-dependent genome editing by HDRobust. Nat Methods 2023; 20:1388-1399. [PMID: 37474806 PMCID: PMC10482697 DOI: 10.1038/s41592-023-01949-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Homology-directed repair (HDR), a method for repair of DNA double-stranded breaks can be leveraged for the precise introduction of mutations supplied by synthetic DNA donors, but remains limited by low efficiency and off-target effects. In this study, we report HDRobust, a high-precision method that, via the combined transient inhibition of nonhomologous end joining and microhomology-mediated end joining, resulted in the induction of point mutations by HDR in up to 93% (median 60%, s.e.m. 3) of chromosomes in populations of cells. We found that, using this method, insertions, deletions and rearrangements at the target site, as well as unintended changes at other genomic sites, were largely abolished. We validated this approach for 58 different target sites and showed that it allows efficient correction of pathogenic mutations in cells derived from patients suffering from anemia, sickle cell disease and thrombophilia.
Collapse
Affiliation(s)
- Stephan Riesenberg
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Philipp Kanis
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dominik Macak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Damian Wollny
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dorothee Düsterhöft
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Kowalewski
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nelly Helmbrecht
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tomislav Maricic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| |
Collapse
|
9
|
Gelot C, Kovacs MT, Miron S, Mylne E, Haan A, Boeffard-Dosierre L, Ghouil R, Popova T, Dingli F, Loew D, Guirouilh-Barbat J, Del Nery E, Zinn-Justin S, Ceccaldi R. Polθ is phosphorylated by PLK1 to repair double-strand breaks in mitosis. Nature 2023; 621:415-422. [PMID: 37674080 PMCID: PMC10499603 DOI: 10.1038/s41586-023-06506-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/01/2023] [Indexed: 09/08/2023]
Abstract
DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Camille Gelot
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | | | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Emilie Mylne
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Alexis Haan
- INSERM U830, PSL Research University, Institut Curie, Paris, France
| | - Liza Boeffard-Dosierre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Tatiana Popova
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, PSL Research University, Institut Curie, Paris, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Cochin, Paris, France
| | - Elaine Del Nery
- Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), PSL Research University, Institut Curie, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Raphael Ceccaldi
- INSERM U830, PSL Research University, Institut Curie, Paris, France.
| |
Collapse
|
10
|
Lavudi K, Banerjee A, Li N, Yang Y, Cai S, Bai X, Zhang X, Li A, Wani E, Yang SM, Zhang J, Rai G, Backes F, Patnaik S, Guo P, Wang QE. ALDH1A1 promotes PARP inhibitor resistance by enhancing retinoic acid receptor-mediated DNA polymerase θ expression. NPJ Precis Oncol 2023; 7:66. [PMID: 37429899 DOI: 10.1038/s41698-023-00411-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/30/2023] [Indexed: 07/12/2023] Open
Abstract
Poly (ADP-ribose) Polymerase (PARP) inhibitors (PARPi) have been approved for both frontline and recurrent setting in ovarian cancer with homologous recombination (HR) repair deficiency. However, more than 40% of BRCA1/2-mutated ovarian cancer lack the initial response to PARPi treatment, and the majority of those that initially respond eventually develop resistance. Our previous study has demonstrated that increased expression of aldehyde dehydrogenase 1A1 (ALDH1A1) contributes to PARPi resistance in BRCA2-mutated ovarian cancer cells by enhancing microhomology-mediated end joining (MMEJ) but the mechanism remains unknown. Here, we find that ALDH1A1 enhances the expression of DNA polymerase θ (Polθ, encoded by the POLQ gene) in ovarian cancer cells. Furthermore, we demonstrate that the retinoic acid (RA) pathway is involved in the transcription activation of the POLQ gene. The RA receptor (RAR) can bind to the retinoic acid response element (RARE) located in the promoter of the POLQ gene, promoting transcription activation-related histone modification in the presence of RA. Given that ALDH1A1 catalyzes the biosynthesis of RA, we conclude that ALDH1A1 promotes POLQ expression via the activation of the RA signaling pathway. Finally, using a clinically-relevant patient-derived organoid (PDO) model, we find that ALDH1A1 inhibition by the pharmacological inhibitor NCT-505 in combination with the PARP inhibitor olaparib synergistically reduce the cell viability of PDOs carrying BRCA1/2 mutation and positive ALDH1A1 expression. In summary, our study elucidates a new mechanism contributing to PARPi resistance in HR-deficient ovarian cancer and shows the therapeutic potential of combining PARPi and ALDH1A1 inhibition in treating these patients.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ananya Banerjee
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Na Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Yajing Yang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Shurui Cai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuetao Bai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Aidan Li
- Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Elsa Wani
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Shyh-Ming Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Junran Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Floor Backes
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Peixuan Guo
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Multifaceted Nature of DNA Polymerase θ. Int J Mol Sci 2023; 24:ijms24043619. [PMID: 36835031 PMCID: PMC9962433 DOI: 10.3390/ijms24043619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break repair and DNA translesion synthesis. Pol θ is often overexpressed in cancer cells and promotes their resistance to chemotherapeutic agents. In this review, we discuss unique biochemical properties and structural features of Pol θ, its multiple roles in protection of genome stability and the potential of Pol θ as a target for cancer treatment.
Collapse
|
12
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Faria J, Briggs EM, Black JA, McCulloch R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 2022; 70:102209. [PMID: 36215868 DOI: 10.1016/j.mib.2022.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.
Collapse
Affiliation(s)
- Joana Faria
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom.
| | - Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
14
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
15
|
Proteomic profiling reveals neuronal ion channel dysregulation and cellular responses to DNA damage-induced cell cycle arrest and senescence in human neuroblastoma SH-SY5Y cells exposed to cypermethrin. Neurotoxicology 2022; 93:71-83. [PMID: 36063984 DOI: 10.1016/j.neuro.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Cypermethrin (CYP), a synthetic pyrethroid of class II, is widely used as a pesticide worldwide. The primary target of cypermethrin is a voltage-gated sodium channel. The neurotoxicity of CYP has been extensively studied in terms of affecting neuronal development, increasing cellular oxidative stress, and apoptosis. However, little is known about how it affects the expression of channel proteins involved in synaptic transmission, as well as the effects of cypermethrin on DNA damage and cell cycle processes. We found that the ligand and voltage-gated calcium channels and proteins involved in synaptic transmission including NMDA 1 receptor subunit, alpha 1A-voltage-dependent calcium channel, synaptotagmin-17, and synaptojanin-2 were downregulated in CYP-treated cells. After 48h of CYP exposure, cell viability was reduced with flattened and enlarged morphology. The levels of 23 proteins regulating cell cycle processes were altered in CYP-treated cells, according to a proteomic study. The cell cycle analysis showed elevated G0/G1 cell cycle arrest and DNA fragmentation at the sub-G0 stage after CYP exposure. CYP treatment also increased senescence-associated β-galactosidase positive cells, DNA damage, and apoptotic markers. Taken together, the current study showed that cypermethrin exposure caused DNA damage and hastened cellular senescence and apoptosis via disrupting cell cycle regulation. In addition, despite its primary target sodium channel, CYP might cause synaptic dysfunction via the downregulation of synaptic proteins and dysregulation of synapse-associated ion channels.
Collapse
|
16
|
Lv Q, Han S, Wang L, Xia J, Li P, Hu R, Wang J, Gao L, Chen Y, Wang Y, Du J, Bao F, Hu Y, Xu X, Xiao W, He Y. TEB/POLQ plays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Res 2022; 50:6820-6836. [PMID: 35736216 PMCID: PMC9262624 DOI: 10.1093/nar/gkac469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.
Collapse
Affiliation(s)
- Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuang Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jinchan Xia
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Peng Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuli Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Du
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
17
|
Schaub JM, Soniat MM, Finkelstein IJ. Polymerase theta-helicase promotes end joining by stripping single-stranded DNA-binding proteins and bridging DNA ends. Nucleic Acids Res 2022; 50:3911-3921. [PMID: 35357490 PMCID: PMC9023281 DOI: 10.1093/nar/gkac119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 01/20/2023] Open
Abstract
Homologous recombination-deficient cancers rely on DNA polymerase Theta (Polθ)-Mediated End Joining (TMEJ), an alternative double-strand break repair pathway. Polθ is the only vertebrate polymerase that encodes an N-terminal superfamily 2 (SF2) helicase domain, but the role of this helicase domain in TMEJ remains unclear. Using single-molecule imaging, we demonstrate that Polθ-helicase (Polθ-h) is a highly processive single-stranded DNA (ssDNA) motor protein that can efficiently strip Replication Protein A (RPA) from ssDNA. Polθ-h also has a limited capacity for disassembling RAD51 filaments but is not processive on double-stranded DNA. Polθ-h can bridge two non-complementary DNA strands in trans. PARylation of Polθ-h by PARP-1 resolves these DNA bridges. We conclude that Polθ-h removes RPA and RAD51 filaments and mediates bridging of DNA overhangs to aid in polymerization by the Polθ polymerase domain.
Collapse
Affiliation(s)
- Jeffrey M Schaub
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael M Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Depletion of DNA Polymerase Theta Inhibits Tumor Growth and Promotes Genome Instability through the cGAS-STING-ISG Pathway in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133204. [PMID: 34206946 PMCID: PMC8268317 DOI: 10.3390/cancers13133204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary DNA polymerase theta, encoded by the human POLQ gene, is upregulated in several cancers and is associated with poor clinical outcomes. The importance of POLQ, however, has yet to be elucidated in esophageal cancer. In this study, we explored the functional impacts of POLQ and looked into its underlying mechanisms. POLQ was overexpressed in esophageal squamous cell carcinoma (ESCC) tumors associated with unfavorable prognosis and contributed to malignant phenotypes by promoting genome stability, suggesting that targeting polymerase theta may provide a potential therapeutic approach for improving ESCC management. Abstract Overexpression of the specialized DNA polymerase theta (POLQ) is frequent in breast, colon and lung cancers and has been correlated with unfavorable clinical outcomes. Here, we aimed to determine the importance and functional role of POLQ in esophageal squamous cell carcinoma (ESCC). Integrated analysis of four RNA-seq datasets showed POLQ was predominantly upregulated in ESCC tumors. High expression of POLQ was also observed in a cohort of 25 Hong Kong ESCC patients and negatively correlated with ESCC patient survival. POLQ knockout (KO) ESCC cells were sensitized to multiple genotoxic agents. Both rH2AX foci staining and the comet assay indicated a higher level of genomic instability in POLQ-depleted cells. Double KO of POLQ and FANCD2, known to promote POLQ recruitment at sites of damage, significantly impaired cell proliferation both in vitro and in vivo, as compared to either single POLQ or FANCD2 KOs. A significantly increased number of micronuclei was observed in POLQ and/or FANCD2 KO ESCC cells. Loss of POLQ and/or FANCD2 also resulted in the activation of cGAS and upregulation of interferon-stimulated genes (ISGs). Our results suggest that high abundance of POLQ in ESCC contributes to the malignant phenotype through genome instability and activation of the cGAS pathway.
Collapse
|
20
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
21
|
Zatreanu D, Robinson HMR, Alkhatib O, Boursier M, Finch H, Geo L, Grande D, Grinkevich V, Heald RA, Langdon S, Majithiya J, McWhirter C, Martin NMB, Moore S, Neves J, Rajendra E, Ranzani M, Schaedler T, Stockley M, Wiggins K, Brough R, Sridhar S, Gulati A, Shao N, Badder LM, Novo D, Knight EG, Marlow R, Haider S, Callen E, Hewitt G, Schimmel J, Prevo R, Alli C, Ferdinand A, Bell C, Blencowe P, Bot C, Calder M, Charles M, Curry J, Ekwuru T, Ewings K, Krajewski W, MacDonald E, McCarron H, Pang L, Pedder C, Rigoreau L, Swarbrick M, Wheatley E, Willis S, Wong AC, Nussenzweig A, Tijsterman M, Tutt A, Boulton SJ, Higgins GS, Pettitt SJ, Smith GCM, Lord CJ. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun 2021; 12:3636. [PMID: 34140467 PMCID: PMC8211653 DOI: 10.1038/s41467-021-23463-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
To identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor. Genetic perturbation screening revealed that defects in the 53BP1/Shieldin complex, which cause PARP inhibitor resistance, result in in vitro and in vivo sensitivity to small molecule Polθ polymerase inhibitors. Mechanistically, ART558 increases biomarkers of single-stranded DNA and synthetic lethality in 53BP1-defective cells whilst the inhibition of DNA nucleases that promote end-resection reversed these effects, implicating these in the synthetic lethal mechanism-of-action. Taken together, these observations describe a drug class that elicits BRCA-gene synthetic lethality and PARP inhibitor synergy, as well as targeting a biomarker-defined mechanism of PARPi-resistance.
Collapse
Affiliation(s)
- Diana Zatreanu
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Helen M R Robinson
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Omar Alkhatib
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Marie Boursier
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Harry Finch
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Lerin Geo
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Diego Grande
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Vera Grinkevich
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Robert A Heald
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Sophie Langdon
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Jayesh Majithiya
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Claire McWhirter
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Niall M B Martin
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Shaun Moore
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Joana Neves
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Eeson Rajendra
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Marco Ranzani
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Theresia Schaedler
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Martin Stockley
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Kimberley Wiggins
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Rachel Brough
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Sandhya Sridhar
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Aditi Gulati
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Nan Shao
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Luned M Badder
- The Breast Cancer Now Research Unit, King's College London, London, UK
| | - Daniela Novo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Eleanor G Knight
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rebecca Marlow
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Research Unit, King's College London, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remko Prevo
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Christina Alli
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Amanda Ferdinand
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Cameron Bell
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Peter Blencowe
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Chris Bot
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Mathew Calder
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Mark Charles
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Jayne Curry
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Tennyson Ekwuru
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Katherine Ewings
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Wojciech Krajewski
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Ellen MacDonald
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Hollie McCarron
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Leon Pang
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Chris Pedder
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Laurent Rigoreau
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Martin Swarbrick
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Ed Wheatley
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Simon Willis
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Ai Ching Wong
- Cancer Research UK, Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Research Campus, Cambridge, UK
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Research Unit, King's College London, London, UK
| | - Simon J Boulton
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Geoff S Higgins
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Stephen J Pettitt
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK.
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK.
| | - Christopher J Lord
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK.
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
22
|
Nisa M, Bergis C, Pedroza-Garcia JA, Drouin-Wahbi J, Mazubert C, Bergounioux C, Benhamed M, Raynaud C. The plant DNA polymerase theta is essential for the repair of replication-associated DNA damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1197-1207. [PMID: 33989439 DOI: 10.1111/tpj.15295] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Safeguarding of genome integrity is a key process in all living organisms. Due to their sessile lifestyle, plants are particularly exposed to all kinds of stress conditions that could induce DNA damage. However, very few genes involved in the maintenance of genome integrity are indispensable to plants' viability. One remarkable exception is the POLQ gene, which encodes DNA polymerase theta (Pol θ), a non-replicative polymerase involved in trans-lesion synthesis during DNA replication and double-strand break (DSB) repair. The Arabidopsis tebichi (teb) mutants, deficient in Pol θ, have been reported to display severe developmental defects, leading to the conclusion that Pol θ is required for normal plant development. However, this essential role of Pol θ in plants is challenged by contradictory reports regarding the phenotypic defects of teb mutants and the recent finding that rice (Oryza sativa) null mutants develop normally. Here we show that the phenotype of teb mutants is highly variable. Taking advantage of hypomorphic mutants for the replicative DNA polymerase epsilon, which display constitutive replicative stress, we show that Pol θ allows maintenance of meristem activity when DNA replication is partially compromised. Furthermore, we found that the phenotype of Pol θ mutants can be aggravated by modifying their growth conditions, suggesting that environmental conditions impact the basal level of replicative stress and providing evidence for a link between plants' responses to adverse conditions and mechanisms involved in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Maherun Nisa
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Clara Bergis
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Jose-Antonio Pedroza-Garcia
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
- Institut Universitaire de France (IUF), France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, 91405, France
- Institute of Plant Sciences Paris Saclay, Université de Paris, CNRS, INRAE, Orsay, (IPS2) 91405, France
| |
Collapse
|
23
|
Kuei CH, Lin HY, Lin MH, Lee HH, Lin CH, Lee WJ, Chen YL, Lu LS, Zheng JQ, Hung RC, Chiu HW, Chen KC, Lin YF. DNA polymerase theta repression enhances the docetaxel responsiveness in metastatic castration-resistant prostate cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165954. [PMID: 32877750 DOI: 10.1016/j.bbadis.2020.165954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Docetaxel remains a main treatment for metastatic castration-resistant prostate cancer (mCRPC); however, the development of docetaxel resistance has been found in some mCRPC patients. The aim of this work is to identify an effective biomarker for predicting therapeutic effectiveness of docetaxel in mCRPC patients. METHODS We examined DNA polymerase theta (POLQ) expression in The Cancer Genome Atlas (TCGA) database and Tissue microarray. Kaplan-Meier analyses were performed to estimate the prognostic significance of POLQ. A series of functional analyses were conducted in cell lines and xenograft models. Regulated pathways were predicted by Geneset Enrichment Analysis (GSEA) software and further investigated by luciferase reporter and RT-PCR assays. RESULTS We found that POLQ mRNA levels in CRPC tissues was significantly higher than that of other DNA polymerases in non-CRPC prostate tissues. POLQ upregulation was extensively detected in mCRPC and strongly predicted a poor prognosis. POLQ knockdown enhanced docetaxel sensitivity in a cell-based cytotoxicity assay and promoted the therapeutic effect on the tumor growth of metastatic PC-3M cells in xenograft models. The computational simulation by GSEA software significantly predicted the association between POLQ upregulation and the activation of E2F/G2M checkpoint-related pathways. Moreover, luciferase reporter and RT-PCR assays demonstrated that POLQ knockdown downregulated the transcriptional regulatory activity of E2F and repressed E2F/G2M checkpoint-regulated CDK1 in mCRPC cells. CONCLUSION Our results suggest that POLQ serves as a predictive factor for poor docetaxel response and provide a novel strategy to enhance the anticancer effects of docetaxel therapy by targeting POLQ in mCRPC patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- Docetaxel/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- PC-3 Cells
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
- DNA Polymerase theta
Collapse
Affiliation(s)
- Chia-Hao Kuei
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Division of Surgery, Cardinal Tien Hospital, Xindian District, New Taipei City 23148, Taiwan
| | - Hui-Yu Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Breast Surgery and General Surgery, Division of Surgery, Cardinal Tien Hospital, Xindian district, New Taipei City 23148, Taiwan
| | - Min-Hsuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23148, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Che-Hsuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 23148, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Chest Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Ruei-Chen Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
24
|
Poveda A, Méndez MÁ, Armijos-Jaramillo V. Analysis of DNA Polymerases Reveals Specific Genes Expansion in Leishmania and Trypanosoma spp. Front Cell Infect Microbiol 2020; 10:570493. [PMID: 33117729 PMCID: PMC7576959 DOI: 10.3389/fcimb.2020.570493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
Leishmaniasis and trypanosomiasis are largely neglected diseases prevailing in tropical and subtropical conditions. These are an arthropod-borne zoonosis that affects humans and some animals and is caused by infection with protozoan of the genera Leishmania and Trypanosoma, respectively. These parasites present high genomic plasticity and are able to adapt themselves to adverse conditions like the attack of host cells or toxicity induced by drug exposure. Different mechanisms allow these adapting responses induced by stress, such as mutation, chromosomal rearrangements, establishment of mosaic ploidies, and gene expansion. Here we describe how a subset of genes encoding for DNA polymerases implied in repairing/translesion (TLS) synthesis are duplicated in some pathogenic species of the Trypanosomatida order and a free-living species from the Bodonida order. These enzymes are both able to repair DNA, but are also error-prone under certain situations. We discuss about the possibility that these enzymes can act as a source of genomic variation promoting adaptation in trypanosomatids.
Collapse
Affiliation(s)
- Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador.,Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Spain
| | - Miguel Ángel Méndez
- Grupo de Química Computacional y Teórica, Universidad San Francisco de Quito, Quito, Ecuador
| | - Vinicio Armijos-Jaramillo
- Grupo de Bio-Quimioinformática, Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
25
|
Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H, Lemgruber L, Luko K, Wilkes J, Butter F, McCulloch R, Janzen CJ. Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Nucleic Acids Res 2020; 48:9660-9680. [PMID: 32890403 PMCID: PMC7515707 DOI: 10.1093/nar/gkaa686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.
Collapse
Affiliation(s)
- Andrea Zurita Leal
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nadine Weisert
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Helena Reis
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Katarina Luko
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jonathan Wilkes
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Huang F, Tanaka H, Knudsen BS, Rutgers JK. Mutant POLQ and POLZ/REV3L DNA polymerases may contribute to the favorable survival of patients with tumors with POLE mutations outside the exonuclease domain. BMC MEDICAL GENETICS 2020; 21:167. [PMID: 32838755 PMCID: PMC7446057 DOI: 10.1186/s12881-020-01089-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mutations in the exonuclease domain of POLE, a DNA polymerase associated with DNA replication and repair, lead to cancers with ultra-high mutation rates. Most studies focus on intestinal and uterine cancers with POLE mutations. These cancers exhibit a significant immune cell infiltrate and favorable prognosis. We questioned whether loss of function of other DNA polymerases can cooperate to POLE to generate the ultramutator phenotype. METHODS We used cases and data from 15 cancer types in The Cancer Genome Atlas to investigate mutation frequencies of 14 different DNA polymerases. We tested whether tumor mutation burden, patient outcome (disease-free survival) and immune cell infiltration measured by ESTIMATE can be attributed to mutations in POLQ and POLZ/REV3L. RESULTS Thirty six percent of colorectal, stomach and endometrial cancers with POLE mutations carried additional mutations in POLQ (E/Q), POLZ/REV3L (E/Z) or both DNA polymerases (E/Z/Q). The mutation burden in these tumors was significantly greater compared to POLE-only (E) mutant tumors (p < 0.001). In addition, E/Q, E/Z, and E/Q/Z mutant tumors possessed an increased frequency of mutations in the POLE exonuclease domain (p = 0.013). Colorectal, stomach and endometrial E/Q, E/Z, and E/Q/Z mutant tumors within TCGA demonstrated 100% disease-free survival, even if the POLE mutations occurred outside the exonuclease domain (p = 0.003). However, immune scores in these tumors were related to microsatellite instability (MSI) and not POLE mutation status. This suggests that the host immune response may not be the sole mechanism for prolonged disease-free survival of ultramutated tumors in this cohort. CONCLUSION Results in this study demonstrate that mutations in POLQ and REV3L in POLE mutant tumors should undergo further investigation to determine whether POLQ and REV3L mutations contribute to the ultramutator phenotype and favorable outcome of patients with POLE mutant tumors.
Collapse
Affiliation(s)
- Fangjin Huang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hisashi Tanaka
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Samuel Oschin Cancer Research Institute (SOCCI), Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Samuel Oschin Cancer Research Institute (SOCCI), Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Joanne K Rutgers
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
27
|
Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020; 9:E1657. [PMID: 32660124 PMCID: PMC7407515 DOI: 10.3390/cells9071657] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.
Collapse
Affiliation(s)
| | - Mitch McVey
- Department. of Biology, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
28
|
Silvestri R, Landi S. DNA polymerases in the risk and prognosis of colorectal and pancreatic cancers. Mutagenesis 2020; 34:363-374. [PMID: 31647559 DOI: 10.1093/mutage/gez031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Human cancers arise from the alteration of genes involved in important pathways that mainly affect cell growth and proliferation. DNA replication and DNA damages recognition and repair are among these pathways and DNA polymerases that take part in these processes are frequently involved in cancer onset and progression. For example, damaging alterations within the proofreading domain of replicative polymerases, often reported in patients affected by colorectal cancer (CRC), are considered risk factors and drivers of carcinogenesis as they can lead to the accumulation of several mutations throughout the genome. Thus, replicative polymerases can be involved in cancer when losses of their physiological functions occur. On the contrary, reparative polymerases are often involved in cancer precisely because of their physiological role. In fact, their ability to repair and bypass DNA damages, which confers genome stability, can also counteract the effect of most anticancer drugs. In addition, the altered expression can characterise some type of cancers, which exacerbates this aspect. For example, all of the DNA polymerases involved a damage bypass mechanism, known as translesion synthesis, with the only exception of polymerase theta, are downregulated in CRC. Conversely, in pancreatic ductal adenocarcinoma (PDAC), most of these polymerase result upregulated. This suggests that different types of cancer can rely on different reparative polymerases to acquire drug resistance. Here we will examine all of the aspects that link DNA polymerases with CRC and PDAC.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Clinical Implications of DNA Repair Defects in High-Grade Serous Ovarian Carcinomas. Cancers (Basel) 2020; 12:cancers12051315. [PMID: 32455819 PMCID: PMC7281678 DOI: 10.3390/cancers12051315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in surgical and medical management, high grade serous ovarian cancer (HGSOC) still represents the deadliest gynecologic malignancy and the fifth most frequent cause of cancer-related mortality in women in the USA. Since DNA repair alterations are regarded as the “the Achille’s heel” of HGSOC, both DNA homologous recombination and DNA mismatch repair deficiencies have been explored and targeted in epithelial ovarian cancers in the latest years. In this review, we aim at focusing on the therapeutic issues deriving from a faulty DNA repair machinery in epithelial ovarian cancers, starting from existing and well-established treatments and investigating new therapeutic approaches which could possibly improve ovarian cancer patients’ survival outcomes in the near future. In particular, we concentrate on the role of both Poly (ADP-ribose) Polymerase (PARP) inhibitors (PARPis) and immune checkpoint inhibitors in HGSOC, highlighting their activity in relation to BRCA1/2 mutational status and homologous recombination deficiency (HRD). We investigate the biological rationale supporting their use in the clinical setting, pointing at tracking their route from the laboratory bench to the patient’s bedside. Finally, we deal with the onset of mechanisms of primary and acquired resistance to PARPis, reporting the pioneering strategies aimed at converting homologous-recombination (HR) proficient tumors into homologous recombination (HR)-deficient HGSOC.
Collapse
|
30
|
Liu X, Jiang Y, Takata KI, Nowak B, Liu C, Wood RD, Hittelman WN, Plunkett W. CNDAC-Induced DNA Double-Strand Breaks Cause Aberrant Mitosis Prior to Cell Death. Mol Cancer Ther 2019; 18:2283-2295. [PMID: 31501277 DOI: 10.1158/1535-7163.mct-18-1380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
Incorporation of the clinically active deoxycytidine analogue 2'-C-cyano-2'-deoxy-1-β-D-arabino-pentofuranosyl-cytosine (CNDAC) into DNA generates single-strand breaks that are subsequently converted to double-strand breaks (DSB). Here, we investigated the cellular manifestations of these breaks that link these mechanisms to cell death, and we further tested the relevance of DNA repair pathways in protection of cells against CNDAC damage. The present investigations demonstrate that following exposure to CNDAC and a wash into drug-free medium, chromosomal aberrations, DNA strand breaks, and multinucleate cells arose. These portended loss of viability and were dependent upon exposure time, CNDAC concentration, and passage through mitosis. Following a pulse incubation with CNDAC, live cell imaging using GFP-tagged histone H2B as a marker demonstrated a normal rate of progression to mitosis, but a concentration-dependent delay in passage to a second mitosis. Progression through mitosis was also delayed and accompanied by formation of multinucleate cells. CNDAC-treated cells lacking XPF-ERCC1 nuclease function showed a 16-fold increase in chromosome aberrations. Chromosomal damage in Rad51D-mutant cells (homologous recombination repair deficient) were even more severely affected with extensive aberrations. Rodent or human Polq (POLQ) mutant cells, defective in Pol θ-mediated alternative end joining, did not show enhanced cellular sensitivity to CNDAC. These findings are consistent with formation of DSBs in the second S-phase following exposure, resulting in chromosome aberrations, aberrant mitoses, and subsequent apoptosis.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yingjun Jiang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kei-Ichi Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billie Nowak
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chaomei Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Walter N Hittelman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
31
|
Kelso AA, Lopezcolorado FW, Bhargava R, Stark JM. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response. PLoS Genet 2019; 15:e1008319. [PMID: 31381562 PMCID: PMC6695211 DOI: 10.1371/journal.pgen.1008319] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/15/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupting either the DNA annealing factor RAD52 or the A-family DNA polymerase POLQ can cause synthetic lethality with defects in BRCA1 and BRCA2, which are tumor suppressors important for homology-directed repair of DNA double-strand breaks (DSBs), and protection of stalled replication forks. A likely mechanism of this synthetic lethality is that RAD52 and/or POLQ are important for backup pathways for DSB repair and/or replication stress responses. The features of DSB repair events that require RAD52 vs. POLQ, and whether combined disruption of these factors causes distinct effects on genome maintenance, have been unclear. Using human U2OS cells, we generated a cell line with POLQ mutations upstream of the polymerase domain, a RAD52 knockout cell line, and a line with combined disruption of both genes. We also examined RAD52 and POLQ using RNA-interference. We find that combined disruption of RAD52 and POLQ causes at least additive hypersensitivity to cisplatin, and a synthetic reduction in replication fork restart velocity. We also examined the influence of RAD52 and POLQ on several DSB repair events. We find that RAD52 is particularly important for repair using ≥ 50 nt repeat sequences that flank the DSB, and that also involve removal of non-homologous sequences flanking the repeats. In contrast, POLQ is important for repair events using 6 nt (but not ≥ 18 nt) of flanking repeats that are at the edge of the break, as well as oligonucleotide microhomology-templated (i.e., 12-20 nt) repair events requiring nascent DNA synthesis. Finally, these factors show key distinctions with BRCA2, regarding effects on DSB repair events and response to stalled replication forks. These findings indicate that RAD52 and POLQ have distinct roles in genome maintenance, including for specific features of DSB repair events, such that combined disruption of these factors may be effective for genotoxin sensitization and/or synthetic lethal strategies.
Collapse
Affiliation(s)
- Andrew A. Kelso
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| |
Collapse
|
32
|
Du H, Wang P, Li L, Wang Y. Repair and translesion synthesis of O6-alkylguanine DNA lesions in human cells. J Biol Chem 2019; 294:11144-11153. [PMID: 31167778 PMCID: PMC6643039 DOI: 10.1074/jbc.ra119.009054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
O6-alkyl-2'-deoxyguanosine (O6-alkyl-dG) lesions are among the most mutagenic and prevalent alkylated DNA lesions that are associated with cancer initiation and progression. In this study, using a shuttle vector-based strand-specific PCR-competitive replication and adduct bypass assay in conjunction with tandem MS for product identification, we systematically assessed the repair and replicative bypass of a series of O6-alkyl-dG lesions, with the alkyl group being a Me, Et, nPr, iPr, nBu, iBu, or sBu, in several human cell lines. We found that the extent of replication-blocking effects of these lesions is influenced by the size of the alkyl groups situated on the O6 position of the guanine base. We also noted involvement of distinct DNA repair pathways and translesion synthesis polymerases (Pols) in ameliorating the replication blockage effects elicited by the straight- and branched-chain O6-alkyl-dG lesions. We observed that O6-methylguanine DNA methyltransferase is effective in removing the smaller alkyl groups from the O6 position of guanine, whereas repair of the branched-chain lesions relied on nucleotide excision repair. Moreover, these lesions were highly mutagenic during cellular replication and exclusively directed G→A mutations; Pol η and Pol ζ participated in error-prone bypass of the straight-chain lesions, whereas Pol κ preferentially incorporated the correct dCMP opposite the branched-chain lesions. Together, these results uncover key cellular proteins involved in repair and translesion synthesis of O6-alkyl-dG lesions and provide a better understanding of the roles of these types of lesions in the etiology of human cancer.
Collapse
Affiliation(s)
- Hua Du
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
33
|
Yoon JH, Johnson RE, Prakash L, Prakash S. DNA polymerase θ accomplishes translesion synthesis opposite 1,N 6-ethenodeoxyadenosine with a remarkably high fidelity in human cells. Genes Dev 2019; 33:282-287. [PMID: 30808656 PMCID: PMC6411006 DOI: 10.1101/gad.320531.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
Here we show that translesion synthesis (TLS) opposite 1,N6-ethenodeoxyadenosine (εdA), which disrupts Watson-Crick base pairing, occurs via Polι/Polζ-, Rev1-, and Polθ-dependent pathways. The requirement of Polι/Polζ is consistent with the ability of Polι to incorporate nucleotide opposite εdA by Hoogsteen base pairing and of Polζ to extend synthesis. Rev1 polymerase and Polθ conduct TLS opposite εdA via alternative error-prone pathways. Strikingly, in contrast to extremely error-prone TLS opposite εdA by purified Polθ, it performs predominantly error-free TLS in human cells. Reconfiguration of the active site opposite εdA would provide Polθ the proficiency for error-free TLS in human cells.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| |
Collapse
|
34
|
de Lima LP, Calderano SG, da Silva MS, de Araujo CB, Vasconcelos EJR, Iwai LK, Pereira CA, Fragoso SP, Elias MC. Ortholog of the polymerase theta helicase domain modulates DNA replication in Trypanosoma cruzi. Sci Rep 2019; 9:2888. [PMID: 30814563 PMCID: PMC6393585 DOI: 10.1038/s41598-019-39348-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
DNA polymerase theta (Polθ), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Polθ plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Polθ modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Polθ in different genomic loci; one ortholog is homologous to the Polθ C-terminal polymerase domain, and the other is homologous to the Polθ helicase domain, called Polθ-polymerase and Polθ-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Polθ-helicase from the nuclear extract. Orc1/Cdc6 and Polθ-helicase directly interacted, and Polθ-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Polθ-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Polθ-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.
Collapse
Affiliation(s)
- Loyze P de Lima
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | - Marcelo S da Silva
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Christiane B de Araujo
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Elton J R Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Leo K Iwai
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil
| | - Claudio A Pereira
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Combatientes de Malvinas, (C1427ARO) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - M Carolina Elias
- Laboratorio Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil.
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
35
|
Jiraskova K, Hughes DJ, Brezina S, Gumpenberger T, Veskrnova V, Buchler T, Schneiderova M, Levy M, Liska V, Vodenkova S, Di Gaetano C, Naccarati A, Pardini B, Vymetalkova V, Gsur A, Vodicka P. Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. Int J Mol Sci 2018; 20:E97. [PMID: 30591675 PMCID: PMC6337670 DOI: 10.3390/ijms20010097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
DNA repair processes are involved in both the onset and treatment efficacy of colorectal cancer (CRC). A change of a single nucleotide causing an amino acid substitution in the corresponding protein may alter the efficiency of DNA repair, thus modifying the CRC susceptibility and clinical outcome. We performed a candidate gene approach in order to analyze the association of non-synonymous single nucleotide polymorphisms (nsSNPs) in the genes covering the main DNA repair pathways with CRC risk and clinical outcome modifications. Our candidate polymorphisms were selected according to the foremost genomic and functional prediction databases. Sixteen nsSNPs in 12 DNA repair genes were evaluated in cohorts from the Czech Republic and Austria. Apart from the tumor-node-metastasis (TNM) stage, which occurred as the main prognostic factor in all of the performed analyses, we observed several significant associations of different nsSNPs with survival and clinical outcomes in both cohorts. However, only some of the genes (REV3L, POLQ, and NEIL3) were prominently defined as prediction factors in the classification and regression tree analysis; therefore, the study suggests their association for patient survival. In summary, we provide observational and bioinformatics evidence that even subtle alterations in specific proteins of the DNA repair pathways may contribute to CRC susceptibility and clinical outcome.
Collapse
Affiliation(s)
- Katerina Jiraskova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Tanja Gumpenberger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic.
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic.
| | - Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic.
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Thomayerova 815/5, 140 00 Prague, Czech Republic.
| | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
- Department of Surgery, Medical School in Pilsen, Charles University, Alej svobody 80, 304 600 Pilsen, Czech Republic.
| | - Sona Vodenkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic.
| | - Cornelia Di Gaetano
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
| | - Barbara Pardini
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Veronika Vymetalkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
36
|
Laverty DJ, Greenberg MM. Expanded Substrate Scope of DNA Polymerase θ and DNA Polymerase β: Lyase Activity on 5'-Overhangs and Clustered Lesions. Biochemistry 2018; 57:6119-6127. [PMID: 30299084 PMCID: PMC6200648 DOI: 10.1021/acs.biochem.8b00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA polymerase θ (Pol θ) is a multifunctional enzyme with double-strand break (DSB) repair, translesion synthesis, and lyase activities. Pol θ lyase activity on ternary substrates containing a 5'-dRP that are produced during base excision repair of abasic sites (AP) is weak compared to that of DNA polymerase β (Pol β), a polymerase integrally involved in base excision repair. This led us to explore whether Pol θ utilizes its lyase activity to remove 5'-dRP and incise abasic sites from alternative substrates that might be produced during DNA damage and repair. We found that Pol θ exhibited lyase activity on abasic lesions near DSB termini and on clustered lesions. To calibrate the Pol θ activity, Pol β reactivity was examined with the same substrates. Pol β excised 5'-dRP from within a 5'-overhang 80 times faster than did Pol θ. Pol θ and Pol β also incised AP within clustered lesions but showed opposite preferences with respect to the polarity of the lesions. AP lesions in 5'-overhangs were typically excised by Pol β 35-50 times faster than those in a duplex substrate but 15-20-fold more slowly than 5'-dRP in a ternary complex. This is the first report of Pol θ exhibiting lyase activity within an unincised strand. These results suggest that bifunctional polymerases may exhibit lyase activity on a greater variety of substrates than previously recognized. A role in DSB repair could potentially be beneficial, while the aberrant activity exhibited on clustered lesions may be deleterious because of their conversion to DSBs.
Collapse
Affiliation(s)
- Daniel J. Laverty
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
37
|
Curigliano G. Gyneco-oncological genomics and emerging biomarkers for cancer treatment with immune-checkpoint inhibitors. Semin Cancer Biol 2018; 52:253-258. [DOI: 10.1016/j.semcancer.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
|
38
|
Duquette ML, Kim J, Shi LZ, Berns MW. LSD1 mediated changes in the local redox environment during the DNA damage response. PLoS One 2018; 13:e0201907. [PMID: 30096172 PMCID: PMC6086436 DOI: 10.1371/journal.pone.0201907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
The redox state of the cell can be affected by many cellular conditions. In this study we show that detectable reactive oxygen species (ROS) are also generated in response to DNA damage by the chromatin remodeling factor and monoamine oxidase LSD1/KDM1A. This raised the possibility that the localized generation of hydrogen peroxide produced by LSD1 may affect the function of proximally located DNA repair proteins. The two major pathways for repair of DNA double-strand breaks (DSBs) are homologous recombination (HR) and non-homologous end joining (NHEJ). Cells were exposed to low levels of ectopic H2O2, DNA breaks generated by laser light, and recruitment kinetics of NHEJ protein Ku80 to DNA damage sites determined. Ku80 recruitment to damage sites was significantly decreased in cells pretreated with H2O2 while HR end binding protein Nbs1 was increased. This suggests that the DNA repair pathway choice has the potential to be modulated by the local redox state. This has implications for chemotherapeutic approaches involving generating DNA damage to target actively dividing cancer cells, which may be more or less effective dependent on the redox state of the targeted cells and the predominant repair pathway required to repair the type of DNA damage generated.
Collapse
Affiliation(s)
- Michelle L. Duquette
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States of America
- Department of Bioengineering, University of California, San Diego, CA, United States of America
- * E-mail:
| | - Justine Kim
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States of America
| | - Linda Z. Shi
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States of America
- Department of Bioengineering, University of California, San Diego, CA, United States of America
| | - Michael W. Berns
- Institute of Engineering in Medicine, University of California, San Diego, CA, United States of America
- Department of Bioengineering, University of California, San Diego, CA, United States of America
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States of America
| |
Collapse
|
39
|
Abstract
DNA Pol θ-mediated end joining (TMEJ) is a microhomology-based pathway for repairing double-strand breaks in eukaryotes. TMEJ is also a pathway for nonspecific integration of foreign DNAs into host genomes. DNA Pol θ shares structural homology with the high-fidelity replicases, and its polymerase domain (Polθ) has been shown to extend ssDNA without an apparent template. Using oligonucleotides with distinct sequences, we find that with Mg2+ and physiological salt concentrations, human Polθ has no terminal transferase activity and requires a minimum of 2 bp and optimally 4 bp between a template/primer pair for DNA synthesis. Polθ can tolerate a mismatched base pair at the primer end but loses >90% activity when the mismatch is 2 bp upstream from the active site. Polθ is severely inhibited when the template strand has a 3' overhang within 3-4 bp from the active site. In line with its TMEJ function, Polθ has limited strand-displacement activity, and the efficiency and extent of primer extension are similar with or without a downstream duplex.
Collapse
Affiliation(s)
- Peng He
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
40
|
Du H, Leng J, Wang P, Li L, Wang Y. Impact of tobacco-specific nitrosamine-derived DNA adducts on the efficiency and fidelity of DNA replication in human cells. J Biol Chem 2018; 293:11100-11108. [PMID: 29789427 PMCID: PMC6052226 DOI: 10.1074/jbc.ra118.003477] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/12/2018] [Indexed: 11/06/2022] Open
Abstract
The tobacco-derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are known human carcinogens. Following metabolic activation, NNK and NNN can induce a number of DNA lesions, including several 4-(3-pyridyl)-4-oxobut-1-yl (POB) adducts. However, it remains unclear to what extent these lesions affect the efficiency and accuracy of DNA replication and how their replicative bypass is influenced by translesion synthesis (TLS) DNA polymerases. In this study, we investigated the effects of three stable POB DNA adducts (O2-POB-dT, O4-POB-dT, and O6-POB-dG) on the efficiency and fidelity of DNA replication in HEK293T human cells. We found that, when situated in a double-stranded plasmid, O2-POB-dT and O4-POB-dT moderately blocked DNA replication and induced exclusively T→A (∼14.9%) and T→C (∼35.2%) mutations, respectively. On the other hand, O6-POB-dG slightly impeded DNA replication, and this lesion elicited primarily the G→A transition (∼75%) together with a low frequency of the G→T transversion (∼3%). By conducting replication studies in isogenic cells in which specific TLS DNA polymerases (Pols) were deleted by CRISPR-Cas9 genome editing, we observed that multiple TLS Pols, especially Pol η and Pol ζ, are involved in bypassing these lesions. Our findings reveal the cytotoxic and mutagenic properties of specific POB DNA adducts and unravel the roles of several TLS polymerases in the replicative bypass of these adducts in human cells. Together, these results provide important new knowledge about the biological consequences of POB adducts.
Collapse
Affiliation(s)
- Hua Du
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Jiapeng Leng
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Pengcheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Lin Li
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- From the Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
41
|
Willis NA, Panday A, Duffey EE, Scully R. Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier. PLoS Genet 2018; 14:e1007486. [PMID: 30024881 PMCID: PMC6067765 DOI: 10.1371/journal.pgen.1007486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/31/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022] Open
Abstract
Classical non-homologous end joining (C-NHEJ) and homologous recombination (HR) compete to repair mammalian chromosomal double strand breaks (DSBs). However, C-NHEJ has no impact on HR induced by DNA nicking enzymes. In this case, the replication fork is thought to convert the DNA nick into a one-ended DSB, which lacks a readily available partner for C-NHEJ. Whether C-NHEJ competes with HR at a non-enzymatic mammalian replication fork barrier (RFB) remains unknown. We previously showed that conservative "short tract" gene conversion (STGC) induced by a chromosomal Tus/Ter RFB is a product of bidirectional replication fork stalling. This finding raises the possibility that Tus/Ter-induced STGC proceeds via a two-ended DSB intermediate. If so, Tus/Ter-induced STGC might be subject to competition by C-NHEJ. However, in contrast to the DSB response, where genetic ablation of C-NHEJ stimulates HR, we report here that Tus/Ter-induced HR is unaffected by deletion of either of two C-NHEJ genes, Xrcc4 or Ku70. These results show that Tus/Ter-induced HR does not entail the formation of a two-ended DSB to which C-NHEJ has competitive access. We found no evidence that the alternative end-joining factor, DNA polymerase θ, competes with Tus/Ter-induced HR. We used chromatin-immunoprecipitation to compare Rad51 recruitment to a Tus/Ter RFB and to a neighboring site-specific DSB. Rad51 accumulation at Tus/Ter was more intense and more sustained than at a DSB. In contrast to the DSB response, Rad51 accumulation at Tus/Ter was restricted to within a few hundred base pairs of the RFB. Taken together, these findings suggest that the major DNA structures that bind Rad51 at a Tus/Ter RFB are not conventional DSBs. We propose that Rad51 acts as an "early responder" at stalled forks, binding single stranded daughter strand gaps on the arrested lagging strand, and that Rad51-mediated fork remodeling generates HR intermediates that are incapable of Ku binding and therefore invisible to the C-NHEJ machinery.
Collapse
Affiliation(s)
- Nicholas A. Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin E. Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Trasviña-Arenas CH, Baruch-Torres N, Cordoba-Andrade FJ, Ayala-García VM, García-Medel PL, Díaz-Quezada C, Peralta-Castro A, Ordaz-Ortiz JJ, Brieba LG. Identification of a unique insertion in plant organellar DNA polymerases responsible for 5'-dRP lyase and strand-displacement activities: Implications for Base Excision Repair. DNA Repair (Amst) 2018. [PMID: 29522990 DOI: 10.1016/j.dnarep.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of this pathway in plant organelles are largely unknown. The initial enzymatic steps in BER produce a 5'-deoxyribose phosphate (5'-dRP) moiety that must be removed to allow DNA ligation and in plant organelles, the enzymes responsible for the removal of a 5'-dRP group are unknown. In metazoans, DNA polymerases (DNAPs) remove the 5'-dRP moiety using their intrinsic lyase and/or strand-displacement activities during short or long-patch BER sub-pathways, respectively. The plant model Arabidopsis thaliana encodes two family-A DNAPs paralogs, AtPolIA and AtPolIB, which are the sole DNAPs in plant organelles identified to date. Herein we demonstrate that both AtPolIs present 5'-dRP lyase activities. AtPolIB performs efficient strand-displacement on a BER-associated 1-nt gap DNA substrate, whereas AtPolIA exhibits only moderate strand-displacement activity. Both lyase and strand-displacement activities are dependent on an amino acid insertion that is exclusively present in plant organellar DNAPs. Within this insertion, we identified that residue AtPollB-Lys593 acts as nucleophile for lyase activity. Our results demonstrate that AtPolIs are functionally equipped to play a role in short-patch BER and suggest a major role of AtPolIB in a predicted long-patch BER sub-pathway. We propose that the acquisition of insertion 1 in the polymerization domain of AtPolIs was a key component in their evolution as BER associated and replicative DNAPs.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Francisco J Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Víctor M Ayala-García
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Paola L García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - José Juan Ordaz-Ortiz
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
43
|
Reczek CR, Shakya R, Miteva Y, Szabolcs M, Ludwig T, Baer R. The DNA resection protein CtIP promotes mammary tumorigenesis. Oncotarget 2017; 7:32172-83. [PMID: 27058754 PMCID: PMC5078005 DOI: 10.18632/oncotarget.8605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Many DNA repair factors act to suppress tumor formation by preserving genomic stability. Similarly, the CtIP protein, which interacts with the BRCA1 tumor suppressor, is also thought to have tumor suppression activity. Through its role in DNA end resection, CtIP facilitates DNA double-strand break (DSB) repair by homologous recombination (DSBR-HR) and microhomology-mediated end joining (MMEJ). In addition, however, CtIP has also been implicated in the formation of aberrant chromosomal rearrangements in an MMEJ-dependent manner, an activity that could potentially promote tumor development by increasing genome instability. To clarify whether CtIP acts in vivo to suppress or promote tumorigenesis, we have examined its oncogenic potential in mouse models of human breast cancer. Surprisingly, mice heterozygous for a null Ctip allele did not display an increased susceptibility to tumor formation. Moreover, mammary-specific biallelic CtIP ablation did not elicit breast tumors in a manner reminiscent of BRCA1 loss. Instead, CtIP inactivation dramatically reduced the kinetics of mammary tumorigenesis in mice bearing mammary-specific lesions of the p53 gene. Thus, unlike other repair factors, CtIP is not a tumor suppressor, but has oncogenic properties that can promote tumorigenesis, consistent with its ability to facilitate MMEJ-dependent chromosomal instability. Consequently, inhibition of CtIP-mediated MMEJ may prove effective against tumor types, such as human breast cancer, that display MMEJ-dependent chromosomal rearrangements.
Collapse
Affiliation(s)
- Colleen R Reczek
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Reena Shakya
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.,Current address: Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yana Miteva
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Szabolcs
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas Ludwig
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.,Current address: Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Richard Baer
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
44
|
Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2017; 7:13587-98. [PMID: 26871470 PMCID: PMC4924663 DOI: 10.18632/oncotarget.7277] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 12/28/2022] Open
Abstract
Immune checkpoint inhibitors (e.g., anti-PD-1 and anti-PD-L1 antibodies) have demonstrated remarkable efficacy against hypermutated cancers such as melanomas and lung carcinomas. One explanation for this effect is that hypermutated lesions harbor more tumor-specific neoantigens that stimulate recruitment of an increased number of tumor-infiltrating lymphocytes (TILs), which is counterbalanced by overexpression of immune checkpoints such as PD-1 or PD-L1. Given that BRCA1/2-mutated high grade serous ovarian cancers (HGSOCs) exhibit a higher mutational load and a unique mutational signature with an elevated number of larger indels up to 50 bp, we hypothesized that they may also harbor more tumor-specific neoantigens, and, therefore, exhibit increased TILs and PD-1/PD-L1 expression. Here, we report significantly higher predicted neoantigens in BRCA1/2-mutated tumors compared to tumors without alterations in homologous recombination (HR) genes (HR-proficient tumors). Tumors with higher neoantigen load were associated with improved overall survival and higher expression of immune genes associated with tumor cytotoxicity such as genes of the TCR, the IFN-gamma and the TNFR pathways. Furthermore, immunohistochemistry studies demonstrated that BRCA1/2-mutated tumors exhibited significantly increased CD3+ and CD8+ TILs, as well as elevated expression of PD-1 and PD-L1 in tumor-associated immune cells compared to HR-proficient tumors. Survival analysis showed that both BRCA1/2-mutation status and number of TILs were independently associated with outcome. Of note, two distinct groups of HGSOCs, one with very poor prognosis (HR proficient with low number of TILs) and one with very good prognosis (BRCA1/2-mutated tumors with high number of TILs) were defined. These findings support a link between BRCA1/2-mutation status, immunogenicity and survival, and suggesting that BRCA1/2-mutated HGSOCs may be more sensitive to PD-1/PD-L1 inhibitors compared to HR-proficient HGSOCs.
Collapse
|
45
|
Boldinova EO, Wanrooij PH, Shilkin ES, Wanrooij S, Makarova AV. DNA Damage Tolerance by Eukaryotic DNA Polymerase and Primase PrimPol. Int J Mol Sci 2017; 18:E1584. [PMID: 28754021 PMCID: PMC5536071 DOI: 10.3390/ijms18071584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/31/2022] Open
Abstract
PrimPol is a human deoxyribonucleic acid (DNA) polymerase that also possesses primase activity and is involved in DNA damage tolerance, the prevention of genome instability and mitochondrial DNA maintenance. In this review, we focus on recent advances in biochemical and crystallographic studies of PrimPol, as well as in identification of new protein-protein interaction partners. Furthermore, we discuss the possible functions of PrimPol in both the nucleus and the mitochondria.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.
| | - Evgeniy S Shilkin
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden.
| | - Alena V Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| |
Collapse
|
46
|
Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res 2017; 809:81-87. [PMID: 28754468 DOI: 10.1016/j.mrfmmm.2017.07.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSBs) are induced by a variety of genotoxic agents, including ionizing radiation and chemotherapy drugs for treating cancers. The elimination of DSBs proceeds via distinctive error-free and error-prone pathways. Repair by homologous recombination (HR) is largely error-free and mediated by RAD51/BRCA2 gene products. Classical non-homologous end joining (C-NHEJ) requires the Ku heterodimer and can efficiently rejoin breaks, with occasional loss or gain of DNA information. Recently, evidence has unveiled another DNA end-joining mechanism that is independent of recombination factors and Ku proteins, termed alternative non-homologous end joining (A-NHEJ). While A-NHEJ-mediated repair does not require homology, in a subtype of A-NHEJ, DSB breaks are sealed by microhomology (MH)-mediated base-pairing of DNA single strands, followed by nucleolytic trimming of DNA flaps, DNA gap filling, and DNA ligation, yielding products that are always associated with DNA deletion. This highly error-prone DSB repair pathway is termed microhomology-mediated end joining (MMEJ). Dissecting the mechanisms of MMEJ is of great interest because of its potential to destabilize the genome through gene deletions and chromosomal rearrangements in cells deficient in canonical repair pathways, including HR and C-NHEJ. In addition, evidence now suggests that MMEJ plays a physiological role in normal cells.
Collapse
Affiliation(s)
- Ja-Hwan Seol
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
47
|
Saito S, Maeda R, Adachi N. Dual loss of human POLQ and LIG4 abolishes random integration. Nat Commun 2017; 8:16112. [PMID: 28695890 PMCID: PMC5508229 DOI: 10.1038/ncomms16112] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination-mediated gene targeting has greatly contributed to genetic analysis in a wide range of species, but is highly inefficient in human cells because of overwhelmingly frequent random integration events, whose molecular mechanism remains elusive. Here we show that DNA polymerase θ, despite its minor role in chromosomal DNA repair, substantially contributes to random integration, and that cells lacking both DNA polymerase θ and DNA ligase IV, which is essential for non-homologous end joining (NHEJ), exhibit 100% efficiency of spontaneous gene targeting by virtue of undetectable levels of random integration. Thus, DNA polymerase θ-mediated end joining is the sole homology-independent repair route in the absence of NHEJ and, intriguingly, their combined absence reveals rare Alu-Alu recombination events utilizing a stretch of homology. Our findings provide new insights into the mechanics of foreign DNA integration and the role of DNA polymerase θ in human genome maintenance.
Collapse
Affiliation(s)
- Shinta Saito
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Noritaka Adachi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
48
|
Laverty DJ, Averill AM, Doublié S, Greenberg MM. The A-Rule and Deletion Formation During Abasic and Oxidized Abasic Site Bypass by DNA Polymerase θ. ACS Chem Biol 2017; 12:1584-1592. [PMID: 28459528 DOI: 10.1021/acschembio.7b00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
DNA polymerase θ (Pol θ) is implicated in various cellular processes including double-strand break repair and apurinic/apyrimidinic site bypass. Because Pol θ expression correlates with poor cancer prognosis, the ability of Pol θ to bypass the C4'-oxidized abasic site (C4-AP) and 2-deoxyribonolactone (L), which are generated by cytotoxic agents, is of interest. Translesion synthesis and subsequent extension by Pol θ past C4-AP or L and an abasic site (AP) or its tetrahydrofuran analogue (F) was examined. Pol θ conducts translesion synthesis on templates containing AP and F with similar efficiencies and follows the "A-rule," inserting nucleotides in the order A > G > T. Translesion synthesis on templates containing C4-AP and L is less efficient than AP and F, and the preference for A insertion is reduced for L and absent for C4-AP. Extension past all abasic lesions (AP, F, C4-AP, and L) was significantly less efficient than translesion synthesis and yielded deletions caused by the base one or two nucleotides downstream from the lesion being used as a template, with the latter being favored. These results suggest that bypass of abasic lesions by Pol θ is highly mutagenic.
Collapse
Affiliation(s)
- Daniel J. Laverty
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - April M. Averill
- Department
of Microbiology and Molecular Genetics, The Markey Center for Molecular
Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | - Sylvie Doublié
- Department
of Microbiology and Molecular Genetics, The Markey Center for Molecular
Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | - Marc M. Greenberg
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
49
|
Stafford JL, Dyson G, Levin NK, Chaudhry S, Rosati R, Kalpage H, Wernette C, Petrucelli N, Simon MS, Tainsky MA. Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability. PLoS One 2017; 12:e0178450. [PMID: 28591191 PMCID: PMC5462348 DOI: 10.1371/journal.pone.0178450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022] Open
Abstract
While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways.
Collapse
Affiliation(s)
- Jaime L. Stafford
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nancy K. Levin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Sophia Chaudhry
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rita Rosati
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Hasini Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Courtney Wernette
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nancie Petrucelli
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Michael S. Simon
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI, United States of America
| |
Collapse
|
50
|
Beagan K, Armstrong RL, Witsell A, Roy U, Renedo N, Baker AE, Schärer OD, McVey M. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLoS Genet 2017; 13:e1006813. [PMID: 28542210 PMCID: PMC5466332 DOI: 10.1371/journal.pgen.1006813] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 06/09/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase θ (Pol θ), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol θ contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol θ. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol θ can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol θ and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance. Error-prone DNA Polymerase θ (Pol θ) plays a conserved role in a mutagenic DNA double-strand break repair mechanism called microhomology-mediated end joining (MMEJ). In many organisms, it also participates in a process crucial to the removal/repair of DNA interstrand crosslinks. The exact mechanism by which Pol θ promotes these processes is unclear, but a clue may lie in its dual-domain structure. While the role of its polymerase domain has been well-studied, the function of its helicase-like domain remains an open question. Here we report an absolute requirement for ATPase activity of the helicase-like domain during interstrand crosslink repair in Drosophila melanogaster. We also find that although end joining frequency does not decrease in ATPase-dead mutants, ATPase activity is critical for generating templated insertions. Using purified Pol θ protein, we show that it can bypass synthetic substrates mimicking interstrand crosslink intermediates and can promote MMEJ-like reactions with partial double-stranded and single-stranded DNA. Together, these data demonstrate a novel function for the helicase-like domain of Pol θ in both interstrand crosslink repair and MMEJ and provide insight into why the dual-domain structure has been conserved throughout evolution.
Collapse
Affiliation(s)
- Kelly Beagan
- Department of Biology, Tufts University, Medford, Massachusetts
| | | | - Alice Witsell
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Upasana Roy
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Nikolai Renedo
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Amy E. Baker
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Orlando D. Schärer
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea and Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts
- * E-mail:
| |
Collapse
|