1
|
Akita M, Girvan P, Spirek M, Novacek J, Rueda D, Prokop Z, Krejci L. Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA. Nucleic Acids Res 2024; 52:11738-11752. [PMID: 39268578 PMCID: PMC11514458 DOI: 10.1093/nar/gkae770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.
Collapse
Affiliation(s)
- Masaki Akita
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Paul Girvan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Mario Spirek
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Cryo-Electron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, Czech Republic
| | - David Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Amritha PP, Shah JM. Essential role of the BRCA2B gene in somatic homologous recombination in Arabidopsis thaliana. BIOTECHNOLOGIA 2023; 104:371-380. [PMID: 38213474 PMCID: PMC10777725 DOI: 10.5114/bta.2023.132773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/15/2023] [Accepted: 08/29/2023] [Indexed: 01/13/2024] Open
Abstract
Constant exposure to various environmental and endogenous stresses can cause structural DNA damage, resulting in genome instability. Higher eukaryotic cells deploy conserved DNA repair systems, which include various DNA repair pathways, to maintain genome stability. Homologous recombination (HR), one of these repair pathways, involves multiple proteins. BRCA2, one of the proteins in the HR pathway, is of substantial research interest in humans because it is an oncogene. However, the study of this gene is limited due to the lack of availability of homozygous BRCA2-knockout mutants in mammals, which results in embryonic lethality. Arabidopsis thaliana has two copies of the BRCA2 homologs: BRCA2A and BRCA2B . Therefore, the single mutants remain nonlethal and fertile in Arabidopsis. The BRCA2A homolog, which plays a significant role in the HR pathway of germline cells and during the defense response, is well-studied in Arabidopsis. Our study focuses on the functional characterization of the BRCA2B homolog in the somatic cells of Arabidopsis, using the homozygous ΔBRCA2B mutant line. The phenotypic differences of ΔBRCA2B mutants were characterized and compared with wild Arabidopsis plants. The role of BRCA2B in spontaneous somatic HR (SHR) was studied using the ΔBRCA2B-gus detector line. ΔBRCA2B plants have a 6.3-fold lower SHR frequency than the control detector plants. Expression of four other HR pathway genes, including BRE, BRCC36A, RAD50, and RAD54, was significantly reduced in ΔBRCA2B mutants. Thus, our findings convey that the BRCA2B homolog plays an important role in maintaining spontaneous SHR rates and has a direct or indirect regulatory effect on the expression of other HR-related genes.
Collapse
Affiliation(s)
| | - Jasmine M. Shah
- Department of Plant Science, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
3
|
Bell JC, Dombrowski CC, Plank JL, Jensen RB, Kowalczykowski SC. BRCA2 chaperones RAD51 to single molecules of RPA-coated ssDNA. Proc Natl Acad Sci U S A 2023; 120:e2221971120. [PMID: 36976771 PMCID: PMC10083600 DOI: 10.1073/pnas.2221971120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mutations in the breast cancer susceptibility gene, BRCA2, greatly increase an individual's lifetime risk of developing breast and ovarian cancers. BRCA2 suppresses tumor formation by potentiating DNA repair via homologous recombination. Central to recombination is the assembly of a RAD51 nucleoprotein filament, which forms on single-stranded DNA (ssDNA) generated at or near the site of chromosomal damage. However, replication protein-A (RPA) rapidly binds to and continuously sequesters this ssDNA, imposing a kinetic barrier to RAD51 filament assembly that suppresses unregulated recombination. Recombination mediator proteins-of which BRCA2 is the defining member in humans-alleviate this kinetic barrier to catalyze RAD51 filament formation. We combined microfluidics, microscopy, and micromanipulation to directly measure both the binding of full-length BRCA2 to-and the assembly of RAD51 filaments on-a region of RPA-coated ssDNA within individual DNA molecules designed to mimic a resected DNA lesion common in replication-coupled recombinational repair. We demonstrate that a dimer of RAD51 is minimally required for spontaneous nucleation; however, growth self-terminates below the diffraction limit. BRCA2 accelerates nucleation of RAD51 to a rate that approaches the rapid association of RAD51 to naked ssDNA, thereby overcoming the kinetic block imposed by RPA. Furthermore, BRCA2 eliminates the need for the rate-limiting nucleation of RAD51 by chaperoning a short preassembled RAD51 filament onto the ssDNA complexed with RPA. Therefore, BRCA2 regulates recombination by initiating RAD51 filament formation.
Collapse
Affiliation(s)
- Jason C. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Christopher C. Dombrowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Jody L. Plank
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Ryan B. Jensen
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520
| | - Stephen C. Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| |
Collapse
|
4
|
Systematic proximal mapping of the classical RAD51 paralogs unravel functionally and clinically relevant interactors for genome stability. PLoS Genet 2022; 18:e1010495. [DOI: 10.1371/journal.pgen.1010495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.
Collapse
|
5
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
6
|
RPA phosphorylation facilitates RAD52 dependent homologous recombination in BRCA-deficient cells. Mol Cell Biol 2021; 42:e0052421. [PMID: 34928169 DOI: 10.1128/mcb.00524-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by Replication Protein A(RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals BRCA2 is the primary mediator, however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and de-phosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. Using BRCA2-depleted human cells, in which the only available mediator pathway is RAD52-dependent, the expression of phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phospho-mutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51, and its subsequent promotion of RAD52-mediated HR.
Collapse
|
7
|
Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol Cell 2021; 81:1058-1073.e7. [PMID: 33421363 PMCID: PMC7941204 DOI: 10.1016/j.molcel.2020.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.
Collapse
|
8
|
El Dika M. Use of Xenopus laevis cell-free extracts to study BRCA2 role in chromosome alignment. DNA Repair (Amst) 2021; 100:103053. [PMID: 33550028 DOI: 10.1016/j.dnarep.2021.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA; Institut Curie, PSL Research University, CNRS, UMR3348, Orsay, France; Paris Sud University, Paris-Saclay University, CNRS, UMR3348, Orsay, France.
| |
Collapse
|
9
|
Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nat Commun 2020; 11:3531. [PMID: 32669601 PMCID: PMC7363682 DOI: 10.1038/s41467-020-17324-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) factors were recently implicated in DNA replication fork remodeling and protection. While maintaining genome stability, HR-mediated fork remodeling promotes cancer chemoresistance, by as-yet elusive mechanisms. Five HR cofactors – the RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3 – recently emerged as crucial tumor suppressors. Albeit extensively characterized in DNA repair, their role in replication has not been addressed systematically. Here, we identify all RAD51 paralogs while screening for modulators of RAD51 recombinase upon replication stress. Single-molecule analysis of fork progression and architecture in isogenic cellular systems shows that the BCDX2 subcomplex restrains fork progression upon stress, promoting fork reversal. Accordingly, BCDX2 primes unscheduled degradation of reversed forks in BRCA2-defective cells, boosting genomic instability. Conversely, the CX3 subcomplex is dispensable for fork reversal, but mediates efficient restart of reversed forks. We propose that RAD51 paralogs sequentially orchestrate clinically relevant transactions at replication forks, cooperatively promoting fork remodeling and restart. Replication stress has been associated with transient remodelling of replication intermediates into reversed forks, followed by efficient fork restart. Here the authors systematically analyse the role of RAD51 paralogs in these transactions, providing insights on the mechanistic role of different complexes of these proteins.
Collapse
|
10
|
Garcin EB, Gon S, Sullivan MR, Brunette GJ, Cian AD, Concordet JP, Giovannangeli C, Dirks WG, Eberth S, Bernstein KA, Prakash R, Jasin M, Modesti M. Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLoS Genet 2019; 15:e1008355. [PMID: 31584931 PMCID: PMC6795472 DOI: 10.1371/journal.pgen.1008355] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/16/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.
Collapse
Affiliation(s)
- Edwige B. Garcin
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Stéphanie Gon
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| | - Meghan R. Sullivan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Gregory J. Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Anne De Cian
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Jean-Paul Concordet
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Carine Giovannangeli
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Wilhelm G. Dirks
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kara A. Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Mauro Modesti
- Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France
| |
Collapse
|
11
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
12
|
Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol Oncol 2019; 13:681-700. [PMID: 30714316 PMCID: PMC6441925 DOI: 10.1002/1878-0261.12467] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Therapies that take advantage of defects in DNA repair pathways have been explored in the context of breast, ovarian, and other tumor types, but not yet systematically in CRC. At present, only immune checkpoint blockade therapies have been FDA approved for use in mismatch repair-deficient colorectal tumors. Here, we discuss how systematic identification of alterations in DNA repair genes could provide new therapeutic opportunities for CRCs. Analysis of The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) and Rectal Adenocarcinoma (TCGA-READ) PanCancer Atlas datasets identified 141 (out of 528) cases with putative driver mutations in 29 genes associated with DNA damage response and repair, including the mismatch repair and homologous recombination pathways. Genetic defects in these pathways might confer repair-deficient characteristics, such as genomic instability in the absence of homologous recombination, which can be exploited. For example, inhibitors of poly(ADP)-ribose polymerase are effectively used to treat cancers that carry mutations in BRCA1 and/or BRCA2 and have shown promising results in CRC preclinical studies. HR deficiency can also occur in cells with no detectable BRCA1/BRCA2 mutations but exhibiting BRCA-like phenotypes. DNA repair-targeting therapies, such as ATR and CHK1 inhibitors (which are most effective against cancers carrying ATM mutations), can be used in combination with current genotoxic chemotherapies in CRCs to further improve therapy response. Finally, therapies that target alternative DNA repair mechanisms, such as thiopurines, also have the potential to confer increased sensitivity to current chemotherapy regimens, thus expanding the spectrum of therapy options and potentially improving clinical outcomes for CRC patients.
Collapse
Affiliation(s)
- Nicole M. Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUSCandioloItaly
| | - Luca Novara
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
| | - Federica Di Nicolantonio
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| | - Alberto Bardelli
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| |
Collapse
|
13
|
Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem 2019; 88:221-245. [PMID: 30917004 DOI: 10.1146/annurev-biochem-013118-111058] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in the BRCA1 and BRCA2 genes predispose afflicted individuals to breast, ovarian, and other cancers. The BRCA-encoded products form complexes with other tumor suppressor proteins and with the recombinase enzyme RAD51 to mediate chromosome damage repair by homologous recombination and also to protect stressed DNA replication forks against spurious nucleolytic attrition. Understanding how the BRCA tumor suppressor network executes its biological functions would provide the foundation for developing targeted cancer therapeutics, but progress in this area has been greatly hampered by the challenge of obtaining purified BRCA complexes for mechanistic studies. In this article, we review how recent effort begins to overcome this technical challenge, leading to functional and structural insights into the biochemical attributes of these complexes and the multifaceted roles that they fulfill in genome maintenance. We also highlight the major mechanistic questions that remain.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Robert Hromas
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| |
Collapse
|
14
|
Reilly NM, Yard BD, Pittman DL. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. Methods Mol Biol 2019; 1999:3-29. [PMID: 31127567 DOI: 10.1007/978-1-4939-9500-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUS, Candiolo, Italy
| | - Brian D Yard
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
15
|
Pulliam N, Fang F, Ozes AR, Tang J, Adewuyi A, Keer H, Lyons J, Baylin SB, Matei D, Nakshatri H, Rassool FV, Miller KD, Nephew KP. An Effective Epigenetic-PARP Inhibitor Combination Therapy for Breast and Ovarian Cancers Independent of BRCA Mutations. Clin Cancer Res 2018; 24:3163-3175. [PMID: 29615458 DOI: 10.1158/1078-0432.ccr-18-0204] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/23/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Purpose: PARP inhibitors (PARPi) are primarily effective against BRCA1/2-mutated breast and ovarian cancers, but resistance due to reversion of mutated BRCA1/2 and other mechanisms is common. Based on previous reports demonstrating a functional role for DNMT1 in DNA repair and our previous studies demonstrating an ability of DNA methyltransferase inhibitor (DNMTi) to resensitize tumors to primary therapies, we hypothesized that combining a DNMTi with PARPi would sensitize PARPi-resistant breast and ovarian cancers to PARPi therapy, independent of BRCA status.Experimental Design: Breast and ovarian cancer cell lines (BRCA-wild-type/mutant) were treated with PARPi talazoparib and DNMTi guadecitabine. Effects on cell survival, ROS accumulation, and cAMP levels were examined. In vivo, mice bearing either BRCA-proficient breast or ovarian cancer cells were treated with talazoparib and guadecitabine, alone or in combination. Tumor progression, gene expression, and overall survival were analyzed.Results: Combination of guadecitabine and talazoparib synergized to enhance PARPi efficacy, irrespective of BRCA mutation status. Coadministration of guadecitabine with talazoparib increased accumulation of ROS, promoted PARP activation, and further sensitized, in a cAMP/PKA-dependent manner, breast and ovarian cancer cells to PARPi. In addition, DNMTi enhanced PARP "trapping" by talazoparib. Guadecitabine plus talazoparib decreased xenograft tumor growth and increased overall survival in BRCA-proficient high-grade serous ovarian and triple-negative breast cancer models.Conclusions: The novel combination of the next-generation DNMTi guadecitabine and the first-in-class PARPi talazoparib inhibited breast and ovarian cancers harboring either wild-type- or mutant-BRCA, supporting further clinical exploration of this drug combination in PARPi-resistant cancers. Clin Cancer Res; 24(13); 3163-75. ©2018 AACR.
Collapse
Affiliation(s)
- Nicholas Pulliam
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Fang Fang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Ali R Ozes
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Jessica Tang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Adeoluwa Adewuyi
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Harold Keer
- Astex Pharmaceuticals, Inc., Pleasanton, California
| | - John Lyons
- Astex Therapeutics Limited, Cambridge, United Kingdom
| | - Stephen B Baylin
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Feyruz V Rassool
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Kathy D Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth P Nephew
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana. .,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
16
|
Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 2018; 293:10524-10535. [PMID: 29599286 DOI: 10.1074/jbc.tm118.000372] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination enables the cell to access and copy intact DNA sequence information in trans, particularly to repair DNA damage affecting both strands of the double helix. Here, we discuss the DNA transactions and enzymatic activities required for this elegantly orchestrated process in the context of the repair of DNA double-strand breaks in somatic cells. This includes homology search, DNA strand invasion, repair DNA synthesis, and restoration of intact chromosomes. Aspects of DNA topology affecting individual steps are highlighted. Overall, recombination is a dynamic pathway with multiple metastable and reversible intermediates designed to achieve DNA repair with high fidelity.
Collapse
Affiliation(s)
| | | | - Wolf-Dietrich Heyer
- From the Departments of Microbiology and Molecular Genetics and .,Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665
| |
Collapse
|
17
|
Venkatachalam S, Mettler E, Fottner C, Miederer M, Kaina B, Weber MM. The impact of the IGF-1 system of cancer cells on radiation response - An in vitro study. Clin Transl Radiat Oncol 2017; 7:1-8. [PMID: 29594222 PMCID: PMC5862664 DOI: 10.1016/j.ctro.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background Overexpression of the insulin-like growth factor-1 receptor (IGF-1R) is associated with increased cell proliferation, differentiation, transformation, and tumorigenicity. Additionally, signaling involved in the resistance of cancer cells to radiotherapy originates from IGF-1R. The purpose of this study was to investigate the role of the IGF-1 system in the radiation response and further evaluate its effect on the expression of DNA repair pathway genes. Methods To inhibit the IGF-1 system, we stably transfected the Caco-2 cell line to express a kinase-deficient IGF-1R mutant. We then studied the effects of this mutation on cell growth, the response to radiation, and clonogenic survival, as well as using a cell viability assay to examine DNA damage and repair. Finally, we performed immunofluorescence for γ-H2AX to examine double-strand DNA breaks and evaluated the expression of 84 key genes involved in DNA repair with a real-time PCR array. Results Mutant IGF-1R cells exhibited significantly blunted cell growth and viability, compared to wild-type cells, as well as reduced clonogenic survival after γ-irradiation. However, mutant IGF-1R cells did not show any significant delays in the repair of radiation-induced DNA double-strand breaks. Furthermore, expression of mutant IGF-1R significantly down-regulated the mRNA levels of BRCA2, a major protein involved in homologous recombination DNA repair. Conclusion These results indicate that blocking the IGF-1R-mediated signaling cascade, through the expression of a kinase-deficient IGF-1R mutant, reduces cell growth and sensitizes cancer cells to ionizing radiation. Therefore, the IGF-1R system could be a potential target to enhance radio-sensitivity and the efficacy of cancer treatments.
Collapse
Key Words
- BAX, BCL-2-associated X
- BCL-2, B-cell lymphoma 2
- BRCA2
- Caco-2-KR4, IGF-1R/KR clone number 4
- Colorectal carcinmoma
- Dominant negative mutant
- HRR, homologous recombination repair
- IGF-1R, insulin-like growth factor 1 receptor
- IGF-1R/KR, kinase-deficient IGF-1R
- IRS-1, insulin receptor substrate 1
- Insulin-like growth factor-1 receptor
- MVP, major vault protein
- NHEJ, non-homologous end joining
- PTEN, phosphatase and tensin homolog
- RAD 51
- Radiosensitivity
- SF, surviving fractions
Collapse
Affiliation(s)
| | - Esther Mettler
- Department of Endocrinology and Metabolic Diseases, University Medical Center, Mainz, Germany
- Corresponding author.
| | - Christian Fottner
- Department of Endocrinology and Metabolic Diseases, University Medical Center, Mainz, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Medical Center, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Matthias M. Weber
- Department of Endocrinology and Metabolic Diseases, University Medical Center, Mainz, Germany
| |
Collapse
|
18
|
Reh WA, Nairn RS, Lowery MP, Vasquez KM. The homologous recombination protein RAD51D protects the genome from large deletions. Nucleic Acids Res 2017; 45:1835-1847. [PMID: 27924006 PMCID: PMC5389663 DOI: 10.1093/nar/gkw1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR) is a DNA double-strand break (DSB) repair pathway that protects the genome from chromosomal instability. RAD51 mediator proteins (i.e. paralogs) are critical for efficient HR in mammalian cells. However, how HR-deficient cells process DSBs is not clear. Here, we utilized a loss-of-function HR-reporter substrate to simultaneously monitor HR-mediated gene conversion and non-conservative mutation events. The assay is designed around a heteroallelic duplication of the Aprt gene at its endogenous locus in isogenic Chinese hamster ovary cell lines. We found that RAD51D-deficient cells had a reduced capacity for HR-mediated gene conversion both spontaneously and in response to I-SceI-induced DSBs. Further, RAD51D-deficiency shifted DSB repair toward highly deleterious single-strand annealing (SSA) and end-joining processes that led to the loss of large chromosomal segments surrounding site-specific DSBs at an exceptionally high frequency. Deletions in the proximity of the break were due to a non-homologous end-joining pathway, while larger deletions were processed via a SSA pathway. Overall, our data revealed that, in addition to leading to chromosomal abnormalities, RAD51D-deficiency resulted in a high frequency of deletions advancing our understanding of how a RAD51 paralog is involved in maintaining genomic stability and how its deficiency may predispose cells to tumorigenesis.
Collapse
Affiliation(s)
- Wade A Reh
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Rodney S Nairn
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Megan P Lowery
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
19
|
Jiang J, Bellani M, Li L, Wang P, Seidman MM, Wang Y. Arsenite Binds to the RING Finger Domain of FANCL E3 Ubiquitin Ligase and Inhibits DNA Interstrand Crosslink Repair. ACS Chem Biol 2017; 12:1858-1866. [PMID: 28535027 DOI: 10.1021/acschembio.6b01135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human exposure to arsenic in drinking water is known to be associated with the development of bladder, lung, kidney, and skin cancers. The molecular mechanisms underlying the carcinogenic effects of arsenic species remain incompletely understood. DNA interstrand cross-links (ICLs) are among the most cytotoxic type of DNA lesions that block DNA replication and transcription, and these lesions can be induced by endogenous metabolism and by exposure to exogenous agents. Fanconi anemia (FA) is a congenital disorder manifested with elevated sensitivity toward DNA interstrand cross-linking agents, and monoubiquitination of FANCD2 by FANCL is a crucial step in FA-mediated DNA repair. Here, we demonstrated that As3+ could bind to the PHD/RING finger domain of FANCL in vitro and in cells. This binding led to compromised ubiquitination of FANCD2 in cells and diminished recruitment of FANCD2 to chromatin and DNA damage sites induced by 4,5',8-trimethylpsoralen plus UVA irradiation. Furthermore, clonogenic survival assay results showed that arsenite coexposure rendered cells more sensitive toward DNA interstrand cross-linking agents. Together, our study suggested that arsenite may compromise genomic stability via perturbation of the Fanconi anemia pathway, thereby conferring its carcinogenic effect.
Collapse
Affiliation(s)
| | - Marina Bellani
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | | | | - Michael M. Seidman
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | |
Collapse
|
20
|
Stafford JL, Dyson G, Levin NK, Chaudhry S, Rosati R, Kalpage H, Wernette C, Petrucelli N, Simon MS, Tainsky MA. Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability. PLoS One 2017; 12:e0178450. [PMID: 28591191 PMCID: PMC5462348 DOI: 10.1371/journal.pone.0178450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022] Open
Abstract
While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways.
Collapse
Affiliation(s)
- Jaime L. Stafford
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nancy K. Levin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Sophia Chaudhry
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rita Rosati
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Hasini Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Courtney Wernette
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nancie Petrucelli
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Michael S. Simon
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI, United States of America
| |
Collapse
|
21
|
Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J, Alvey C, Tewari M, Bennett RR, Harding SM, Liu AJ, Greenberg RA, Discher DE. DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration. Curr Biol 2016; 27:210-223. [PMID: 27989676 DOI: 10.1016/j.cub.2016.11.049] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
Abstract
Migration through micron-size constrictions has been seen to rupture the nucleus, release nuclear-localized GFP, and cause localized accumulations of ectopic 53BP1-a DNA repair protein. Here, constricted migration of two human cancer cell types and primary mesenchymal stem cells (MSCs) increases DNA breaks throughout the nucleoplasm as assessed by endogenous damage markers and by electrophoretic "comet" measurements. Migration also causes multiple DNA repair proteins to segregate away from DNA, with cytoplasmic mis-localization sustained for many hours as is relevant to delayed repair. Partial knockdown of repair factors that also regulate chromosome copy numbers is seen to increase DNA breaks in U2OS osteosarcoma cells without affecting migration and with nucleoplasmic patterns of damage similar to constricted migration. Such depletion also causes aberrant levels of DNA. Migration-induced nuclear damage is nonetheless reversible for wild-type and sub-cloned U2OS cells, except for lasting genomic differences between stable clones as revealed by DNA arrays and sequencing. Gains and losses of hundreds of megabases in many chromosomes are typical of the changes and heterogeneity in bone cancer. Phenotypic differences that arise from constricted migration of U2OS clones are further illustrated by a clone with a highly elongated and stable MSC-like shape that depends on microtubule assembly downstream of the transcription factor GATA4. Such changes are consistent with reversion to a more stem-like state upstream of cancerous osteoblastic cells. Migration-induced genomic instability can thus associate with heritable changes.
Collapse
Affiliation(s)
- Jerome Irianto
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuntao Xia
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte R Pfeifer
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avathamsa Athirasala
- Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiazheng Ji
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cory Alvey
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manu Tewari
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel R Bennett
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane M Harding
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea J Liu
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roger A Greenberg
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res 2016; 45:749-761. [PMID: 27903895 PMCID: PMC5314761 DOI: 10.1093/nar/gkw1125] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly.
Collapse
Affiliation(s)
- Chu Jian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bryan Gibb
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - YoungHo Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
23
|
Ma H, Song T, Wang T, Wang S. Influence of Human p53 on Plant Development. PLoS One 2016; 11:e0162840. [PMID: 27648563 PMCID: PMC5029891 DOI: 10.1371/journal.pone.0162840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Mammalian p53 is a super tumor suppressor and plays a key role in guarding genome from DNA damage. However, p53 has not been found in plants which do not bear cancer although they constantly expose to ionizing radiation of ultraviolet light. Here we introduced p53 into the model plant Arabidopsis and examined p53-conferred phenotype in plant. Most strikingly, p53 caused early senescence and fasciation. In plants, fasciation has been shown as a result of the elevated homologous DNA recombination. Consistently, a reporter with overlapping segments of the GUS gene (1445) showed that the frequency of homologous recombination was highly induced in p53-transgenic plants. In contrast to p53, SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), as a negative regulator of homologous recombination in plants, is not present in mammals. Comet assay and clonogenic survival assay demonstrated that SNI1 inhibited DNA damage repair caused by either ionizing radiation or hydroxyurea in human osteosarcoma U2OS cancer cells. RAD51D is a recombinase in homologous recombination and functions downstream of SNI1 in plants. Interestingly, p53 rendered the sni1 mutants madly branching of inflorescence, a phenotype of fasciation, whereas rad51d mutant fully suppressed the p53-induced phenotype, indicating that human p53 action in plant is mediated by the SNI1-RAD51D signaling pathway. The reciprocal species-swap tests of p53 and SNI1 in human and Arabidopsis manifest that these species-specific proteins play a common role in homologous recombination across kingdoms of animals and plants.
Collapse
Affiliation(s)
- Huimin Ma
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Teng Song
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tianhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- * E-mail:
| |
Collapse
|
24
|
Michl J, Zimmer J, Tarsounas M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 2016; 35:909-23. [PMID: 27037238 PMCID: PMC4865030 DOI: 10.15252/embj.201693860] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error-free pathway for double-strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication-associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.
Collapse
Affiliation(s)
- Johanna Michl
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CRUK-MRC Oxford Institute for Radiation Oncology University of Oxford, Oxford, UK
| |
Collapse
|
25
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
26
|
Cortez MA, Valdecanas D, Niknam S, Peltier HJ, Diao L, Giri U, Komaki R, Calin GA, Gomez DR, Chang JY, Heymach JV, Bader AG, Welsh JW. In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e270. [PMID: 26670277 PMCID: PMC5014539 DOI: 10.1038/mtna.2015.47] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/11/2015] [Indexed: 01/20/2023]
Abstract
MiR-34a, an important tumor-suppressing microRNA, is downregulated in several types of cancer; loss of its expression has been linked with unfavorable clinical outcomes in non-small-cell lung cancer (NSCLC), among others. MiR-34a represses several key oncogenic proteins, and a synthetic mimic of miR-34a is currently being tested in a cancer trial. However, little is known about the potential role of miR-34a in regulating DNA damage response and repair. Here, we demonstrate that miR-34a directly binds to the 3' untranslated region of RAD51 and regulates homologous recombination, inhibiting double-strand-break repair in NSCLC cells. We further demonstrate the therapeutic potential of miR-34a delivery in combination with radiotherapy in mouse models of lung cancer. Collectively, our results suggest that administration of miR-34a in combination with radiotherapy may represent a novel strategy for treating NSCLC.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Valdecanas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sharareh Niknam
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Lixia Diao
- Department of Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Uma Giri
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John Victor Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - James William Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
27
|
Design, synthesis, and characterization of BRC4 mutants based on the crystal structure of BRC4-RAD51(191–220). J Mol Model 2015; 21:299. [DOI: 10.1007/s00894-015-2831-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 01/26/2023]
|
28
|
Somyajit K, Saxena S, Babu S, Mishra A, Nagaraju G. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res 2015; 43:9835-55. [PMID: 26354865 PMCID: PMC4787763 DOI: 10.1093/nar/gkv880] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/23/2015] [Indexed: 12/22/2022] Open
Abstract
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sneha Saxena
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sharath Babu
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
29
|
Gaines WA, Godin SK, Kabbinavar FF, Rao T, VanDemark AP, Sung P, Bernstein KA. Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nat Commun 2015. [PMID: 26215801 PMCID: PMC4525180 DOI: 10.1038/ncomms8834] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The conserved budding yeast Rad51 paralogues, including Rad55, Rad57, Csm2 and Psy3 are indispensable for homologous recombination (HR)-mediated chromosome damage repair. Rad55 and Rad57 are associated in a heterodimer, while Csm2 and Psy3 form the Shu complex with Shu1 and Shu2. Here we show that Rad55 bridges an interaction between Csm2 with Rad51 and Rad52 and, using a fully reconstituted system, demonstrate that the Shu complex synergizes with Rad55-Rad57 and Rad52 to promote nucleation of Rad51 on single-stranded DNA pre-occupied by replication protein A (RPA). The csm2-F46A allele is unable to interact with Rad55, ablating the ability of the Shu complex to enhance Rad51 presynaptic filament assembly in vitro and impairing HR in vivo. Our results reveal that Rad55-Rad57, the Shu complex and Rad52 act as a functional ensemble to promote Rad51-filament assembly, which has important implications for understanding the role of the human RAD51 paralogues in Fanconi anaemia and cancer predisposition.
Collapse
Affiliation(s)
- William A Gaines
- Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven, Conneticut 06510, USA
| | - Stephen K Godin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, G5.c, Pittsburgh, Pennsylvania 15217, USA
| | - Faiz F Kabbinavar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, G5.c, Pittsburgh, Pennsylvania 15217, USA
| | - Timsi Rao
- Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven, Conneticut 06510, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Patrick Sung
- Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven, Conneticut 06510, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, G5.c, Pittsburgh, Pennsylvania 15217, USA
| |
Collapse
|
30
|
Taylor MRG, Špírek M, Chaurasiya KR, Ward JD, Carzaniga R, Yu X, Egelman EH, Collinson LM, Rueda D, Krejci L, Boulton SJ. Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination. Cell 2015; 162:271-286. [PMID: 26186187 PMCID: PMC4518479 DOI: 10.1016/j.cell.2015.06.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 06/01/2015] [Indexed: 10/31/2022]
Abstract
Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.
Collapse
Affiliation(s)
- Martin R G Taylor
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Mário Špírek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Kathy R Chaurasiya
- Section of Virology, Single Molecule Imaging Group and MRC Clinical Sciences Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jordan D Ward
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK; UCSF-Mission Bay, Genentech Hall S574, San Francisco, CA 94158, USA
| | - Raffaella Carzaniga
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - David Rueda
- Section of Virology, Single Molecule Imaging Group and MRC Clinical Sciences Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Lumir Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic.
| | - Simon J Boulton
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK.
| |
Collapse
|
31
|
Magin S, Papaioannou M, Saha J, Staudt C, Iliakis G. Inhibition of Homologous Recombination and Promotion of Mutagenic Repair of DNA Double-Strand Breaks Underpins Arabinoside–Nucleoside Analogue Radiosensitization. Mol Cancer Ther 2015; 14:1424-33. [DOI: 10.1158/1535-7163.mct-14-0682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/22/2015] [Indexed: 11/16/2022]
|
32
|
Liu Q, Wang G, Chen Y, Li G, Yang D, Kang J. A miR-590/Acvr2a/Rad51b axis regulates DNA damage repair during mESC proliferation. Stem Cell Reports 2014; 3:1103-17. [PMID: 25458897 PMCID: PMC4264031 DOI: 10.1016/j.stemcr.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem cells (ESCs) enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF), which maintains the self-renewal capability of mouse ESCs (mESCs), significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB) and double-strand break (DSB) damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a) to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR) gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal. miR-590 promotes DNA damage repair and slows proliferation by targeting Acvr2a miR-590/Acvr2a/Rad51b axis balances SSB and DSB damage repair in mESCs
Collapse
Affiliation(s)
- Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
33
|
Abstract
Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms.
Collapse
Affiliation(s)
- Alex Zelensky
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. Proc Natl Acad Sci U S A 2014; 111:15090-5. [PMID: 25288749 DOI: 10.1073/pnas.1307824111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During recombinational repair of double-stranded DNA breaks, RAD51 recombinase assembles as a nucleoprotein filament around single-stranded DNA to form a catalytically proficient structure able to promote homology recognition and strand exchange. Mediators and accessory factors guide the action and control the dynamics of RAD51 filaments. Elucidation of these control mechanisms necessitates development of approaches to quantitatively probe transient aspects of RAD51 filament dynamics. Here, we combine fluorescence microscopy, optical tweezers, and microfluidics to visualize the assembly of RAD51 filaments on bare single-stranded DNA and quantify the process with single-monomer sensitivity. We show that filaments are seeded from RAD51 nuclei that are heterogeneous in size. This heterogeneity appears to arise from the energetic balance between RAD51 self-assembly in solution and the size-dependent interaction time of the nuclei with DNA. We show that nucleation intrinsically is substrate selective, strongly favoring filament formation on bare single-stranded DNA. Furthermore, we devised a single-molecule fluorescence recovery after photobleaching assay to independently observe filament nucleation and growth, permitting direct measurement of their contributions to filament formation. Our findings yield a comprehensive, quantitative understanding of RAD51 filament formation on bare single-stranded DNA that will serve as a basis to elucidate how mediators help RAD51 filament assembly and accessory factors control filament dynamics.
Collapse
|
35
|
Liu T, Huang J. Quality control of homologous recombination. Cell Mol Life Sci 2014; 71:3779-97. [PMID: 24858417 PMCID: PMC11114062 DOI: 10.1007/s00018-014-1649-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Exogenous and endogenous genotoxic agents, such as ionizing radiation and numerous chemical agents, cause DNA double-strand breaks (DSBs), which are highly toxic and lead to genomic instability or tumorigenesis if not repaired accurately and efficiently. Cells have over evolutionary time developed certain repair mechanisms in response to DSBs to maintain genomic integrity. Major DSB repair mechanisms include non-homologous end joining and homologous recombination (HR). Using sister homologues as templates, HR is a high-fidelity repair pathway that can rejoin DSBs without introducing mutations. However, HR execution without appropriate guarding may lead to more severe gross genome rearrangements. Here we review current knowledge regarding the factors and mechanisms required for accomplishment of accurate HR.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
36
|
Balacescu O, Balacescu L, Tudoran O, Todor N, Rus M, Buiga R, Susman S, Fetica B, Pop L, Maja L, Visan S, Ordeanu C, Berindan-Neagoe I, Nagy V. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer 2014; 14:246. [PMID: 24708616 PMCID: PMC4021393 DOI: 10.1186/1471-2407-14-246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 04/03/2014] [Indexed: 12/18/2022] Open
Abstract
Background Advanced squamous cervical cancer, one of the most commonly diagnosed cancers in women, still remains a major problem in oncology due to treatment failure and distant metastasis. Antitumor therapy failure is due to both intrinsic and acquired resistance; intrinsic resistance is often decisive for treatment response. In this study, we investigated the specific pathways and molecules responsible for baseline therapy failure in locally advanced squamous cervical cancer. Methods Twenty-one patients with locally advanced squamous cell carcinoma were enrolled in this study. Primary biopsies harvested prior to therapy were analyzed for whole human gene expression (Agilent) based on the patient’s 6 months clinical response. Ingenuity Pathway Analysis was used to investigate the altered molecular function and canonical pathways between the responding and non-responding patients. The microarray results were validated by qRT-PCR and immunohistochemistry. An additional set of 24 formalin-fixed paraffin-embedded cervical cancer samples was used for independent validation of the proteins of interest. Results A 2859-gene signature was identified to distinguish between responder and non-responder patients. ‘DNA Replication, Recombination and Repair’ represented one of the most important mechanisms activated in non-responsive cervical tumors, and the ‘Role of BRCA1 in DNA Damage Response’ was predicted to be the most significantly altered canonical pathway involved in intrinsic resistance (p = 1.86E-04, ratio = 0.262). Immunohistological staining confirmed increased expression of BRCA1, BRIP1, FANCD2 and RAD51 in non-responsive compared with responsive advanced squamous cervical cancer, both in the initial set of 21 cervical cancer samples and the second set of 24 samples. Conclusions Our findings suggest that FA/BRCA pathway plays an important role in treatment failure in advanced cervical cancer. The assessment of FANCD2, RAD51, BRCA1 and BRIP1 nuclear proteins could provide important information about the patients at risk for treatment failure.
Collapse
Affiliation(s)
- Ovidiu Balacescu
- The Oncology Institute "Prof Dr, Ion Chiricuta", 34-36 Republicii street, 400015 Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A 2014; 111:4536-41. [PMID: 24616504 DOI: 10.1073/pnas.1402604111] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell survival after DNA damage relies on DNA repair, the abrogation of which causes genomic instability and development of cancer. However, defective DNA repair in cancer cells can be exploited for cancer therapy using DNA-damaging agents. DNA double-strand breaks are the major lethal lesions induced by ionizing radiation (IR) and can be efficiently repaired by DNA homologous recombination, a system that requires numerous factors including the recombinase RAD51 (RAD51). Therapies combined with adjuvant radiotherapy have been demonstrated to improve the survival of triple-negative breast cancer patients; however, such therapy is challenged by the emergence of resistance in tumor cells. It is, therefore, essential to develop novel therapeutic strategies to overcome radioresistance and improve radiosensitivity. In this study we show that overexpression of microRNA 155 (miR-155) in human breast cancer cells reduces the levels of RAD51 and affects the cellular response to IR. miR-155 directly targets the 3'-untranslated region of RAD51. Overexpression of miR-155 decreased the efficiency of homologous recombination repair and enhanced sensitivity to IR in vitro and in vivo. High miR-155 levels were associated with lower RAD51 expression and with better overall survival of patients in a large series of triple-negative breast cancers. Taken together, our findings indicate that miR-155 regulates DNA repair activity and sensitivity to IR by repressing RAD51 in breast cancer. Testing for expression levels of miR-155 may be useful in the identification of breast cancer patients who will benefit from an IR-based therapeutic approach.
Collapse
|
38
|
Posch A, Kohn J, Oh K, Hammond M, Liu N. V3 stain-free workflow for a practical, convenient, and reliable total protein loading control in western blotting. J Vis Exp 2013:50948. [PMID: 24429481 DOI: 10.3791/50948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The western blot is a very useful and widely adopted lab technique, but its execution is challenging. The workflow is often characterized as a "black box" because an experimentalist does not know if it has been performed successfully until the last of several steps. Moreover, the quality of western blot data is sometimes challenged due to a lack of effective quality control tools in place throughout the western blotting process. Here we describe the V3 western workflow, which applies stain-free technology to address the major concerns associated with the traditional western blot protocol. This workflow allows researchers: 1) to run a gel in about 20-30 min; 2) to visualize sample separation quality within 5 min after the gel run; 3) to transfer proteins in 3-10 min; 4) to verify transfer efficiency quantitatively; and most importantly 5) to validate changes in the level of the protein of interest using total protein loading control. This novel approach eliminates the need of stripping and reprobing the blot for housekeeping proteins such as β-actin, β-tubulin, GAPDH, etc. The V3 stain-free workflow makes the western blot process faster, transparent, more quantitative and reliable.
Collapse
|
39
|
The HsRAD51B-HsRAD51C stabilizes the HsRAD51 nucleoprotein filament. DNA Repair (Amst) 2013; 12:723-32. [PMID: 23810717 DOI: 10.1016/j.dnarep.2013.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/28/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022]
Abstract
There are six human RAD51 related proteins (HsRAD51 paralogs), HsRAD51B, HsRAD51C, HsRAD51D, HsXRCC2, HsXRCC3 and HsDMC1, that appear to enhance HsRAD51 mediated homologous recombinational (HR) repair of DNA double strand breaks (DSBs). Here we model the structures of HsRAD51, HsRAD51B and HsRAD51C and show similar domain orientations within a hypothetical nucleoprotein filament (NPF). We then demonstrate that HsRAD51B-HsRAD51C heterodimer forms stable complex on ssDNA and partially stabilizes the HsRAD51 NPF against the anti-recombinogenic activity of BLM. Moreover, HsRAD51B-HsRAD51C stimulates HsRAD51 mediated D-loop formation in the presence of RPA. However, HsRAD51B-HsRAD51C does not facilitate HsRAD51 nucleation on a RPA coated ssDNA. These results suggest that the HsRAD51B-HsRAD51C complex plays a role in stabilizing the HsRAD51 NPF during the presynaptic phase of HR, which appears downstream of BRCA2-mediated HsRAD51 NPF formation.
Collapse
|