1
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
2
|
Hou Z, Yu T, Yi Q, Du Y, Zhou L, Zhao Y, Wu Y, Wu L, Wang T, Bian P. High-complexity of DNA double-strand breaks is key for alternative end-joining choice. Commun Biol 2024; 7:936. [PMID: 39095441 PMCID: PMC11297215 DOI: 10.1038/s42003-024-06640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The repair of DNA double-strand breaks (DSBs) through alternative non-homologous end-joining (alt-NHEJ) pathway significantly contributes to genetic instability. However, the mechanism governing alt-NHEJ pathway choice, particularly its association with DSB complexity, remains elusive due to the absence of a suitable reporter system. In this study, we established a unique Escherichia coli reporter system for detecting complex DSB-initiated alternative end-joining (A-EJ), an alt-NHEJ-like pathway. By utilizing various types of ionizing radiation to generate DSBs with varying degrees of complexity, we discovered that high complexity of DSBs might be a determinant for A-EJ choice. To facilitate efficient repair of high-complexity DSBs, A-EJ employs distinct molecular patterns such as longer micro-homologous junctions and non-templated nucleotide addition. Furthermore, the A-EJ choice is modulated by the degree of homology near DSB loci, competing with homologous recombination machinery. These findings further enhance the understanding of A-EJ/alt-NHEJ pathway choice.
Collapse
Affiliation(s)
- Zhiyang Hou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Tianxiang Yu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lijun Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ting Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Po Bian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Qian H, Margaretha Plat A, Jonker A, Hoebe RA, Krawczyk P. Super-resolution GSDIM microscopy unveils distinct nanoscale characteristics of DNA repair foci under diverse genotoxic stress. DNA Repair (Amst) 2024; 134:103626. [PMID: 38232606 DOI: 10.1016/j.dnarep.2024.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
DNA double-strand breaks initiate the DNA damage response (DDR), leading to the accumulation of repair proteins at break sites and the formation of the-so-called foci. Various microscopy methods, such as wide-field, confocal, electron, and super-resolution microscopy, have been used to study these structures. However, the impact of different DNA-damaging agents on their (nano)structure remains unclear. Utilising GSDIM super-resolution microscopy, here we investigated the distribution of fluorescently tagged DDR proteins (53BP1, RNF168, MDC1) and γH2AX in U2OS cells treated with γ-irradiation, etoposide, cisplatin, or hydroxyurea. Our results revealed that both foci structure and their nanoscale ultrastructure, including foci size, nanocluster characteristics, fluorophore density and localisation, can be significantly altered by different inducing agents, even ones with similar mechanisms. Furthermore, distinct behaviours of DDR proteins were observed under the same treatment. These findings have implications for cancer treatment strategies involving these agents and provide insights into the nanoscale organisation of the DDR.
Collapse
Affiliation(s)
- Haibin Qian
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Audrey Margaretha Plat
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ard Jonker
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Ron A Hoebe
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Przemek Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Tsai LK, Peng M, Chang CC, Wen L, Liu L, Liang X, Chen YE, Xu J, Sung LY. ZSCAN4 interacts with PARP1 to promote DNA repair in mouse embryonic stem cells. Cell Biosci 2023; 13:193. [PMID: 37875990 PMCID: PMC10594928 DOI: 10.1186/s13578-023-01140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In eukaryotic cells, DNA double strand breaks (DSB) are primarily repaired by canonical non-homologous end joining (c-NHEJ), homologous recombination (HR) and alternative NHEJ (alt-NHEJ). Zinc finger and SCAN domain containing 4 (ZSCAN4), sporadically expressed in 1-5% mouse embryonic stem cells (mESCs), is known to regulate genome stability by promoting HR. RESULTS Here we show that ZSCAN4 promotes DNA repair by acting with Poly (ADP-ribose) polymerase 1 (PARP1), which is a key member of the alt-NHEJ pathway. In the presence of PARP1, ZSCAN4-expressing mESCs are associated with lower extent of endogenous or chemical induced DSB comparing to ZSCAN4-negative ones. Reduced DSBs associated with ZSCAN4 are abolished by PARP1 inhibition, achieved either through small molecule inhibitor or gene knockout in mESCs. Furthermore, PARP1 binds directly to ZSCAN4, and the second ⍺-helix and the fourth zinc finger motif of ZSCAN4 are critical for this binding. CONCLUSIONS These data reveal that PARP1 and ZSCAN4 have a protein-protein interaction, and shed light on the molecular mechanisms by which ZSCAN4 reduces DSB in mESCs.
Collapse
Affiliation(s)
- Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Luan Wen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Center for Developmental Biology and Regenerative Medicine, Taipei, 106, Taiwan, ROC.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
6
|
Mladenov E, Mladenova V, Stuschke M, Iliakis G. New Facets of DNA Double Strand Break Repair: Radiation Dose as Key Determinant of HR versus c-NHEJ Engagement. Int J Mol Sci 2023; 24:14956. [PMID: 37834403 PMCID: PMC10573367 DOI: 10.3390/ijms241914956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Radiation therapy is an essential component of present-day cancer management, utilizing ionizing radiation (IR) of different modalities to mitigate cancer progression. IR functions by generating ionizations in cells that induce a plethora of DNA lesions. The most detrimental among them are the DNA double strand breaks (DSBs). In the course of evolution, cells of higher eukaryotes have evolved four major DSB repair pathways: classical non-homologous end joining (c-NHEJ), homologous recombination (HR), alternative end-joining (alt-EJ), and single strand annealing (SSA). These mechanistically distinct repair pathways have different cell cycle- and homology-dependencies but, surprisingly, they operate with widely different fidelity and kinetics and therefore contribute unequally to cell survival and genome maintenance. It is therefore reasonable to anticipate tight regulation and coordination in the engagement of these DSB repair pathway to achieve the maximum possible genomic stability. Here, we provide a state-of-the-art review of the accumulated knowledge on the molecular mechanisms underpinning these repair pathways, with emphasis on c-NHEJ and HR. We discuss factors and processes that have recently come to the fore. We outline mechanisms steering DSB repair pathway choice throughout the cell cycle, and highlight the critical role of DNA end resection in this process. Most importantly, however, we point out the strong preference for HR at low DSB loads, and thus low IR doses, for cells irradiated in the G2-phase of the cell cycle. We further explore the molecular underpinnings of transitions from high fidelity to low fidelity error-prone repair pathways and analyze the coordination and consequences of this transition on cell viability and genomic stability. Finally, we elaborate on how these advances may help in the development of improved cancer treatment protocols in radiation therapy.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
7
|
Wooten J, Mavingire N, Damar K, Loaiza-Perez A, Brantley E. Triumphs and challenges in exploiting poly(ADP-ribose) polymerase inhibition to combat triple-negative breast cancer. J Cell Physiol 2023; 238:1625-1640. [PMID: 37042191 DOI: 10.1002/jcp.31015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates a myriad of DNA repair mechanisms to preserve genomic integrity following DNA damage. PARP inhibitors (PARPi) confer synthetic lethality in malignancies with a deficiency in the homologous recombination (HR) pathway. Patients with triple-negative breast cancer (TNBC) fail to respond to most targeted therapies because their tumors lack expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Certain patients with TNBC harbor mutations in HR mediators such as breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2), enabling them to respond to PARPi. PARPi exploits the synthetic lethality of BRCA-mutant cells. However, de novo and acquired PARPi resistance frequently ensue. In this review, we discuss the roles of PARP in mediating DNA repair processes in breast epithelial cells, mechanisms of PARPi resistance in TNBC, and recent advances in the development of agents designed to overcome PARPi resistance in TNBC.
Collapse
Affiliation(s)
- Jonathan Wooten
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Nicole Mavingire
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Katherine Damar
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eileen Brantley
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| |
Collapse
|
8
|
Muggiolu G, Torfeh E, Simon M, Devès G, Seznec H, Barberet P. Recruitment Kinetics of XRCC1 and RNF8 Following MeV Proton and α-Particle Micro-Irradiation. BIOLOGY 2023; 12:921. [PMID: 37508352 PMCID: PMC10376363 DOI: 10.3390/biology12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Time-lapse fluorescence imaging coupled to micro-irradiation devices provides information on the kinetics of DNA repair protein accumulation, from a few seconds to several minutes after irradiation. Charged-particle microbeams are valuable tools for such studies since they provide a way to selectively irradiate micrometric areas within a cell nucleus, control the dose and the micro-dosimetric quantities by means of advanced detection systems and Monte Carlo simulations and monitor the early cell response by means of beamline microscopy. We used the charged-particle microbeam installed at the AIFIRA facility to perform micro-irradiation experiments and measure the recruitment kinetics of two proteins involved in DNA signaling and repair pathways following exposure to protons and α-particles. We developed and validated image acquisition and processing methods to enable a systematic study of the recruitment kinetics of GFP-XRCC1 and GFP-RNF8. We show that XRCC1 is recruited to DNA damage sites a few seconds after irradiation as a function of the total deposited energy and quite independently of the particle LET. RNF8 is recruited to DNA damage sites a few minutes after irradiation and its recruitment kinetics depends on the particle LET.
Collapse
Affiliation(s)
| | - Eva Torfeh
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Marina Simon
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Guillaume Devès
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Hervé Seznec
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | | |
Collapse
|
9
|
Li F, Mladenov E, Sun Y, Soni A, Stuschke M, Timmermann B, Iliakis G. Low CDK Activity and Enhanced Degradation by APC/C CDH1 Abolishes CtIP Activity and Alt-EJ in Quiescent Cells. Cells 2023; 12:1530. [PMID: 37296650 PMCID: PMC10252496 DOI: 10.3390/cells12111530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Alt-EJ is an error-prone DNA double-strand break (DSBs) repair pathway coming to the fore when first-line repair pathways, c-NHEJ and HR, are defective or fail. It is thought to benefit from DNA end-resection-a process whereby 3' single-stranded DNA-tails are generated-initiated by the CtIP/MRE11-RAD50-NBS1 (MRN) complex and extended by EXO1 or the BLM/DNA2 complex. The connection between alt-EJ and resection remains incompletely characterized. Alt-EJ depends on the cell cycle phase, is at maximum in G2-phase, substantially reduced in G1-phase and almost undetectable in quiescent, G0-phase cells. The mechanism underpinning this regulation remains uncharacterized. Here, we compare alt-EJ in G1- and G0-phase cells exposed to ionizing radiation (IR) and identify CtIP-dependent resection as the key regulator. Low levels of CtIP in G1-phase cells allow modest resection and alt-EJ, as compared to G2-phase cells. Strikingly, CtIP is undetectable in G0-phase cells owing to APC/C-mediated degradation. The suppression of CtIP degradation with bortezomib or CDH1-depletion rescues CtIP and alt-EJ in G0-phase cells. CtIP activation in G0-phase cells also requires CDK-dependent phosphorylation by any available CDK but is restricted to CDK4/6 at the early stages of the normal cell cycle. We suggest that suppression of mutagenic alt-EJ in G0-phase is a mechanism by which cells of higher eukaryotes maintain genomic stability in a large fraction of non-cycling cells in their organisms.
Collapse
Affiliation(s)
- Fanghua Li
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Yanjie Sun
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
| | - Aashish Soni
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (F.L.); (E.M.); (Y.S.); (A.S.)
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
10
|
Helderman RFCPA, Bokan B, van Bochove GGW, Rodermond HM, Thijssen E, Marchal W, Torang A, Löke DR, Franken NAP, Kok HP, Tanis PJ, Crezee J, Oei AL. Elevated temperatures and longer durations improve the efficacy of oxaliplatin- and mitomycin C-based hyperthermic intraperitoneal chemotherapy in a confirmed rat model for peritoneal metastasis of colorectal cancer origin. Front Oncol 2023; 13:1122755. [PMID: 37007077 PMCID: PMC10064448 DOI: 10.3389/fonc.2023.1122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionIn patients with limited peritoneal metastasis (PM) originating from colorectal cancer, cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a potentially curative treatment option. This combined treatment modality using HIPEC with mitomycin C (MMC) for 90 minutes proved to be superior to systemic chemotherapy alone, but no benefit of adding HIPEC to CRS alone was shown using oxaliplatin-based HIPEC during 30 minutes. We investigated the impact of treatment temperature and duration as relevant HIPEC parameters for these two chemotherapeutic agents in representative preclinical models. The temperature- and duration- dependent efficacy for both oxaliplatin and MMC was evaluated in an in vitro setting and in a representative animal model.MethodsIn 130 WAG/Rij rats, PM were established through i.p. injections of rat CC-531 colon carcinoma cells with a signature similar to the dominant treatment-resistant CMS4 type human colorectal PM. Tumor growth was monitored twice per week using ultrasound, and HIPEC was applied when most tumors were 4-6 mm. A semi-open four-inflow HIPEC setup was used to circulate oxaliplatin or MMC through the peritoneum for 30, 60 or 90 minutes with inflow temperatures of 38°C or 42°C to achieve temperatures in the peritoneum of 37°C or 41°C. Tumors, healthy tissue and blood were collected directly or 48 hours after treatment to assess the platinum uptake, level of apoptosis and proliferation and to determine the healthy tissue toxicity.ResultsIn vitro results show a temperature- and duration- dependent efficacy for both oxaliplatin and MMC in both CC-531 cells and organoids. Temperature distribution throughout the peritoneum of the rats was stable with normothermic and hyperthermic average temperatures in the peritoneum ranging from 36.95-37.63°C and 40.51-41.37°C, respectively. Treatments resulted in minimal body weight decrease (<10%) and only 7/130 rats did not reach the endpoint of 48 hours after treatment.ConclusionsBoth elevated temperatures and longer treatment duration resulted in a higher platinum uptake, significantly increased apoptosis and lower proliferation in PM tumor lesions, without enhanced normal tissue toxicity. Our results demonstrated that oxaliplatin- and MMC-based HIPEC procedures are both temperature- and duration-dependent in an in vivo tumor model.
Collapse
Affiliation(s)
- Roxan F. C. P. A. Helderman
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bella Bokan
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gregor G. W. van Bochove
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hans M. Rodermond
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Elsy Thijssen
- Institute for Materials Research, Analytical and Circular Chemistry, Hasselt University, Diepenbeek, Belgium
| | - Wouter Marchal
- Institute for Materials Research, Analytical and Circular Chemistry, Hasselt University, Diepenbeek, Belgium
| | - Arezo Torang
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Daan R. Löke
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A. P. Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Pieter J. Tanis
- Department of Surgery, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Arlene L. Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers (UMC) Location University of Amsterdam, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
- *Correspondence: Arlene L. Oei,
| |
Collapse
|
11
|
Tanihara F, Hirata M, Namula Z, Do LTK, Yoshimura N, Lin Q, Takebayashi K, Sakuma T, Yamamoto T, Otoi T. Pigs with an INS point mutation derived from zygotes electroporated with CRISPR/Cas9 and ssODN. Front Cell Dev Biol 2023; 11:884340. [PMID: 36711037 PMCID: PMC9880039 DOI: 10.3389/fcell.2023.884340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Just one amino acid at the carboxy-terminus of the B chain distinguishes human insulin from porcine insulin. By introducing a precise point mutation into the porcine insulin (INS) gene, we were able to generate genetically modified pigs that secreted human insulin; these pigs may be suitable donors for islet xenotransplantation. The electroporation of the CRISPR/Cas9 gene-editing system into zygotes is frequently used to establish genetically modified rodents, as it requires less time and no micromanipulation. However, electroporation has not been used to generate point-mutated pigs yet. In the present study, we introduced a point mutation into porcine zygotes via electroporation using the CRISPR/Cas9 system to generate INS point-mutated pigs as suitable islet donors. We first optimized the efficiency of introducing point mutations by evaluating the effect of Scr7 and the homology arm length of ssODN on improving homology-directed repair-mediated gene modification. Subsequently, we prepared electroporated zygotes under optimized conditions and transferred them to recipient gilts. Two recipients became pregnant and delivered five piglets. Three of the five piglets carried only the biallelic frame-shift mutation in the INS gene, whereas the other two successfully carried the desired point mutation. One of the two pigs mated with a WT boar, and this desired point mutation was successfully inherited in the next F1 generation. In conclusion, we successfully established genetically engineered pigs with the desired point mutation via electroporation-mediated introduction of the CRISPR/Cas9 system into zygotes, thereby avoiding the time-consuming and complicated micromanipulation method.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Naoaki Yoshimura
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Koki Takebayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan,Bio-Innovation Research Center, Tokushima University, Tokushima, Japan,*Correspondence: Takeshige Otoi,
| |
Collapse
|
12
|
Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Diaz-Pacheco BN, Berson E, Colaiácovo MP. Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genet 2023; 19:e1010627. [PMID: 36706157 PMCID: PMC9907818 DOI: 10.1371/journal.pgen.1010627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N. Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Mirjalili Mohanna SZ, Djaksigulova D, Hill AM, Wagner PK, Simpson EM, Leavitt BR. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J Control Release 2022; 350:401-413. [PMID: 36029893 DOI: 10.1016/j.jconrel.2022.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
CRISPR/Cas9-based genome-editing therapies are poised to change the clinical outcome for many diseases with validated therapeutic targets awaiting an appropriate delivery system. Recent advances in lipid nanoparticle (LNP) technology make them an attractive platform for the delivery of various forms of CRISPR/Cas9, including the efficient and transient Cas9/gRNA ribonucleoprotein (RNP) complexes. In this study, we initially tested our novel LNP platform by delivering pre-complexed RNPs and template DNA to cultured mouse cortical neurons, and obtained successful ex vivo genome editing. We then directly injected LNP-packaged RNPs and DNA template into the mouse cornea to evaluate in vivo delivery. For the first time, we demonstrated wide-spread genome editing in the cornea using our LNP-RNPs. The ability of our LNPs to transfect the cornea highlights the potential of our novel delivery platform to be used in CRISPR/Cas9-based genome editing therapies of corneal diseases.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Diana Djaksigulova
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | | | | | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada; Incisive Genetics Inc., Vancouver, BC, Canada
| |
Collapse
|
14
|
Hill RM, Rocha S, Parsons JL. Overcoming the Impact of Hypoxia in Driving Radiotherapy Resistance in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:4130. [PMID: 36077667 PMCID: PMC9454974 DOI: 10.3390/cancers14174130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia is very common in most solid tumours and is a driving force for malignant progression as well as radiotherapy and chemotherapy resistance. Incidences of head and neck squamous cell carcinoma (HNSCC) have increased in the last decade and radiotherapy is a major therapeutic technique utilised in the treatment of the tumours. However, effectiveness of radiotherapy is hindered by resistance mechanisms and most notably by hypoxia, leading to poor patient prognosis of HNSCC patients. The phenomenon of hypoxia-induced radioresistance was identified nearly half a century ago, yet despite this, little progress has been made in overcoming the physical lack of oxygen. Therefore, a more detailed understanding of the molecular mechanisms of hypoxia and the underpinning radiobiological response of tumours to this phenotype is much needed. In this review, we will provide an up-to-date overview of how hypoxia alters molecular and cellular processes contributing to radioresistance, particularly in the context of HNSCC, and what strategies have and could be explored to overcome hypoxia-induced radioresistance.
Collapse
Affiliation(s)
- Rhianna M. Hill
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L7 8TX, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington CH63 4JY, UK
| |
Collapse
|
15
|
Cheng Z, Wang Y, Guo L, Li J, Zhang W, Zhang C, Liu Y, Huang Y, Xu K. Ku70 affects the frequency of chromosome translocation in human lymphocytes after radiation and T-cell acute lymphoblastic leukemia. Radiat Oncol 2022; 17:144. [PMID: 35986335 PMCID: PMC9389784 DOI: 10.1186/s13014-022-02113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background As one of the most common chromosomal causes, chromosome translocation leads to T-cell acute lymphoblastic leukemia (T-ALL). Ku70 is one of the key factors of error-prone DNA repair and it may end in translocation. So far, the direct correlation between Ku70 and translocation has not been assessed. This study aimed to investigate the association between Ku70 and translocation in human lymphocytes after radiation and T-ALL. Methods Peripheral blood lymphocytes (PBLs) from volunteers and human lymphocyte cell line AHH-1 were irradiated with X-rays to form the chromosome translocations. Phytohemagglutinin (PHA) was used to stimulate lymphocytes. The frequency of translocation was detected by fluorescence in situ hybridization (FISH). Meanwhile, the expression of Ku70 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Furthermore, Ku70 interference, overexpression and chemical inhibition were used in AHH-1 cell lines to confirm the correlation. Finally, the expression of Ku70 in T-ALL samples with or without translocation was detected. Results The expression of Ku70 and frequencies of translocation were both significantly increased in PBLs after being irradiated by X-rays, and a positive correlation between the expression (both mRNA and protein level) of Ku70 and the frequency of translocation was detected (r = 0.4877, P = 0.004; r = 0.3038, P = 0.0358 respectively). Moreover, Ku70 interference decreased the frequency of translocations, while the frequency of translocations was not significantly affected after Ku70 overexpression. The expression of Ku70 and frequencies of translocation were both significantly increased in cells after irradiation, combined with chemical inhibition (P < 0.01). The protein level and mRNA level of Ku70 in T-ALL with translocation were obviously higher than T-ALL with normal karyotype (P = 0.009, P = 0.049 respectively). Conclusions Ku70 is closely associated with the frequency of chromosome translocation in human lymphocytes after radiation and T-ALL. Ku70 might be a radiation damage biomarker and a potential tumor therapy target. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02113-3.
Collapse
|
16
|
Mladenov E, Paul-Konietzko K, Mladenova V, Stuschke M, Iliakis G. Increased Gene Targeting in Hyper-Recombinogenic LymphoBlastoid Cell Lines Leaves Unchanged DSB Processing by Homologous Recombination. Int J Mol Sci 2022; 23:9180. [PMID: 36012445 PMCID: PMC9409177 DOI: 10.3390/ijms23169180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In the cells of higher eukaryotes, sophisticated mechanisms have evolved to repair DNA double-strand breaks (DSBs). Classical nonhomologous end joining (c-NHEJ), homologous recombination (HR), alternative end joining (alt-EJ) and single-strand annealing (SSA) exploit distinct principles to repair DSBs throughout the cell cycle, resulting in repair outcomes of different fidelity. In addition to their functions in DSB repair, the same repair pathways determine how cells integrate foreign DNA or rearrange their genetic information. As a consequence, random integration of DNA fragments is dominant in somatic cells of higher eukaryotes and suppresses integration events at homologous genomic locations, leading to very low gene-targeting efficiencies. However, this response is not universal, and embryonic stem cells display increased targeting efficiency. Additionally, lymphoblastic chicken and human cell lines DT40 and NALM6 show up to a 1000-fold increased gene-targeting efficiency that is successfully harnessed to generate knockouts for a large number of genes. We inquired whether the increased gene-targeting efficiency of DT40 and NALM6 cells is linked to increased rates of HR-mediated DSB repair after exposure to ionizing radiation (IR). We analyzed IR-induced γ-H2AX foci as a marker for the total number of DSBs induced in a cell and RAD51 foci as a marker for the fraction of those DSBs undergoing repair by HR. We also evaluated RPA accretion on chromatin as evidence for ongoing DNA end resection, an important initial step for all pathways of DSB repair except c-NHEJ. We finally employed the DR-GFP reporter assay to evaluate DSB repair by HR in DT40 cells. Collectively, the results obtained, unexpectedly show that DT40 and NALM6 cells utilized HR for DSB repair at levels very similar to those of other somatic cells. These observations uncouple gene-targeting efficiency from HR contribution to DSB repair and suggest the function of additional mechanisms increasing gene-targeting efficiency. Indeed, our results show that analysis of the contribution of HR to DSB repair may not be used as a proxy for gene-targeting efficiency.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Katja Paul-Konietzko
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
17
|
Small-molecule enhancers of CRISPR-induced homology-directed repair in gene therapy: A medicinal chemist's perspective. Drug Discov Today 2022; 27:2510-2525. [PMID: 35738528 DOI: 10.1016/j.drudis.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022]
Abstract
CRISPR technologies are increasingly being investigated and utilized for the treatment of human genetic diseases via genome editing. CRISPR-Cas9 first generates a targeted DNA double-stranded break, and a functional gene can then be introduced to replace the defective copy in a precise manner by templated repair via the homology-directed repair (HDR) pathway. However, this is challenging owing to the relatively low efficiency of the HDR pathway compared with a rival random repair pathway known as non-homologous end joining (NHEJ). Small molecules can be employed to increase the efficiency of HDR and decrease that of NHEJ to improve the efficiency of precise knock-in genome editing. This review discusses the potential usage of such small molecules in the context of gene therapy and their drug-likeness, from a medicinal chemist's perspective.
Collapse
|
18
|
Jamsen JA, Shock DD, Wilson SH. Watching right and wrong nucleotide insertion captures hidden polymerase fidelity checkpoints. Nat Commun 2022; 13:3193. [PMID: 35680862 PMCID: PMC9184648 DOI: 10.1038/s41467-022-30141-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Efficient and accurate DNA synthesis is enabled by DNA polymerase fidelity checkpoints that promote insertion of the right instead of wrong nucleotide. Erroneous X-family polymerase (pol) λ nucleotide insertion leads to genomic instability in double strand break and base-excision repair. Here, time-lapse crystallography captures intermediate catalytic states of pol λ undergoing right and wrong natural nucleotide insertion. The revealed nucleotide sensing mechanism responds to base pair geometry through active site deformation to regulate global polymerase-substrate complex alignment in support of distinct optimal (right) or suboptimal (wrong) reaction pathways. An induced fit during wrong but not right insertion, and associated metal, substrate, side chain and pyrophosphate reaction dynamics modulated nucleotide insertion. A third active site metal hastened right but not wrong insertion and was not essential for DNA synthesis. The previously hidden fidelity checkpoints uncovered reveal fundamental strategies of polymerase DNA repair synthesis in genomic instability. DNA polymerase (pol) λ performs DNA synthesis in base excision and double strand break repair. How pol λ accomplishes nucleotide insertion that can lead to mutagenesis and genomic instability was unclear. Here the authors employ time-lapse crystallography to reveal hidden polymerase checkpoints that enable right and wrong natural nucleotide insertion by pol λ.
Collapse
Affiliation(s)
- Joonas A Jamsen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
19
|
Moyret-Lalle C, Prodhomme MK, Burlet D, Kashiwagi A, Petrilli V, Puisieux A, Seimiya H, Tissier A. Role of EMT in the DNA damage response, double-strand break repair pathway choice and its implications in cancer treatment. Cancer Sci 2022; 113:2214-2223. [PMID: 35534984 PMCID: PMC9277259 DOI: 10.1111/cas.15389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Numerous epithelial–mesenchymal transition (EMT) characteristics have now been demonstrated to participate in tumor development. Indeed, EMT is involved in invasion, acquisition of stem cell properties, and therapy‐associated resistance of cancer cells. Together, these mechanisms offer advantages in adapting to changes in the tumor microenvironment. However, recent findings have shown that EMT‐associated transcription factors (EMT‐TFs) may also be involved in DNA repair. A better understanding of the coordination between the DNA repair pathways and the role played by some EMT‐TFs in the DNA damage response (DDR) should pave the way for new treatments targeting tumor‐specific molecular vulnerabilities, which result in selective destruction of cancer cells. Here we review recent advances, providing novel insights into the role of EMT in the DDR and repair pathways, with a particular focus on the influence of EMT on cellular sensitivity to damage, as well as the implications of these relationships for improving the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Caroline Moyret-Lalle
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France.,LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - Mélanie K Prodhomme
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Delphine Burlet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Ayaka Kashiwagi
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Virginie Petrilli
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| | - Alain Puisieux
- Institut Curie, Versailles Saint-Quentin-en-Yvelines University, PSL Research University, Paris, France
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Agnès Tissier
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
20
|
Zirin J, Bosch J, Viswanatha R, Mohr SE, Perrimon N. State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends Genet 2022; 38:437-453. [PMID: 34933779 PMCID: PMC9007876 DOI: 10.1016/j.tig.2021.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
For more than 100 years, the fruit fly, Drosophila melanogaster, has served as a powerful model organism for biological and biomedical research due to its many genetic and physiological similarities to humans and the availability of sophisticated technologies used to manipulate its genome and genes. The Drosophila research community quickly adopted CRISPR technologies and, in the 8 years since the first clustered regularly interspaced short palindromic repeats (CRISPR) publications in flies, has explored and innovated methods for mutagenesis, precise genome engineering, and beyond. Moreover, the short lifespan and ease of genetics have made Drosophila an ideal testing ground for in vivo applications and refinements of the rapidly evolving set of CRISPR-associated (CRISPR-Cas) tools. Here, we review innovations in delivery of CRISPR reagents, increased efficiency of cutting and homology-directed repair (HDR), and alternatives to standard Cas9-based approaches. While the focus is primarily on in vivo systems, we also describe the role of Drosophila cultured cells as both an indispensable first step in the process of assessing new CRISPR technologies and a platform for genome-wide CRISPR pooled screens.
Collapse
Affiliation(s)
- Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Justin Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Czajkowski D, Szmyd R, Gee HE. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J Med Imaging Radiat Oncol 2022; 66:546-559. [PMID: 35460184 PMCID: PMC9321602 DOI: 10.1111/1754-9485.13413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
The DNA damage response (DDR) is a complex set of downstream pathways triggered in response to DNA damage to maintain genomic stability. Many tumours exhibit mutations which inactivate components of the DDR, making them prone to the accumulation of DNA defects. These can both facilitate the development of tumours and provide potential targets for novel therapeutic interventions. The inhibition of the DDR has been shown to induce radiosensitivity in certain cancers, rendering them susceptible to treatment with radiotherapy and improving the therapeutic window. Moreover, DDR defects are a strong predictor of patient response to immune checkpoint inhibition (ICI). The ability to target the DDR selectively has the potential to expand the tumour neoantigen repertoire, thus increasing tumour immunogenicity and facilitating a CD8+ T and NK cell response against cancer cells. Combinatorial approaches, which seek to integrate DDR inhibition with radiotherapy and immunotherapy, have shown promise in early trials. Further studies are necessary to understand these synergies and establish reliable biomarkers.
Collapse
Affiliation(s)
| | - Radosław Szmyd
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| | - Harriet E Gee
- University of Sydney, Sydney, New South Wales, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
IJff M, Crezee J, Oei AL, Stalpers LJA, Westerveld H. The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review. Int J Gynecol Cancer 2022; 32:288-296. [PMID: 35046082 PMCID: PMC8921566 DOI: 10.1136/ijgc-2021-002473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy with cisplatin (chemoradiation) is the standard treatment for women with locally advanced cervical cancer. Radiotherapy with deep hyperthermia (thermoradiation) is a well established alternative, but is rarely offered as an alternative to chemoradiation, particularly for patients in whom cisplatin is contraindicated. The scope of this review is to provide an overview of the biological rationale of hyperthermia treatment delivery, including patient workflow, and the clinical effectiveness of hyperthermia as a radiosensitizer in the treatment of cervical cancer. Hyperthermia is especially effective in hypoxic and nutrient deprived areas of the tumor where radiotherapy is less effective. Its radiosensitizing effectiveness depends on the temperature level, duration of treatment, and the time interval between radiotherapy and hyperthermia. High quality hyperthermia treatment requires an experienced team, adequate online adaptive treatment planning, and is preferably performed using a phased array radiative locoregional hyperthermia device to achieve the optimal thermal dose effect. Hyperthermia is well tolerated and generally leads to only mild toxicity, such as patient discomfort. Patients in whom cisplatin is contraindicated should therefore be referred to a hyperthermia center for thermoradiation.
Collapse
Affiliation(s)
- Marloes IJff
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Henrike Westerveld
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Benjamin R, Banerjee A, Wu X, Geurink C, Buczek L, Eames D, Trimidal SG, Pluth JM, Schiller MR. XRCC4 and MRE11 Roles and Transcriptional Response to Repair of TALEN-Induced Double-Strand DNA Breaks. Int J Mol Sci 2022; 23:ijms23020593. [PMID: 35054780 PMCID: PMC8776116 DOI: 10.3390/ijms23020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Double-strand breaks (DSB) are one of the most lethal forms of DNA damage that, if left unrepaired, can lead to genomic instability, cellular transformation, and cell death. In this work, we examined how repair of transcription activator-like effector nuclease (TALEN)-induced DNA damage was altered when knocking out, or inhibiting a function of, two DNA repair proteins, XRCC4 and MRE11, respectively. We developed a fluorescent reporter assay that uses TALENs to introduce DSB and detected repair by the presence of GFP fluorescence. We observed repair of TALEN-induced breaks in the XRCC4 knockout cells treated with mirin (a pharmacological inhibitor of MRE11 exonuclease activity), albeit with ~40% reduced efficiency compared to normal cells. Editing in the absence of XRCC4 or MRE11 exonuclease was robust, with little difference between the indel profiles amongst any of the groups. Reviewing the transcriptional profiles of the mirin-treated XRCC4 knockout cells showed 307 uniquely differentially expressed genes, a number far greater than for either of the other cell lines (the HeLa XRCC4 knockout sample had 83 genes, and the mirin-treated HeLa cells had 30 genes uniquely differentially expressed). Pathways unique to the XRCC4 knockout+mirin group included differential expression of p53 downstream pathways, and metabolic pathways indicating cell adaptation for energy regulation and stress response. In conclusion, our study showed that TALEN-induced DSBs are repaired, even when a key DSB repair protein or protein function is not operational, without a change in indel profiles. However, transcriptional profiles indicate the induction of unique cellular responses dependent upon the DNA repair protein(s) hampered.
Collapse
Affiliation(s)
- Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
| | - Corey Geurink
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Lindsay Buczek
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Danielle Eames
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Sara G. Trimidal
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Janice M. Pluth
- Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (A.B.); (X.W.); (C.G.); (L.B.); (D.E.); (S.G.T.)
- School of Life Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Correspondence: (R.B.); (M.R.S.); Tel.: +1-(702)927-9325 (R.B.); +1-(702)895-5546 (M.R.S.)
| |
Collapse
|
24
|
So A, Dardillac E, Muhammad A, Chailleux C, Sesma-Sanz L, Ragu S, Le Cam E, Canitrot Y, Masson J, Dupaigne P, Lopez BS, Guirouilh-Barbat J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2651-2666. [PMID: 35137208 PMCID: PMC8934640 DOI: 10.1093/nar/gkac073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.
Collapse
Affiliation(s)
- Ayeong So
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ali Muhammad
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | | | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Sandrine Ragu
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Yvan Canitrot
- CBI, CNRS UMR5088, LBCMCP, Toulouse University, Toulouse, France
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Bernard S Lopez
- To whom correspondence should be addressed. Tel: +33 1 53 73 27 40;
| | | |
Collapse
|
25
|
Sun X, Bai J, Xu J, Xi X, Gu M, Zhu C, Xue H, Chen C, Dong J. Multiple DSB Resection Activities Redundantly Promote Alternative End Joining-Mediated Class Switch Recombination. Front Cell Dev Biol 2021; 9:767624. [PMID: 34926456 PMCID: PMC8671047 DOI: 10.3389/fcell.2021.767624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023] Open
Abstract
Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.
Collapse
Affiliation(s)
- Xikui Sun
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jingning Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiaoli Xi
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Gu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengming Zhu
- Research Center of the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
26
|
Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021; 10:51. [PMID: 34732266 PMCID: PMC8564991 DOI: 10.1186/s40164-021-00242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.
Collapse
Affiliation(s)
- Mohsen Valikhani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences, Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Wittayarat M, Hirata M, Namula Z, Sato Y, Nguyen NT, Le QA, Lin Q, Takebayashi K, Tanihara F, Otoi T. Introduction of a point mutation in the KRAS gene of in vitro fertilized porcine zygotes via electroporation of the CRISPR/Cas9 system with single-stranded oligodeoxynucleotides. Anim Sci J 2021; 92:e13534. [PMID: 33638256 DOI: 10.1111/asj.13534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate the efficiency of KRAS gene editing via CRISPR/Cas9 delivery by electroporation and analyzed the effects of the non-homologous end-joining pathway inhibitor Scr7 and single-stranded oligodeoxynucleotide (ssODN) homology arm length on introducing a point mutation in KRAS. Various concentrations (0-2 µM) of Scr7 were evaluated; all concentrations of Scr7 including 0 µM resulted in the generation of blastocysts with a point mutation and the wild-type sequence or indels. No significant differences in the blastocyst formation rates of electroporated zygotes were observed among ssODN homology arm lengths, irrespective of the gRNA (gRNA1 and gRNA2). The proportion of blastocysts carrying a point mutation with or without the wild-type sequence and indels was significantly higher in the ssODN20 group (i.e., the group with a ssODN homology arm of 20 bp) than in the ssODN60 group (gRNA1: 25.7% vs. 5.4% and gRNA2: 45.5% vs. 5.9%, p < .05). In conclusion, the CRISPR/Cas9 delivery with ssODN via electroporation is feasible for the generation of point mutations in porcine embryos. Further studies are required to improve the efficiency and accuracy of the homology-directed repair.
Collapse
Affiliation(s)
- Manita Wittayarat
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,College of Agricultural Science, Guangdong Ocean University, Guangdong, China
| | - Yoko Sato
- School of Biological Science, Tokai University, Sapporo, Japan
| | - Nhien T Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Quynh A Le
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Koki Takebayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
28
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
29
|
Immunological abnormalities in patients with early-onset ataxia with ocular motor apraxia and hypoalbuminemia. Clin Immunol 2021; 229:108776. [PMID: 34118401 DOI: 10.1016/j.clim.2021.108776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022]
Abstract
Early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH) is a neurodegenerative disorder caused by mutation in the aprataxin (APTX)-coding gene APTX, which is involved in DNA single-strand break repair (SSBR). The neurological abnormalities associated with EAOH are similar to those observed in patients with ataxia-telangiectasia. However, the immunological abnormalities in patients with EAOH have not been described. In this study, we report that EAOH patients have immunological abnormalities, including lymphopenia; decreased levels of CD4+ T-cells, CD8+ T-cells, and B-cells; hypogammaglobulinemia; low T-cell recombination excision circles and kappa-deleting element recombination circles; and oligoclonality of T-cell receptor β-chain variable repertoire. These immunological abnormalities vary among the EAOH patients. Additionally, mild radiosensitivity in the lymphocytes obtained from the patients with EAOH was demonstrated. These findings suggested that the immunological abnormalities and mild radiosensitivity evident in patients with EAOH could be probably caused by the DNA repair defects.
Collapse
|
30
|
Jensen RB, Rothenberg E. Preserving genome integrity in human cells via DNA double-strand break repair. Mol Biol Cell 2021; 31:859-865. [PMID: 32286930 PMCID: PMC7185975 DOI: 10.1091/mbc.e18-10-0668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The efficient maintenance of genome integrity in the face of cellular stress is vital to protect against human diseases such as cancer. DNA replication, chromatin dynamics, cellular signaling, nuclear architecture, cell cycle checkpoints, and other cellular activities contribute to the delicate spatiotemporal control that cells utilize to regulate and maintain genome stability. This perspective will highlight DNA double-strand break (DSB) repair pathways in human cells, how DNA repair failures can lead to human disease, and how PARP inhibitors have emerged as a novel clinical therapy to treat homologous recombination-deficient tumors. We briefly discuss how failures in DNA repair produce a permissive genetic environment in which preneoplastic cells evolve to reach their full tumorigenic potential. Finally, we conclude that an in-depth understanding of DNA DSB repair pathways in human cells will lead to novel therapeutic strategies to treat cancer and potentially other human diseases.
Collapse
Affiliation(s)
- Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
31
|
Wright G, Sonavane M, Gassman NR. Activated STAT3 Is a Novel Regulator of the XRCC1 Promoter and Selectively Increases XRCC1 Protein Levels in Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:ijms22115475. [PMID: 34067421 PMCID: PMC8196947 DOI: 10.3390/ijms22115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Base Excision Repair (BER) addresses base lesions and abasic sites induced by exogenous and endogenous stressors. X-ray cross complementing group 1 (XRCC1) functions as a scaffold protein in BER and single-strand break repair (SSBR), facilitating and coordinating repair through its interaction with a host of critical repair proteins. Alterations of XRCC1 protein and gene expression levels are observed in many cancers, including colorectal, ovarian, and breast cancer. While increases in the expression level of XRCC1 are reported, the transcription factors responsible for this up-regulation are not known. In this study, we identify the signal transducer and activator of transcription 3 (STAT3) as a novel regulator of XRCC1 through chromatin immunoprecipitation. Activation of STAT3 through phosphorylation at Y705 by cytokine (IL-6) signaling increases the expression of XRCC1 and the occupancy of STAT3 within the XRCC1 promoter. In triple negative breast cancer, the constitutive activation of STAT3 upregulates XRCC1 gene and protein expression levels. Increased expression of XRCC1 is associated with aggressiveness and resistance to DNA damaging chemotherapeutics. Thus, we propose that activated STAT3 regulates XRCC1 under stress and growth conditions, but constitutive activation in cancers results in dysregulation of XRCC1 and subsequently BER and SSBR.
Collapse
Affiliation(s)
- Griffin Wright
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, 307 N University Blvd, Mobile, AL 36688, USA; (G.W.); (M.S.)
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
- Correspondence:
| |
Collapse
|
32
|
Chalmers AJ, Carruthers RD. Radiobiology Summaries: DNA Damage and Repair. Clin Oncol (R Coll Radiol) 2021; 33:275-278. [PMID: 33341330 DOI: 10.1016/j.clon.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 11/25/2022]
Affiliation(s)
- A J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - R D Carruthers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Repair of programmed DNA lesions in antibody class switch recombination: common and unique features. ACTA ACUST UNITED AC 2021; 2:115-125. [PMID: 33817557 PMCID: PMC7996122 DOI: 10.1007/s42764-021-00035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Abstract
The adaptive immune system can diversify the antigen receptors to eliminate various pathogens through programmed DNA lesions at antigen receptor genes. In immune diversification, general DNA repair machineries are applied to transform the programmed DNA lesions into gene mutation or recombination events with common and unique features. Here we focus on antibody class switch recombination (CSR), and review the initiation of base damages, the conversion of damaged base to DNA double-strand break, and the ligation of broken ends. With an emphasis on the unique features in CSR, we discuss recent advances in the understanding of DNA repair/replication coordination, and ERCC6L2-mediated deletional recombination. We further elaborate the application of CSR in end-joining, resection and translesion synthesis assays. In the time of the COVID-19 pandemic, we hope it help to understand the generation of therapeutic antibodies.
Collapse
|
34
|
Vilela J, Rohaim MA, Munir M. Application of CRISPR/Cas9 in Understanding Avian Viruses and Developing Poultry Vaccines. Front Cell Infect Microbiol 2020; 10:581504. [PMID: 33330126 PMCID: PMC7732654 DOI: 10.3389/fcimb.2020.581504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats associated protein nuclease 9 (CRISPR-Cas9) technology offers novel approaches to precisely, cost-effectively, and user-friendly edit genomes for a wide array of applications and across multiple disciplines. This methodology can be leveraged to underpin host-virus interactions, elucidate viral gene functions, and to develop recombinant vaccines. The successful utilization of CRISPR/Cas9 in editing viral genomes has paved the way of developing novel and multiplex viral vectored poultry vaccines. Furthermore, CRISPR/Cas9 can be exploited to rectify major limitations of conventional approaches including reversion to virulent form, recombination with field viruses and transgene, and genome instability. This review provides comprehensive analysis of the potential of CRISPR/Cas9 genome editing technique in understanding avian virus-host interactions and developing novel poultry vaccines. Finally, we discuss the simplest and practical aspects of genome editing approaches in generating multivalent recombinant poultry vaccines that conform simultaneous protection against major avian diseases.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, The Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
35
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
36
|
Angstenberger M, de Signori F, Vecchi V, Dall’Osto L, Bassi R. Cell Synchronization Enhances Nuclear Transformation and Genome Editing via Cas9 Enabling Homologous Recombination in Chlamydomonas reinhardtii. ACS Synth Biol 2020; 9:2840-2850. [PMID: 32916053 PMCID: PMC8011982 DOI: 10.1021/acssynbio.0c00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
In Chlamydomonas reinhardtii, the model organism
for eukaryotic green algae and plants, the processes of nuclear transformation
and genome editing in particular are still marked by a low level of
efficiency, and so intensive work is required in order to create and
identify mutants for the investigation of basic physiological processes,
as well as the implementation of biotechnological applications. In
this work, we show that cell synchronization during the stages of
the cell cycle, obtained from long-term cultivation under specific
growth conditions, greatly enhances the efficiency of transformation
and allows the identification of DNA repair mechanisms that occur
preferentially at different stages of the cell cycle. We demonstrate
that the transformation of synchronized cells at different times was
differentially associated with nonhomologous end joining (NHEJ) and/or
homologous recombination (HR), and makes it possible to knock-in specific
foreign DNA at the genomic nuclear location desired by exploiting
HR. This optimization greatly reduces the overall complexity of the
genome editing procedure and creates new opportunities for altering
genes and their products.
Collapse
Affiliation(s)
- Max Angstenberger
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734 Verona, Italy
| | - Francesco de Signori
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734 Verona, Italy
| | - Valeria Vecchi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734 Verona, Italy
| | - Luca Dall’Osto
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734 Verona, Italy
| | - Roberto Bassi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734 Verona, Italy
| |
Collapse
|
37
|
Zhou C, Parsons JL. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev Mol Med 2020; 22:e3. [PMID: 32611474 PMCID: PMC7754878 DOI: 10.1017/erm.2020.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/04/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with reported incidences of ~800 000 cases each year. One of the critical determinants in patient response to radiotherapy, particularly for oropharyngeal cancers, is human papillomavirus (HPV) status where HPV-positive patients display improved survival rates and outcomes particularly because of increased responsiveness to radiotherapy. The increased radiosensitivity of HPV-positive HNSCC has been largely linked with defects in the signalling and repair of DNA double-strand breaks. Therefore, strategies to further radiosensitise HPV-positive HNSCC, but also radioresistant HPV-negative HNSCC, have focussed on targeting key DNA repair proteins including PARP, DNA-Pk, ATM and ATR. However, inhibitors against CHK1 and WEE1 involved in cell-cycle checkpoint activation have also been investigated as targets for radiosensitisation in HNSCC. These studies, largely conducted using established HNSCC cell lines in vitro, have demonstrated variability in the response dependent on the specific inhibitors and cell models utilised. However, promising results are evident targeting specifically PARP, DNA-Pk, ATR and CHK1 in synergising with radiation in HNSCC cell killing. Nevertheless, these preclinical studies require further expansion and investigation for translational opportunities for the effective treatment of HNSCC in combination with radiotherapy.
Collapse
Affiliation(s)
- Chumin Zhou
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| | - Jason L. Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| |
Collapse
|
38
|
Liebelt F, Schimmel J, Verlaan-de Vries M, Klemann E, van Royen ME, van der Weegen Y, Luijsterburg MS, Mullenders LH, Pines A, Vermeulen W, Vertegaal ACO. Transcription-coupled nucleotide excision repair is coordinated by ubiquitin and SUMO in response to ultraviolet irradiation. Nucleic Acids Res 2020; 48:231-248. [PMID: 31722399 PMCID: PMC7145520 DOI: 10.1093/nar/gkz977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/04/2022] Open
Abstract
Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Joost Schimmel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Esra Klemann
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Cancer Treatment Screening Facility (CTSF), Erasmus Optical Imaging Centre (OIC), Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Yana van der Weegen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Leon H Mullenders
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Japan
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
39
|
Bae W, Park JH, Lee MH, Park HW, Koo HS. Hypersensitivity to DNA double-strand breaks associated with PARG deficiency is suppressed by exo-1 and polq-1 mutations in Caenorhabditis elegans. FEBS J 2020; 287:1101-1115. [PMID: 31593615 DOI: 10.1111/febs.15082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Deficiency of either of the two homologs of poly(ADP-ribose) glycohydrolase (PARG), PARG-1 and PARG-2, in Caenorhabditis elegans leads to hypersensitivity to ionizing radiation (IR). In the germ cells of parg-2 mutant worms, the dissipation of recombinase RAD-51 foci was slower than in wild-type (WT) cells, suggesting defects in DNA double-strand break (DSB) repair via homologous recombination (HR). Nevertheless, RPA-1, the large subunit of replication protein A, accumulated faster in parg-2 worms and disappeared earlier than in WT worms. This accelerated RPA-1 accumulation may result from the enhanced expression of exonuclease-1 (EXO-1) after IR treatment. Accordingly, an exo-1 mutation reduced IR sensitivity and accumulation of RPA-1 in parg-2 worms. A mutation of polq-1, encoding for a key factor in the alternative end-joining (Alt-EJ) pathway, suppressed the IR hypersensitivity phenotype of parg-2 worms and normalized the kinetics of RAD-51 dissipation. This indicates that error-prone Alt-EJ may mediate DSB repair in parg-2 worms, causing hypersensitivity to IR. In summary, PARG-2 deficiency in C. elegans causes hyperactive DSB end resection likely through EXO-1 overproduction. DSBs with long single-stranded DNA ends in parg-2 worms are thought to be repaired by Alt-EJ instead of HR, causing genomic instability.
Collapse
Affiliation(s)
- Woori Bae
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
40
|
Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience 2020; 23:100789. [PMID: 31901636 PMCID: PMC6941877 DOI: 10.1016/j.isci.2019.100789] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to precisely modify human genes has been made possible by the development of tools such as meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas. These now make it possible to generate targeted deletions, insertions, gene knock outs, and point variants; to modulate gene expression by targeting transcription factors or epigenetic machineries to DNA; or to target and modify RNA. Endogenous repair mechanisms are used to make the modifications required in DNA; they include non-homologous end joining, homology-directed repair, homology-independent targeted integration, microhomology-mediated end joining, base-excision repair, and mismatch repair. Off-target effects can be monitored using in silico prediction and sequencing and minimized using Cas proteins with higher accuracy, such as high-fidelity Cas9, enhanced-specificity Cas9, and hyperaccurate Cas9. Alternatives to Cas9 have been identified, including Cpf1, Cas12a, Cas12b, and smaller Cas9 orthologs such as CjCas9. Delivery of gene-editing components is performed ex vivo using standard techniques or in vivo using AAV, lipid nanoparticles, or cell-penetrating peptides. Clinical development of gene-editing technology is progressing in several fields, including immunotherapy in cancer treatment, antiviral therapy for HIV infection, and treatment of genetic disorders such as β-thalassemia, sickle cell disease, lysosomal storage disorders, and retinal dystrophy. Here we review these technological advances and the challenges to their clinical implementation.
Collapse
Affiliation(s)
- Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
41
|
Shukla V, Halabelian L, Balagere S, Samaniego-Castruita D, Feldman DE, Arrowsmith CH, Rao A, Aravind L. HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. Mol Cell 2019; 77:384-394.e4. [PMID: 31806351 DOI: 10.1016/j.molcel.2019.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
HMCES (5hmC binding, embryonic stem cell-specific-protein), originally identified as a protein capable of binding 5-hydroxymethylcytosine (5hmC), an epigenetic modification generated by TET proteins, was previously reported to covalently crosslink to DNA at abasic sites via a conserved cysteine. We show here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC. HMCES specifically enables DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway during class switch recombination (CSR) in B cells, and HMCES deficiency leads to a significant defect in CSR. HMCES mediates Alt-EJ through its SOS-response-associated-peptidase domain (SRAPd), a function that requires DNA binding but is independent of its autopeptidase and DNA-crosslinking activities. We show that HMCES is recruited to switch regions of the immunoglobulin locus and provide a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR. Our studies provide further evidence for a specialized role for HMCES in DNA repair.
Collapse
Affiliation(s)
- Vipul Shukla
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sanjana Balagere
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daniela Samaniego-Castruita
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Douglas E Feldman
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 93033, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Pharmacology and Moores Cancer Center, University of San Diego, California, 9500 Gilman Drive, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
42
|
Ruis B, Molan A, Takasugi T, Hendrickson EA. Absence of XRCC4 and its paralogs in human cells reveal differences in outcomes for DNA repair and V(D)J recombination. DNA Repair (Amst) 2019; 85:102738. [PMID: 31731258 DOI: 10.1016/j.dnarep.2019.102738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
The repair of DNA double-stranded breaks (DSBs) is an essential function performed by the Classical Non-Homologous End-Joining (C-NHEJ) pathway in higher eukaryotes. C-NHEJ, in fact, does double duty as it is also required for the repair of the intermediates formed during lymphoid B- and T-cell recombination. Consequently, the failure to properly repair DSBs leads to both genomic instability and immunodeficiency. A critical DSB protein required for C-NHEJ is the DNA Ligase IV (LIGIV) accessory factor, X-Ray Cross Complementing 4 (XRCC4). XRCC4 is believed to stabilize LIGIV, participate in LIGIV activation, and to help tether the broken DSB ends together. XRCC4's role in these processes has been muddied by the identification of two additional XRCC4 paralogs, XRCC4-Like Factor (XLF), and Paralog of XRCC4 and XLF (PAXX). The roles that these paralogs play in C-NHEJ is partially understood, but, in turn, has itself been obscured by species-specific differences observed in the absence of one or the other paralogs. In order to investigate the role(s) that XRCC4 may play, with or without XLF and/or PAXX, in lymphoid variable(diversity)joining [V(D)J] recombination as well as in DNA DSB repair in human somatic cells, we utilized gene targeting to inactivate the XRCC4 gene in both parental and XLF- HCT116 cells and then inactivated PAXX in those same cell lines. The loss of XRCC4 expression by itself led, as anticipated, to increased sensitivity to DNA damaging agents as well as an increased dependence on microhomology-mediated DNA repair whether in the context of DSB repair or during V(D)J recombination. The additional loss of XLF in these cell lines sensitized the cells even more whereas the presence or absence of PAXX was scarcely negligible. These studies demonstrate that, of the three LIG4 accessory factor paralogs, the absence of XRCC4 influences DNA repair and recombination the most in human cells.
Collapse
Affiliation(s)
- Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Amy Molan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Taylor Takasugi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, United States.
| |
Collapse
|
43
|
Pan H, Yu W, Zhang M. Homology-directed repair in mouse cells increased by CasRx-mediated knockdown or co-expressing Kaposi's sarcoma-associated herpesvirus ORF52. Biosci Rep 2019; 39:BSR20191914. [PMID: 31519773 PMCID: PMC6822532 DOI: 10.1042/bsr20191914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Precise genome editing with directed base insertion or targeted point mutations can be achieved by CRISPR/Cas9-mediated homology-directed repair (HDR) and is of great significance in clinical disease therapy. However, HDR efficiency, compared with non-homologous end-joining (NHEJ), is inherently low. To enhance HDR, enabling the insertion of precise genetic modifications, we compared two strategies during surrogate reporter assays in mouse N2A cells: the suppression of DNA ligase IV, a key molecule in NHEJ, using the CasRx (Ruminococcus flavefaciens Cas13d) system, and co-expression of Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52 proteins. We found that suppression of DNA ligase IV promotes HDR efficiency by 1.4-fold. When co-expressed with the Cas9 system, ORF52 improved HDR efficiency by up to 2.1-fold. In addition, we used ORF52 co-expression to modify the ACTB and Tubb3 genes of mouse N2A and E14 cells, which further increased HDR efficiency by approximately two- to four-fold. In conclusion, our data suggest that ORF52 co-expression is effective for enhancing CRISPR/Cas9-mediated HDR, which may be useful for future studies involving precise genome editing.
Collapse
Affiliation(s)
- Hong Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Weina Yu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
44
|
Lee KJ, Piett CG, Andrews JF, Mann E, Nagel ZD, Gassman NR. Defective base excision repair in the response to DNA damaging agents in triple negative breast cancer. PLoS One 2019; 14:e0223725. [PMID: 31596905 PMCID: PMC6785058 DOI: 10.1371/journal.pone.0223725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
DNA repair defects have been increasingly focused on as therapeutic targets. In hormone-positive breast cancer, XRCC1-deficient tumors have been identified and proposed as targets for combination therapies that damage DNA and inhibit DNA repair pathways. XRCC1 is a scaffold protein that functions in base excision repair (BER) by mediating essential interactions between DNA glycosylases, AP endonuclease, poly(ADP-ribose) polymerase 1, DNA polymerase β (POL β), and DNA ligases. Loss of XRCC1 confers BER defects and hypersensitivity to DNA damaging agents. BER defects have not been evaluated in triple negative breast cancers (TNBC), for which new therapeutic targets and therapies are needed. To evaluate the potential of XRCC1 as an indicator of BER defects in TNBC, we examined XRCC1 expression in the TCGA database and its expression and localization in TNBC cell lines. The TCGA database revealed high XRCC1 expression in TNBC tumors and TNBC cell lines show variable, but mostly high expression of XRCC1. XRCC1 localized outside of the nucleus in some TNBC cell lines, altering their ability to repair base lesions and single-strand breaks. Subcellular localization of POL β also varied and did not correlate with XRCC1 localization. Basal levels of DNA damage correlated with observed changes in XRCC1 expression, localization, and measure repair capacity. The results confirmed that XRCC1 expression changes indicate DNA repair capacity changes but emphasize that basal DNA damage levels along with protein localization are better indicators of DNA repair defects. Given the observed over-expression of XRCC1 in TNBC preclinical models and tumors, XRCC1 expression levels should be assessed when evaluating treatment responses of TNBC preclinical model cells.
Collapse
Affiliation(s)
- Kevin J. Lee
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Joel F. Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Elise Mann
- University of South Alabama College of Medicine, Mobile, AL, United States of America
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Natalie R. Gassman
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States of America
- University of South Alabama College of Medicine, Mobile, AL, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Squamous cell carcinomas (SCCs) arising from aerodigestive or anogenital epithelium that are associated with the human papillomavirus (HPV) are far more readily cured with radiation therapy than HPV-negative SCCs. The mechanism behind this increased radiosensitivity has been proposed to be secondary to defects in DNA repair, although the specific repair pathways that are disrupted have not been elucidated. To gain insight into this important biomarker of radiosensitivity, we first examined genomic patterns reflective of defects in DNA double-strand break repair, comparing HPV-associated and HPV-negative head and neck cancers (HNSCC). Compared to HPV-negative HNSCC genomes, HPV+ cases demonstrated a marked increase in the proportion of deletions with flanking microhomology, a signature associated with a backup, error-prone double-strand break repair pathway known as microhomology-mediated end-joining (MMEJ). Then, using 3 different methodologies to comprehensively profile double-strand break repair pathways in isogenic paired cell lines, we demonstrate that the HPV16 E7 oncoprotein suppresses canonical nonhomologous end-joining (NHEJ) and promotes error-prone MMEJ, providing a mechanistic rationale for the clinical radiosensitivity of these cancers.
Collapse
|
46
|
Liu Q, Lopez K, Murnane J, Humphrey T, Barcellos-Hoff MH. Misrepair in Context: TGFβ Regulation of DNA Repair. Front Oncol 2019; 9:799. [PMID: 31552165 PMCID: PMC6736563 DOI: 10.3389/fonc.2019.00799] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Repair of DNA damage protects genomic integrity, which is key to tissue functional integrity. In cancer, the type and fidelity of DNA damage response is the fundamental basis for clinical response to cytotoxic therapy. Here we consider the contribution of transforming growth factor-beta (TGFβ), a ubiquitous, pleotropic cytokine that is abundant in the tumor microenvironment, to therapeutic response. The action of TGFβ is best illustrated in head and neck squamous cell carcinoma (HNSCC). Survival of HNSCC patients with human papilloma virus (HPV) positive cancer is more than double compared to those with HPV-negative HNSCC. Notably, HPV infection profoundly impairs TGFβ signaling. HPV blockade of TGFβ signaling, or pharmaceutical TGFβ inhibition that phenocopies HPV infection, shifts cancer cells from error-free homologous-recombination DNA double-strand-break (DSB) repair to error-prone alternative end-joining (altEJ). Cells using altEJ are more sensitive to standard of care radiotherapy and cisplatin, and are sensitized to PARP inhibitors. Hence, HPV-positive HNSCC is an experiment of nature that provides a strong rationale for the use of TGFβ inhibitors for optimal therapeutic combinations that improve patient outcome.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.,Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Kirsten Lopez
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - John Murnane
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Timothy Humphrey
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
47
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
48
|
Jachimowicz RD, Goergens J, Reinhardt HC. DNA double-strand break repair pathway choice - from basic biology to clinical exploitation. Cell Cycle 2019; 18:1423-1434. [PMID: 31116084 DOI: 10.1080/15384101.2019.1618542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mutations in genes encoding components of the DNA damage response (DDR) are among the most frequent aberrations in human tumors. Moreover, a large array of human syndromes is caused by mutations in genes involved in DDR pathways. Among others, homologous recombination repair (HR) of DNA double-strand breaks (DSB) is frequently affected by disabling mutations. While impaired HR is clearly promoting tumorigenesis, it is also associated with an actionable sensitivity against PARP inhibitors. PARP inhibitors have recently received FDA approval for the treatment of breast- and ovarian cancer. However, as with all molecularly targeted agents, acquired resistance limits its use. Both pharmaco-genomic approaches and the study of human genome instability syndromes have led to a profound understanding of PARP inhibitor resistance. These experiments have revealed new insights into the molecular mechanisms that drive mammalian DSB repair. Here, we review recent discoveries in the field and provide a clinical perspective.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- a Clinic I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| | - Jonas Goergens
- a Clinic I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| | - H Christian Reinhardt
- a Clinic I of Internal Medicine , University Hospital Cologne , Cologne , Germany.,b Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases , University of Cologne , Cologne , Germany.,c Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,d Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Cologne Site , University of Cologne , Cologne , Germany
| |
Collapse
|
49
|
Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer 2019; 10:2109-2127. [PMID: 31205572 PMCID: PMC6548160 DOI: 10.7150/jca.30410] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Carcinogenesis is a multistep process, and tumors frequently harbor multiple mutations regulating genome integrity, cell division and death. The integrity of cellular genome is closely controlled by the mechanisms of DNA damage signaling and DNA repair. The association of breast cancer susceptibility genes BRCA1 and BRCA2 with breast and ovarian cancer development was first demonstrated over 20 years ago. Since then the germline mutations within these genes were linked to genomic instability and increased risk of many other cancer types. Genomic instability is an engine of the oncogenic transformation of non-tumorigenic cells into tumor-initiating cells and further tumor evolution. In this review we discuss the biological functions of BRCA1 and BRCA2 genes and the role of BRCA mutations in tumor initiation, regulation of cancer stemness, therapy resistance and tumor progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Iryna Kozeretska
- Department of General and Medical Genetics, ESC "The Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Doksani Y. The Response to DNA Damage at Telomeric Repeats and Its Consequences for Telomere Function. Genes (Basel) 2019; 10:genes10040318. [PMID: 31022960 PMCID: PMC6523756 DOI: 10.3390/genes10040318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Telomeric repeats, coated by the shelterin complex, prevent inappropriate activation of the DNA damage response at the ends of linear chromosomes. Shelterin has evolved distinct solutions to protect telomeres from different aspects of the DNA damage response. These solutions include formation of t-loops, which can sequester the chromosome terminus from DNA-end sensors and inhibition of key steps in the DNA damage response. While blocking the DNA damage response at chromosome ends, telomeres make wide use of many of its players to deal with exogenous damage and replication stress. This review focuses on the interplay between the end-protection functions and the response to DNA damage occurring inside the telomeric repeats, as well as on the consequences that telomere damage has on telomere structure and function.
Collapse
Affiliation(s)
- Ylli Doksani
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|