1
|
Washif M, Kawasumi R, Hirota K. PrimPol-mediated repriming elicits gap-filling by template switching and promotes cellular tolerance to cidofovir. DNA Repair (Amst) 2025; 145:103787. [PMID: 39577201 DOI: 10.1016/j.dnarep.2024.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/27/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
A nucleoside analog, Cidofovir (CDV), is used for the treatment of viral diseases such as cytomegalovirus retinitis and herpes virus infection. CDV converts to its active diphosphate metabolite (CDVpp) through cellular kinases and acts as a competitive inhibitor for viral polymerase thereby interfering with viral replication. However, the effect of this drug on the replication of healthy host cells and the mechanisms involved in the cellular tolerance to CDV are yet to be fully understood. In this study, we explored the mechanisms underlying cellular tolerance to CDV by screening mutant cell lines exhibiting hypersensitivity to CDV from a collection of DT40 mutants deficient in various genome maintenance systems. We identified Rad17 and PrimPol as critical factors for CDV tolerance. We found that Rad17 plays a pivotal role in activating intra-S phase checkpoint by the phosphorylation of Chk1, a vital checkpoint mediator. We showed that PrimPol, a factor involved in the release of stalled replication, plays critical roles in CDV tolerance in tandem with Rad17. We found that PrimPol deficient cells showed slower replication on the CDV-incorporated template strand than did wild-type cells, indicating a critical role of PrimPol in the continuous replication fork progression on the CDV-incorporated damaged template. PrimPol releases replication arrest with its DNA-damage bypass function and its repriming function, we thus investigated which PrimPol function is involved in CDV tolerance using the separation of function mutant genes of PRIMPOL. The CDV hypersensitive phenotype of PrimPol deficient cells was restored by PRIMPOLY89D (primase active / reduced polymerase activity), indicating that the repriming function of PrimPol is required for maintaining replication on the CDV-damaged template. Moreover, we found that the number of sister chromatid exchange (SCE) was reduced in PrimPol-deficient cells. These data indicate that gaps generated by PrimPol-mediated repriming on CDV-damaged templates promote post-replicative gap-filing by template switching.
Collapse
Affiliation(s)
- Mubasshir Washif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ryotaro Kawasumi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
2
|
Ahmad T, Kawasumi R, Hirota K. RAD18- and BRCA1-dependent pathways promote cellular tolerance to the nucleoside analog ganciclovir. Genes Cells 2024; 29:935-950. [PMID: 39169841 PMCID: PMC11555630 DOI: 10.1111/gtc.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Ganciclovir (GCV) is a clinically important drug as it is used to treat viral infections. GCV is incorporated into the DNA during replication, where it interferes with subsequent replication on GCV-incorporated templates. However, the effects of GCV on the host genome and the mechanisms underlying cellular tolerance to GCV remain unclear. In this study, we explored these mechanisms using a collection of mutant DT40 cells. We identified RAD17/-, BRCA1-/-, and RAD18-/- cells as highly GCV-sensitive. RAD17, a component of the alternative checkpoint-clamp loader RAD17-RFC, was required for the activation of the intra-S checkpoint following GCV treatment. BRCA1, a critical factor for promoting homologous recombination (HR), was required for suppressing DNA double-strand breaks (DSBs). Moreover, RAD18, an E3-ligase involved in DNA repair, was critical in suppressing the aberrant ligation of broken chromosomes caused by GCV. We found that BRCA1 suppresses DSBs through HR-mediated repair and template switching (TS)-mediated damage bypass. Moreover, the strong GCV sensitivity of BRCA1-/- cells was rescued by the loss of 53BP1, despite the only partial restoration in the sister chromatid exchange events which are hallmarks of HR. These results indicate that BRCA1 promotes cellular tolerance to GCV through two mechanisms, TS and HR-mediated repair.
Collapse
Affiliation(s)
- Tasnim Ahmad
- Department of Chemistry, Graduate School of ScienceTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Ryotaro Kawasumi
- Department of Chemistry, Graduate School of ScienceTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of ScienceTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| |
Collapse
|
3
|
Washif M, Kawasumi R, Hirota K. REV3 promotes cellular tolerance to 5-fluorodeoxyuridine by activating translesion DNA synthesis and intra-S checkpoint. PLoS Genet 2024; 20:e1011341. [PMID: 38954736 PMCID: PMC11249241 DOI: 10.1371/journal.pgen.1011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
The drug floxuridine (5-fluorodeoxyuridine, FUdR) is an active metabolite of 5-Fluorouracil (5-FU). It converts to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP), which on incorporation into the genome inhibits DNA replication. Additionally, it inhibits thymidylate synthase, causing dTMP shortage while increasing dUMP availability, which induces uracil incorporation into the genome. However, the mechanisms underlying cellular tolerance to FUdR are yet to be fully elucidated. In this study, we explored the mechanisms underlying cellular resistance to FUdR by screening for FUdR hypersensitive mutants from a collection of DT40 mutants deficient in each genomic maintenance system. We identified REV3, which is involved in translesion DNA synthesis (TLS), to be a critical factor in FUdR tolerance. Replication using a FUdR-damaged template was attenuated in REV3-/- cells, indicating that the TLS function of REV3 is required to maintain replication on the FUdR-damaged template. Notably, FUdR-exposed REV3-/- cells exhibited defective cell cycle arrest in the early S phase, suggesting that REV3 is involved in intra-S checkpoint activation. Furthermore, REV3-/- cells showed defects in Chk1 phosphorylation, which is required for checkpoint activation, but the survival of FUdR-exposed REV3-/- cells was further reduced by the inhibition of Chk1 or ATR. These data indicate that REV3 mediates DNA checkpoint activation at least through Chk1 phosphorylation, but this signal acts in parallel with ATR-Chk1 DNA damage checkpoint pathway. Collectively, we reveal a previously unappreciated role of REV3 in FUdR tolerance.
Collapse
Affiliation(s)
- Mubasshir Washif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ryotaro Kawasumi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
4
|
Hosen MB, Kawasumi R, Hirota K. Dominant roles of BRCA1 in cellular tolerance to a chain-terminating nucleoside analog, alovudine. DNA Repair (Amst) 2024; 137:103668. [PMID: 38460389 DOI: 10.1016/j.dnarep.2024.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Alovudine is a chain-terminating nucleoside analog (CTNA) that is frequently used as an antiviral and anticancer agent. Generally, CTNAs inhibit DNA replication after their incorporation into nascent DNA during DNA synthesis by suppressing subsequent polymerization, which restricts the proliferation of viruses and cancer cells. Alovudine is a thymidine analog used as an antiviral drug. However, the mechanisms underlying the removal of alovudine and DNA damage tolerance pathways involved in cellular resistance to alovudine remain unclear. Here, we explored the DNA damage tolerance pathways responsible for cellular tolerance to alovudine and found that BRCA1-deficient cells exhibited the highest sensitivity to alovudine. Moreover, alovudine interfered with DNA replication in two distinct mechanisms: first: alovudine incorporated at the end of nascent DNA interfered with subsequent DNA synthesis; second: DNA replication stalled on the alovudine-incorporated template strand. Additionally, BRCA1 facilitated the removal of the incorporated alovudine from nascent DNA, and BRCA1-mediated homologous recombination (HR) contributed to the progressive replication on the alovudine-incorporated template. Thus, we have elucidated the previously unappreciated mechanism of alovudine-mediated inhibition of DNA replication and the role of BRCA1 in cellular tolerance to alovudine.
Collapse
Affiliation(s)
- Md Bayejid Hosen
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ryotaro Kawasumi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
5
|
Ahmad T, Kawasumi R, Taniguchi T, Abe T, Terada K, Tsuda M, Shimizu N, Tsurimoto T, Takeda S, Hirota K. The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands. Nucleic Acids Res 2023; 51:12288-12302. [PMID: 37944988 PMCID: PMC10711444 DOI: 10.1093/nar/gkad999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Leading-strand DNA replication by polymerase epsilon (Polϵ) across single-strand breaks (SSBs) causes single-ended double-strand breaks (seDSBs), which are repaired via homology-directed repair (HDR) and suppressed by fork reversal (FR). Although previous studies identified many molecules required for hydroxyurea-induced FR, FR at seDSBs is poorly understood. Here, we identified molecules that specifically mediate FR at seDSBs. Because FR at seDSBs requires poly(ADP ribose)polymerase 1 (PARP1), we hypothesized that seDSB/FR-associated molecules would increase tolerance to camptothecin (CPT) but not the PARP inhibitor olaparib, even though both anti-cancer agents generate seDSBs. Indeed, we uncovered that Polϵ exonuclease and CTF18, a Polϵ cofactor, increased tolerance to CPT but not olaparib. To explore potential functional interactions between Polϵ exonuclease, CTF18, and PARP1, we created exonuclease-deficient POLE1exo-/-, CTF18-/-, PARP1-/-, CTF18-/-/POLE1exo-/-, PARP1-/-/POLE1exo-/-, and CTF18-/-/PARP1-/- cells. Epistasis analysis indicated that Polϵ exonuclease and CTF18 were interdependent and required PARP1 for CPT tolerance. Remarkably, POLE1exo-/- and HDR-deficient BRCA1-/- cells exhibited similar CPT sensitivity. Moreover, combining POLE1exo-/- with BRCA1-/- mutations synergistically increased CPT sensitivity. In conclusion, the newly identified PARP1-CTF18-Polϵ exonuclease axis and HDR act independently to prevent fork collapse at seDSBs. Olaparib inhibits this axis, explaining the pronounced cytotoxic effects of olaparib on HDR-deficient cells.
Collapse
Affiliation(s)
- Tasnim Ahmad
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ryotaro Kawasumi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Tomoya Taniguchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kazuhiro Terada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shunichi Takeda
- Shenzhen University, School of Medicine, Shenzhen, Guangdong 518060, China
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
6
|
Washif M, Ahmad T, Hosen MB, Rahman MR, Taniguchi T, Okubo H, Hirota K, Kawasumi R. CTF18-RFC contributes to cellular tolerance against chain-terminating nucleoside analogs (CTNAs) in cooperation with proofreading exonuclease activity of DNA polymerase ε. DNA Repair (Amst) 2023; 127:103503. [PMID: 37099849 DOI: 10.1016/j.dnarep.2023.103503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Chemotherapeutic nucleoside analogs, such as cytarabine (Ara-C), are incorporated into genomic DNA during replication. Incorporated Ara-CMP (Ara-cytidine monophosphate) serves as a chain terminator and inhibits DNA synthesis by replicative polymerase epsilon (Polε). The proofreading exonuclease activity of Polε removes the misincorporated Ara-CMP, thereby contributing to the cellular tolerance to Ara-C. Purified Polε performs proofreading, and it is generally believed that proofreading in vivo does not need additional factors. In this study, we demonstrated that the proofreading by Polε in vivo requires CTF18, a component of the leading-strand replisome. We found that loss of CTF18 in chicken DT40 cells and human TK6 cells results in hypersensitivity to Ara-C, indicating the conserved function of CTF18 in the cellular tolerance of Ara-C. Strikingly, we found that proofreading-deficient POLE1D269A/-, CTF18-/-, and POLE1D269A/-/CTF18-/- cells showed indistinguishable phenotypes, including the extent of hypersensitivity to Ara-C and decreased replication rate with Ara-C. This observed epistatic relationship between POLE1D269A/- and CTF18-/- suggests that they are interdependent in removing mis-incorporated Ara-CMP from the 3' end of primers. Mechanistically, we found that CTF18-/- cells have reduced levels of chromatin-bound Polε upon Ara-C treatment, suggesting that CTF18 contributes to the tethering of Polε on fork at the stalled end and thereby facilitating the removal of inserted Ara-C. Collectively, these data reveal the previously unappreciated role of CTF18 in Polε-exonuclease-mediated maintenance of the replication fork upon Ara-C incorporation.
Collapse
Affiliation(s)
- Mubasshir Washif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Tasnim Ahmad
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Md Bayejid Hosen
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Md Ratul Rahman
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Tomoya Taniguchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hiromori Okubo
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ryotaro Kawasumi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
7
|
Allred DR. Integration of DNA Repair, Antigenic Variation, Cytoadhesion, and Chance in Babesia Survival: A Perspective. Front Cell Infect Microbiol 2022; 12:869696. [PMID: 35493746 PMCID: PMC9047050 DOI: 10.3389/fcimb.2022.869696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites live in hostile environments in which they are challenged chemically and their hosts attempt in many ways to kill them. In response, the parasites have evolved multiple mechanisms that take advantage of these challenges to enhance their survival. Perhaps the most impressive example is the evolutionary co-option of DNA repair mechanisms by the parasites as a means to rapidly manipulate the structure, antigenicity, and expression of the products of specific multigene families. The purpose of variant proteins that mediate cytoadhesion has long been thought to be primarily the avoidance of splenic clearance. Based upon known biology, I present an alternative perspective in which it is survival of the oxidative environment within which Babesia spp. parasites live that has driven integration of DNA repair, antigenic variation, and cytoadhesion, and speculate on how genome organization affects that integration. This perspective has ramifications for the development of parasite control strategies.
Collapse
Affiliation(s)
- David R. Allred
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: David R. Allred,
| |
Collapse
|
8
|
Ruggiano A, Vaz B, Kilgas S, Popović M, Rodriguez-Berriguete G, Singh AN, Higgins GS, Kiltie AE, Ramadan K. The protease SPRTN and SUMOylation coordinate DNA-protein crosslink repair to prevent genome instability. Cell Rep 2021; 37:110080. [PMID: 34879279 PMCID: PMC8674535 DOI: 10.1016/j.celrep.2021.110080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are a specific type of DNA lesion in which proteins are covalently attached to DNA. Unrepaired DPCs lead to genomic instability, cancer, neurodegeneration, and accelerated aging. DPC proteolysis was recently identified as a specialized pathway for DPC repair. The DNA-dependent protease SPRTN and the 26S proteasome emerged as two independent proteolytic systems. DPCs are also repaired by homologous recombination (HR), a canonical DNA repair pathway. While studying the cellular response to DPC formation, we identify ubiquitylation and SUMOylation as two major signaling events in DNA replication-coupled DPC repair. DPC ubiquitylation recruits SPRTN to repair sites, promoting DPC removal. DPC SUMOylation prevents DNA double-strand break formation, HR activation, and potentially deleterious genomic rearrangements. In this way, SUMOylation channels DPC repair toward SPRTN proteolysis, which is a safer pathway choice for DPC repair and prevention of genomic instability.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Bruno Vaz
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Susan Kilgas
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Marta Popović
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Gonzalo Rodriguez-Berriguete
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Abhay N Singh
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Geoff S Higgins
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anne E Kiltie
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
9
|
Saha LK, Murai Y, Saha S, Jo U, Tsuda M, Takeda S, Pommier Y. Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1-DNA complexes. Nucleic Acids Res 2021; 49:10493-10506. [PMID: 34551432 DOI: 10.1093/nar/gkab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Division of labor of Y-family polymerases in translesion-DNA synthesis for distinct types of DNA damage. PLoS One 2021; 16:e0252587. [PMID: 34061890 PMCID: PMC8168857 DOI: 10.1371/journal.pone.0252587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
Living organisms are continuously under threat from a vast array of DNA-damaging agents, which impact genome DNA. DNA replication machinery stalls at damaged template DNA. The stalled replication fork is restarted via bypass replication by translesion DNA-synthesis polymerases, including the Y-family polymerases Polη, Polι, and Polκ, which possess the ability to incorporate nucleotides opposite the damaged template. To investigate the division of labor among these polymerases in vivo, we generated POLη−/−, POLι−/−, POLκ−/−, double knockout (KO), and triple knockout (TKO) mutants in all combinations from human TK6 cells. TKO cells exhibited a hypersensitivity to ultraviolet (UV), cisplatin (CDDP), and methyl methanesulfonate (MMS), confirming the pivotal role played by these polymerases in bypass replication of damaged template DNA. POLη−/− cells, but not POLι−/− or POLκ−/− cells, showed a strong sensitivity to UV and CDDP, while TKO cells showed a slightly higher sensitivity to UV and CDDP than did POLη−/− cells. On the other hand, TKO cells, but not all single KO cells, exhibited a significantly higher sensitivity to MMS than did wild-type cells. Consistently, DNA-fiber assay revealed that Polη plays a crucial role in bypassing lesions caused by UV-mimetic agent 4-nitroquinoline-1-oxide and CDDP, while all three polymerases play complementary roles in bypassing MMS-induced damage. Our findings indicate that the three Y-family polymerases play distinctly different roles in bypass replication, according to the type of DNA damage generated on the template strand.
Collapse
|
11
|
Kojima K, Ooka M, Abe T, Hirota K. Pold4, the fourth subunit of replicative polymerase δ, suppresses gene conversion in the immunoglobulin-variable gene in avian DT40 cells. DNA Repair (Amst) 2021; 100:103056. [PMID: 33588156 DOI: 10.1016/j.dnarep.2021.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
The replicative polymerase δ (Polδ), consisting of four subunits, plays a pivotal role in chromosomal replication. Pold4, the smallest subunit of Polδ, is believed to contribute to the regulation of replication by facilitating repair in response to DNA damage. However, that contribution has not been fully elucidated. We here show that Pold4 contributes to the suppression of gene conversion in immunoglobulin-variable (IgV) gene diversification in the chicken DT40 lymphocyte cell line, where gene conversion diversifies the IgV gene through intragenic homologous recombination (HR) between diverged pseudo-V segments. IgV gene conversion is initiated by activation-induced cytidine deaminase-mediated uracil formation in the IgV gene, which in turn converts into an abasic site, leading to replication arrest. POLD4-/- cells exhibited an increased rate of IgV gene conversion. Moreover, the gene-conversion tract was lengthened and the usage of pseudo-V segments was altered, showing a preference, to use the diverged sequence as a donor in POLD4-/- cells. These data suggest that Pold4 is involved in the regulation of HR-mediated gene conversion in IgV diversification. By contrast, the rate in HR-mediated, sister-chromatid exchange and gene-targeting induced by an I-SceI endonclease-mediated DNA double-strand break exhibited by POLD4-/- cells was indistinguishable from that by wild-type cells. These findings indicate that the functionality of general HR is preserved in POLD4-/- cells. In conclusion, Pold4 is involved in the suppression of IgV-gene conversion without affecting the general functionality of HR.
Collapse
Affiliation(s)
- Kota Kojima
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
12
|
Abstract
Proteins covalently attached to DNA, also known as DNA-protein crosslinks (DPCs), are common and bulky DNA lesions that interfere with DNA replication, repair, transcription and recombination. Research in the past several years indicates that cells possess dedicated enzymes, known as DPC proteases, which digest the protein component of a DPC. Interestingly, DPC proteases also play a role in proteolysis beside DPC repair, such as in degrading excess histones during DNA replication or controlling DNA replication checkpoints. Here, we discuss the importance of DPC proteases in DNA replication, genome stability and their direct link to human diseases and cancer therapy.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, OX3 7DQ, Oxford, UK
| | - Kristijan Ramadan
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, OX3 7DQ, Oxford, UK.
| |
Collapse
|
13
|
Abe T, Branzei D, Hirota K. DNA Damage Tolerance Mechanisms Revealed from the Analysis of Immunoglobulin V Gene Diversification in Avian DT40 Cells. Genes (Basel) 2018; 9:genes9120614. [PMID: 30544644 PMCID: PMC6316486 DOI: 10.3390/genes9120614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023] Open
Abstract
DNA replication is an essential biochemical reaction in dividing cells that frequently stalls at damaged sites. Homologous/homeologous recombination (HR)-mediated template switch and translesion DNA synthesis (TLS)-mediated bypass processes release arrested DNA replication forks. These mechanisms are pivotal for replication fork maintenance and play critical roles in DNA damage tolerance (DDT) and gap-filling. The avian DT40 B lymphocyte cell line provides an opportunity to examine HR-mediated template switch and TLS triggered by abasic sites by sequencing the constitutively diversifying immunoglobulin light-chain variable gene (IgV). During IgV diversification, activation-induced deaminase (AID) converts dC to dU, which in turn is excised by uracil DNA glycosylase and yields abasic sites within a defined window of around 500 base pairs. These abasic sites can induce gene conversion with a set of homeologous upstream pseudogenes via the HR-mediated template switch, resulting in templated mutagenesis, or can be bypassed directly by TLS, resulting in non-templated somatic hypermutation at dC/dG base pairs. In this review, we discuss recent works unveiling IgV diversification mechanisms in avian DT40 cells, which shed light on DDT mode usage in vertebrate cells and tolerance of abasic sites.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|