1
|
Rosa F, Dray N, Bedu S, Bally-Cuif L. Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells. Development 2024; 151:dev204381. [PMID: 39565097 DOI: 10.1242/dev.204381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.
Collapse
Affiliation(s)
- Frédéric Rosa
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Nicolas Dray
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Sébastien Bedu
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, F-75015 Paris, France
| |
Collapse
|
2
|
Palma-Rojo E, Barquinero JF, Pérez-Alija J, González JR, Armengol G. Differential biological effect of low doses of ionizing radiation depending on the radiosensitivity in a cell line model. Int J Radiat Biol 2024; 100:1527-1540. [PMID: 39288264 DOI: 10.1080/09553002.2024.2400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Exposure to low doses (LD) of ionizing radiation (IR), such as the ones employed in computed tomography (CT) examination, can be associated with cancer risk. However, cancer development could depend on individual radiosensitivity. In the present study, we evaluated the differences in the response to a CT-scan radiation dose of 20 mGy in two lymphoblastoid cell lines with different radiosensitivity. MATERIALS AND METHODS Several parameters were studied: gene expression, DNA damage, and its repair, as well as cell viability, proliferation, and death. Results were compared with those after a medium dose of 500 mGy. RESULTS After 20 mGy of IR, the radiosensitive (RS) cell line showed an increase in DNA damage, and higher cell proliferation and apoptosis, whereas the radioresistant (RR) cell line was insensitive to this LD. Interestingly, the RR cell line showed a higher expression of an antioxidant gene, which could be used by the cells as a protective mechanism. After a dose of 500 mGy, both cell lines were affected by IR but with significant differences. The RS cells presented an increase in DNA damage and apoptosis, but a decrease in cell proliferation and cell viability, as well as less antioxidant response. CONCLUSIONS A differential biological effect was observed between two cell lines with different radiosensitivity, and these differences are especially interesting after a CT scan dose. If this is confirmed by further studies, one could think that individuals with radiosensitivity-related genetic variants may be more vulnerable to long-term effects of IR, potentially increasing cancer risk after LD exposure.
Collapse
Affiliation(s)
- Elia Palma-Rojo
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan-Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jaime Pérez-Alija
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
3
|
Wilson C, Adams GG, Patel P, Windham K, Ennis C, Caffrey E. A Review of Recent Low-dose Research and Recommendations for Moving Forward. HEALTH PHYSICS 2024; 126:386-396. [PMID: 38568156 DOI: 10.1097/hp.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The linear no-threshold (LNT) model has been the regulatory "law of the land" for decades. Despite the long-standing use of LNT, there is significant ongoing scientific disagreement on the applicability of LNT to low-dose radiation risk. A review of the low-dose risk literature of the last 10 y does not provide a clear answer, but rather the body of literature seems to be split between LNT, non-linear risk functions (e.g., supra- or sub-linear), and hormetic models. Furthermore, recent studies have started to explore whether radiation can play a role in the development of several non-cancer effects, such as heart disease, Parkinson's disease, and diabetes, the mechanisms of which are still being explored. Based on this review, there is insufficient evidence to replace LNT as the regulatory model despite the fact that it contributes to public radiophobia, unpreparedness in radiation emergency response, and extreme cleanup costs both following radiological or nuclear incidents and for routine decommissioning of nuclear power plants. Rather, additional research is needed to further understand the implications of low doses of radiation. The authors present an approach to meaningfully contribute to the science of low-dose research that incorporates machine learning and Edisonian approaches to data analysis.
Collapse
Affiliation(s)
- Charles Wilson
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Grace G Adams
- Gryphon Scientific, LLC, 6930 Carrol Ave., Suite 810, Takoma Park, MD 20912
| | - Pooja Patel
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Kiran Windham
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Colby Ennis
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Emily Caffrey
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| |
Collapse
|
4
|
Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol 2024; 239:e31187. [PMID: 38219047 DOI: 10.1002/jcp.31187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.
Collapse
Affiliation(s)
- Yiming Zhong
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangming Wang
- School of Medicine, Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Jo HJ, Oh T, Lee YR, Kang GS, Park HJ, Ahn GO. FLASH Radiotherapy: A FLASHing Idea to Preserve Neurocognitive Function. Brain Tumor Res Treat 2023; 11:223-231. [PMID: 37953445 PMCID: PMC10641319 DOI: 10.14791/btrt.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
FLASH radiotherapy (FLASH RT) is a technique to deliver ultra-high dose rate in a fraction of a second. Evidence from experimental animal models suggest that FLASH RT spares various normal tissues including the lung, gastrointestinal track, and brain from radiation-induced toxicity (a phenomenon known as FLASH effect), which is otherwise commonly observed with conventional dose rate RT. However, it is not simply the ultra-high dose rate alone that brings the FLASH effect. Multiple parameters such as instantaneous dose rate, pulse size, pulse repetition frequency, and the total duration of exposure all need to be carefully optimized simultaneously. Furthermore it is critical to validate FLASH effects in an in vivo experimental model system. The exact molecular mechanism responsible for this FLASH effect is not yet understood although a number of hypotheses have been proposed including oxygen depletion and less reactive oxygen species (ROS) production by FLASH RT, and enhanced ability of normal tissues to handle ROS and labile iron pool compared to tumors. In this review, we briefly overview the process of ionization event and history of radiotherapy and fractionation of ionizing radiation. We also highlight some of the latest FLASH RT reviews and results with a special interest to neurocognitive protection in rodent model with whole brain irradiation. Lastly we discuss some of the issues remain to be answered with FLASH RT including undefined molecular mechanism, lack of standardized parameters, low penetration depth for electron beam, and tumor hypoxia still being a major hurdle for local control. Nevertheless, researchers are close to having all answers to the issues that we have raised, hence we believe that advancement of FLASH RT will be made more quickly than one can anticipate.
Collapse
Affiliation(s)
- Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hye-Joon Park
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
6
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
7
|
Sampadi B, Vermeulen S, Mišovic B, Boei JJ, Batth TS, Chang JG, Paulsen MT, Magnuson B, Schimmel J, Kool H, Olie CS, Everts B, Vertegaal ACO, Olsen JV, Ljungman M, Jeggo PA, Mullenders LHF, Vrieling H. Divergent Molecular and Cellular Responses to Low and High-Dose Ionizing Radiation. Cells 2022; 11:cells11233794. [PMID: 36497055 PMCID: PMC9739411 DOI: 10.3390/cells11233794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).
Collapse
Affiliation(s)
- Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Branislav Mišovic
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jan J. Boei
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Tanveer S. Batth
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jer-Gung Chang
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Michelle T. Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jesper V. Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Penny A. Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Leon H. F. Mullenders
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya 464-8601, Japan
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| |
Collapse
|
8
|
Cantabella E, Camilleri V, Cavalie I, Dubourg N, Gagnaire B, Charlier TD, Adam-Guillermin C, Cousin X, Armant O. Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14153793. [PMID: 35954455 PMCID: PMC9367516 DOI: 10.3390/cancers14153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The increasing use of radiopharmaceuticals for medical diagnostics and radiotherapy raises concerns regarding health risks for both humans and the environment. Additionally, in the context of major nuclear accidents like in Chernobyl and Fukushima, very little is known about the effects of chronic exposure to low and moderate dose rates of ionizing radiation (IR). Many studies demonstrated the sensibility of the developmental brain, but little data exists for IR at low dose rates and their impact on adults. In this study, we characterized the molecular mechanisms that orchestrate stress behavior caused by chronic exposure to low to moderate dose rates of IR using the adult zebrafish model. We observed the establishment of a congruent stress response at both the molecular and individual levels. Abstract High levels of ionizing radiation (IR) are known to induce neurogenesis defects with harmful consequences on brain morphogenesis and cognitive functions, but the effects of chronic low to moderate dose rates of IR remain largely unknown. In this study, we aim at defining the main molecular pathways impacted by IR and how these effects can translate to higher organizational levels such as behavior. Adult zebrafish were exposed to gamma radiation for 36 days at 0.05 mGy/h, 0.5 mGy/h and 5 mGy/h. RNA sequencing was performed on the telencephalon and completed by RNA in situ hybridization that confirmed the upregulation of oxytocin and cone rod homeobox in the parvocellular preoptic nucleus. A dose rate-dependent increase in differentially expressed genes (DEG) was observed with 27 DEG at 0.05 mGy/h, 200 DEG at 0.5 mGy/h and 530 DEG at 5 mGy/h. Genes involved in neurotransmission, neurohormones and hypothalamic-pituitary-interrenal axis functions were specifically affected, strongly suggesting their involvement in the stress response behavior observed after exposure to dose rates superior or equal to 0.5 mGy/h. At the individual scale, hypolocomotion, increased freezing and social stress were detected. Together, these data highlight the intricate interaction between neurohormones (and particularly oxytocin), neurotransmission and neurogenesis in response to chronic exposure to IR and the establishment of anxiety-like behavior.
Collapse
Affiliation(s)
- Elsa Cantabella
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Thierry D. Charlier
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Santé (PSE-Santé)/Service de Recherche en Dosimétrie (SDOS)/Laboratoire de Micro-Irradiation, de Métrologie et de Dosimétrie des Neutrons (LMDN), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas Les Flots, France
| | - Oliver Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| |
Collapse
|
9
|
Sampadi B, Mullenders LHF, Vrieling H. Low and high doses of ionizing radiation evoke discrete global (phospho)proteome responses. DNA Repair (Amst) 2022; 113:103305. [PMID: 35255311 DOI: 10.1016/j.dnarep.2022.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although cancer risk is assumed to be linear with ionizing radiation (IR) dose, it is unclear to what extent low doses (LD) of IR from medical and occupational exposures pose a cancer risk for humans. Improved mechanistic understanding of the signaling responses to LD may help to clarify this uncertainty. Here, we performed quantitative mass spectrometry-based proteomics and phosphoproteomics experiments, using mouse embryonic stem cells, at 0.5 h and 4 h after exposure to LD (0.1 Gy) and high doses (HD; 1 Gy) of IR. RESULTS The proteome remained relatively stable (29; 0.5% proteins responded), whereas the phosphoproteome changed dynamically (819; 7% phosphosites changed) upon irradiation. Dose-dependent alterations of 25 IR-responsive proteins were identified, with only four in common between LD and HD. Mitochondrial metabolic proteins and pathways responded to LD, whereas transporter proteins and mitochondrial uncoupling pathways responded to HD. Congruently, mitochondrial respiration increased after LD exposure but decreased after HD exposure. While the bulk of the phosphoproteome response to LD (76%) occurred already at 0.5 h, an equivalent proportion of the phosphosites responded to HD at both time points. Motif, kinome/phosphatome, kinase-substrate, and pathway analyses revealed a robust DNA damage response (DDR) activation after HD exposure but not after LD exposure. Instead, LD-irradiation induced (de)phosphorylation of kinases, kinase-substrates and phosphatases that predominantly respond to reactive oxygen species (ROS) production. CONCLUSION Our analyses identify discrete global proteome and phosphoproteome responses after LD and HD, uncovering novel proteins and protein (de)phosphorylation events involved in the dose-dependent ionizing radiation responses.
Collapse
Affiliation(s)
- Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands.
| | - Leon H F Mullenders
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC Leiden, The Netherlands.
| |
Collapse
|
10
|
Posypanova GA, Ratushnyak MG, Semochkina YP, Strepetov AN. Response of murine neural stem/progenitor cells to gamma-neutron radiation. Int J Radiat Biol 2022; 98:1559-1570. [PMID: 35311625 DOI: 10.1080/09553002.2022.2055802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE In recent years, a growing number of studies have focused on the mechanisms of action of densely ionizing radiation. This is associated with the development of radiation therapy of tumors using accelerated ions. The use of densely ionizing radiation appears to be the most promising method, optimal for treating patients with severe radioresistant forms, such as widespread head and neck tumors, recurrent and metastatic tumors, and some forms of brain tumors. The goal of our study was to investigate the effects of gamma-neutron radiation on mouse neural stem/progenitor cells (NSCs/NPCs). METHODS NSCs/NPCs were isolated from neonatal mouse brains. Cells were irradiated in a collimated beam of neutrons and gamma rays of the IR-8 nuclear reactor. At 5 and 7 days after irradiation, cells and neurospheres were counted to assess survival. The number of DNA double-strand breaks and their repair efficiency were determined by immunocytochemical γH2AX staining followed by counting the number of γH2AX foci using a fluorescent microscope. RESULTS We observed a dose-dependent decrease in the survival of NSCs/NPCs after irradiation at doses above 100 mGy and stimulation of the proliferation of these cells at doses of 25 and 50 mGy. In terms of a decrease in cell survival, the effect of gamma-neutron irradiation significantly exceeded the effect of gamma irradiation: the maximum value of the relative biological efficiency for gamma-neutron irradiation comprised 9.7. Gamma-neutron irradiation led to the formation of double-strand DNA breaks detected by the formation of foci of histone γH2AX in the cell nuclei. The γH2AX foci formed after gamma-neutron irradiation of NSCs/NPCs at doses of 100-500 mGy were characterized by a larger size in comparison with foci induced by gamma irradiation and gamma-neutron irradiation at a dose of 50 mGy. The repair of double-strand DNA breaks induced by γ,n-irradiation was slow; the repair rate depended on the radiation dose. CONCLUSIONS The data obtained indicate high sensitivity of proliferating NSCs/NPCs to gamma-neutron radiation. High RBE of gamma-neutron radiation requires special measures to protect the neurogenic regions of the brain when using this type of radiation in radiation therapy.
Collapse
|
11
|
Rocheteau P, Warot G, Chapellier M, Zampaolo M, Chretien F, Piquemal F. Cryopreserved Stem Cells Incur Damages Due To Terrestrial Cosmic Rays Impairing Their Integrity Upon Long-Term Storage. Cell Transplant 2022; 31:9636897211070239. [PMID: 35170351 PMCID: PMC8855380 DOI: 10.1177/09636897211070239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Stem cells have the capacity to ensure the renewal of tissues and organs. They
could be used in the future for a wide range of therapeutic purposes and are
preserved at liquid nitrogen temperature to prevent any chemical or biological
activity up to several decades before their use. We show that the cryogenized
cells accumulate damages coming from natural radiations, potentially inducing
DNA double-strand breaks (DSBs). Such DNA damage in stem cells could lead to
either mortality of the cells upon thawing or a mutation diminishing the
therapeutic potential of the treatment. Many studies show how stem cells react
to different levels of radiation; the effect of terrestrial cosmic rays being
key, it is thus also important to investigate the effect of the natural
radiation on the cryopreserved stem cell behavior over time. Our study showed
that the cryostored stem cells totally shielded from cosmic rays had less DSBs
upon long-term storage. This could have important implications on the long-term
cryostorage strategy and quality control of different cell banks.
Collapse
Affiliation(s)
- P Rocheteau
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - G Warot
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Chapellier
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - M Zampaolo
- Laboratoire de Physique Subatomique et Corpusculaire, UMR 5821, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble Institute of Technology (Institute of Engineering University Grenoble Alpes), LPSC-IN2P3, Grenoble, France
| | - F Chretien
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, Paris, France
| | - F Piquemal
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Centre National de la Recherche Scientifique and Université de Bordeaux, Gradignan, France
| |
Collapse
|
12
|
Gutierrez-Quintana R, Walker DJ, Williams KJ, Forster DM, Chalmers AJ. Radiation-induced neuroinflammation: a potential protective role for poly(ADP-ribose) polymerase inhibitors? Neurooncol Adv 2022; 4:vdab190. [PMID: 35118383 PMCID: PMC8807076 DOI: 10.1093/noajnl/vdab190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy (RT) plays a fundamental role in the treatment of glioblastoma (GBM). GBM are notoriously invasive and harbor a subpopulation of cells with stem-like features which exhibit upregulation of the DNA damage response (DDR) and are radioresistant. High radiation doses are therefore delivered to large brain volumes and are known to extend survival but also cause delayed toxicity with 50%-90% of patients developing neurocognitive dysfunction. Emerging evidence identifies neuroinflammation as a critical mediator of the adverse effects of RT on cognitive function. In addition to its well-established role in promoting repair of radiation-induced DNA damage, activation of poly(ADP-ribose) polymerase (PARP) can exacerbate neuroinflammation by promoting secretion of inflammatory mediators. Therefore, PARP represents an intriguing mechanistic link between radiation-induced activation of the DDR and subsequent neuroinflammation. PARP inhibitors (PARPi) have emerged as promising new agents for GBM when given in combination with RT, with multiple preclinical studies demonstrating radiosensitizing effects and at least 3 compounds being evaluated in clinical trials. We propose that concomitant use of PARPi could reduce radiation-induced neuroinflammation and reduce the severity of radiation-induced cognitive dysfunction while at the same time improving tumor control by enhancing radiosensitivity.
Collapse
Affiliation(s)
- Rodrigo Gutierrez-Quintana
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David J Walker
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Duncan M Forster
- Division of Informatics, Imaging and Data Sciences, Manchester Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Barazzuol L, Coppes RP, van Luijk P. Prevention and treatment of radiotherapy-induced side effects. Mol Oncol 2020; 14:1538-1554. [PMID: 32521079 PMCID: PMC7332214 DOI: 10.1002/1878-0261.12750] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy remains a mainstay of cancer treatment, being used in roughly 50% of patients. The precision with which the radiation dose can be delivered is rapidly improving. This precision allows the more accurate targeting of radiation dose to the tumor and reduces the amount of surrounding normal tissue exposed. Although this often reduces the unwanted side effects of radiotherapy, we still need to further improve patients' quality of life and to escalate radiation doses to tumors when necessary. High-precision radiotherapy forces one to choose which organ or functional organ substructures should be spared. To be able to make such choices, we urgently need to better understand the molecular and physiological mechanisms of normal tissue responses to radiotherapy. Currently, oversimplified approaches using constraints on mean doses, and irradiated volumes of normal tissues are used to plan treatments with minimized risk of radiation side effects. In this review, we discuss the responses of three different normal tissues to radiotherapy: the salivary glands, cardiopulmonary system, and brain. We show that although they may share very similar local cellular processes, they respond very differently through organ-specific, nonlocal mechanisms. We also discuss how a better knowledge of these mechanisms can be used to treat or to prevent the effects of radiotherapy on normal tissue and to optimize radiotherapy delivery.
Collapse
Affiliation(s)
- Lara Barazzuol
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rob P. Coppes
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
14
|
McBride WH, Schaue D. Radiation-induced tissue damage and response. J Pathol 2020; 250:647-655. [PMID: 31990369 PMCID: PMC7216989 DOI: 10.1002/path.5389] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
Normal tissue responses to ionizing radiation have been a major subject for study since the discovery of X-rays at the end of the 19th century. Shortly thereafter, time-dose relationships were established for some normal tissue endpoints that led to investigations into how the size of dose per fraction and the quality of radiation affected outcome. The assessment of the radiosensitivity of bone marrow stem cells using colony-forming assays by Till and McCulloch prompted the establishment of in situ clonogenic assays for other tissues that added to the radiobiology toolbox. These clonogenic and functional endpoints enabled mathematical modeling to be performed that elucidated how tissue structure, and in particular turnover time, impacted clinically relevant fractionated radiation schedules. More recently, lineage tracing technology, advanced imaging and single cell sequencing have shed further light on the behavior of cells within stem, and other, cellular compartments, both in homeostasis and after radiation damage. The discovery of heterogeneity within the stem cell compartment and plasticity in response to injury have added new dimensions to the consideration of radiation-induced tissue damage. Clinically, radiobiology of the 20th century garnered wisdom relevant to photon treatments delivered to a fairly wide field at around 2 Gy per fraction, 5 days per week, for 5-7 weeks. Recently, the scope of radiobiology has been extended by advances in technology, imaging and computing, as well as by the use of charged particles. These allow radiation to be delivered more precisely to tumors while minimizing the amount of normal tissue receiving high doses. One result has been an increase in the use of schedules with higher doses per fraction given in a shorter time frame (hypofractionation). We are unable to cover these new technologies in detail in this review, just as we must omit low-dose stochastic effects, and many aspects of dose, dose rate and radiation quality. We argue that structural diversity and plasticity within tissue compartments provides a general context for discussion of most radiation responses, while acknowledging many omissions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- William H McBride
- Departent of Radiation OncologyUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| | - Dörthe Schaue
- Departent of Radiation OncologyUniversity of California, Los Angeles (UCLA)Los AngelesCAUSA
| |
Collapse
|
15
|
Averbeck D, Candéias S, Chandna S, Foray N, Friedl AA, Haghdoost S, Jeggo PA, Lumniczky K, Paris F, Quintens R, Sabatier L. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol 2020; 96:297-323. [PMID: 31852363 DOI: 10.1080/09553002.2019.1704908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.
Collapse
Affiliation(s)
| | - Serge Candéias
- CEA, CNRS, LCMB, University of Grenoble Alpes, Grenoble, France
| | - Sudhir Chandna
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Nicolas Foray
- Inserm UA8 Unit Radiations: Defense, Health and Environment, Lyon, France
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Siamak Haghdoost
- Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE,), University of Caen Normandy, France.,Centre for Radiation Protection Research, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | | | | | | |
Collapse
|