1
|
Mi X, Chen C, Feng C, Qin Y, Chen ZJ, Yang Y, Zhao S. The Functions and Application Prospects of Hepatocyte Growth Factor in Reproduction. Curr Gene Ther 2024; 24:347-355. [PMID: 39005061 DOI: 10.2174/0115665232291010240221104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 07/16/2024]
Abstract
Hepatocyte growth factor (HGF) is expressed in multiple systems and mediates a variety of biological activities, such as mitosis, motility, and morphogenesis. A growing number of studies have revealed the expression patterns and functions of HGF in ovarian and testicular physiology from the prenatal to the adult stage. HGF regulates folliculogenesis and steroidogenesis by modulating the functions of theca cells and granulosa cells in the ovary. It also mediates somatic cell proliferation and steroidogenesis, thereby affecting spermatogenesis in males. In addition to its physiological effects on the reproductive system, HGF has shown advantages in preclinical studies over recent years for the treatment of male and female infertility, particularly in women with premature ovarian insufficiency. This review aims to summarize the pleiotropic functions of HGF in the reproductive system and to provide prospects for its clinical application.
Collapse
Affiliation(s)
- Xin Mi
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Caiyi Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Chen Feng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring (No.2021RU001), Chinese Academy of Medical Sciences, Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yajuan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics 2024; 56:74-97. [PMID: 37694291 DOI: 10.1152/physiolgenomics.00035.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Juan M Castillo
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
3
|
Xia L, Shen Y, Liu S, Du J. Iron overload triggering ECM-mediated Hippo/YAP pathway in follicle development: a hypothetical model endowed with therapeutic implications. Front Endocrinol (Lausanne) 2023; 14:1174817. [PMID: 37223010 PMCID: PMC10200985 DOI: 10.3389/fendo.2023.1174817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Disruption of iron homeostasis plays a negative role in follicle development. The dynamic changes in follicle growth are dependent on Hippo/YAP signaling and mechanical forces. However, little is known about the liaison between iron overload and the Hippo/YAP signalling pathway in term of folliculogenesis. Here, based on the available evidence, we established a hypothesized model linking excessive iron, extracellular matrix (ECM), transforming growth factor-β (TGF-β) and Hippo/Yes-associated protein (YAP) signal regarding follicle development. Hypothetically, the TGF-β signal and iron overload may play a synergistic role in ECM production via YAP. We speculate that the dynamic homeostasis of follicular iron interacts with YAP, increasing the risk of ovarian reserve loss and may enhance the sensitivity of follicles to accumulated iron. Hence, therapeutic interventions targeting iron metabolism disorders, and Hippo/YAP signal may alter the consequences of the impaired developmental process based on our hypothesis, which provides potential targets and inspiration for further drug discovery and development applied to clinical treatment.
Collapse
Affiliation(s)
- Lingjin Xia
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Du
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhao H, Dong Y, Zhang Y, Wu X, Zhang X, Liang Y, Li Y, Zeng F, Shi J, Zhou R, Hong L, Cai G, Wu Z, Li Z. Supplementation of SDF1 during Pig Oocyte In Vitro Maturation Improves Subsequent Embryo Development. Molecules 2022; 27:molecules27206830. [PMID: 36296422 PMCID: PMC9609306 DOI: 10.3390/molecules27206830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The quality of in vitro matured oocytes is inferior to that of in vivo matured oocytes, which translates to low developmental capacity of embryos derived from in vitro matured oocytes. The developmental potential of in vitro matured oocytes is usually impaired due to oxidative stress. Stromal cell-derived factor-l (SDF1) can reduce oxidative stress and inhibit apoptosis. The aim of this study was to investigate the effects of SDF1 supplementation during pig oocyte in vitro maturation (IVM) on subsequent embryo development, and to explore the acting mechanisms of SDF1 in pig oocytes. We found that the IVM medium containing 20 ng/mL SDF1 improved the maturation rate of pig oocytes, as well as the cleavage rate and blastocyst rate of embryos generated by somatic cell nuclear transfer, in vitro fertilization, and parthenogenesis. Supplementation of 20 ng/mL SDF1 during IVM decreased the ROS level, increased the mitochondrial membrane potential, and altered the expression of apoptosis-related genes in the pig oocytes. The porcine oocyte transcriptomic data showed that SDF1 addition during IVM altered the expression of genes enriched in the purine metabolism and TNF signaling pathways. SDF1 supplementation during pig oocyte IVM also upregulated the mRNA and protein levels of YY1 and TET1, two critical factors for oocyte development. In conclusion, supplementation of SDF1 during pig oocyte IVM reduces oxidative stress, changes expression of genes involved in regulating apoptosis and oocyte growth, and enhances the ability of in vitro matured pig oocytes to support subsequent embryo development. Our findings provide a theoretical basis and a new method for improving the developmental potential of pig in vitro matured oocytes.
Collapse
Affiliation(s)
- Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yazheng Dong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Fang Zeng
- College of Marine Science, South China Agricultural University, Guangzhou 510030, China
| | - Junsong Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527400, China
| | - Rong Zhou
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527400, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510030, China
- Correspondence: (Z.W.); (Z.L.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510030, China
- Correspondence: (Z.W.); (Z.L.)
| |
Collapse
|
5
|
The Hippo pathway effectors YAP and TAZ interact with EGF-like signaling to regulate expansion-related events in bovine cumulus cells in vitro. J Assist Reprod Genet 2022; 39:481-492. [PMID: 35091965 PMCID: PMC8956774 DOI: 10.1007/s10815-021-02384-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To determine if the inhibition of the interaction between the Hippo effector YAP or its transcriptional co-activator TAZ with the TEAD family of transcription factors is critical for the cumulus expansion-related events induced by the EGF network in cumulus-oocyte complexes (COCs). METHODS We performed a series of experiments using immature bovine COCs subjected to an IVM protocol for up 24 h in which cumulus expansion was stimulated with EGF recombinant protein or FSH. RESULTS The main results indicated that EGFR activity stimulation in bovine cumulus cells (CC) increases mRNA levels encoding the classic YAP/TAZ-TEAD target gene CTGF. To determine if important genes for cumulus expansion are transcriptional targets of YAP/TAZ-TEAD interaction in CC, COCs were then subjected to IVM in the presence of FSH with or without distinct concentrations of Verteporfin (VP; a small molecule inhibitor that interferes with YAP/TAZ binding to TEADs). COCs were then collected at 6, 12, 18, and 24 h for total RNA extraction and RT-qPCR analyses. This experiment indicated that VP inhibits in a time- and concentration-dependent manner distinct cumulus expansion and oocyte maturation-related genes, by regulating EGFR and CTGF expression in CC. CONCLUSIONS Taken together, the results presented herein represent considerable insight into the functional relevance of a completely novel signaling pathway underlying cumulus expansion and oocyte maturation in monovulatory species. YAP/TAZ or CTGF may represent potential targets to improve the efficiency of IVM systems, not only for monovulatory species of agricultural importance as the cow, but for human embryo production.
Collapse
|
6
|
Xu H, Bao X, Kong H, Yang J, Li Y, Sun Z. Melatonin Protects Against Cyclophosphamide-induced Premature Ovarian Failure in Rats. Hum Exp Toxicol 2022; 41:9603271221127430. [PMID: 36154502 DOI: 10.1177/09603271221127430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to understand the efficacy and molecular cues of melatonin in cyclophosphamide(CTX)-induced premature ovarian failure (POF) in rats. Female SD rats were used to evaluate the potential effects of melatonin on the ovarian hormonal status, follicular development, and granulosa cells in CTX-treated rats. Here, we found that pretreatment with melatonin before CTX administration preserved the normal sex hormone levels, improved follicular morphology, and granulosa cell proliferation, and reduced apoptosis, as compared to the CTX treatment alone. Additionally, melatonin also up-regulated CYR6 and CTGF at the mRNA and protein levels. A potential mechanism is that melatonin inhibits LATS1, Mps1-One binder (MOB1), and YAP phosphorylation, thereby activating the Hippo signal pathway to promote its downstream targets, CYR61 and CTGF. In conclusion, pretreatment with melatonin effectively protected the ovaries against CTX-induced damage by activating the Hippo pathway. This study lay the foundation for the clinical application of melatonin for cancer patients with CTX treatment.
Collapse
Affiliation(s)
- Hongxia Xu
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Reproductive Medical Centre, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiuming Bao
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hanxin Kong
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junya Yang
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Li
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhiwei Sun
- School of Medicine, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| |
Collapse
|
7
|
Alazzam MB, AlGhamdi AS, Alshamrani SS. Impaired decidualization of human endometrial stromal cells from women with adenomyosis†. Biol Reprod 2021; 104:1034-1044. [PMID: 33533396 PMCID: PMC8641996 DOI: 10.1093/biolre/ioab017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/27/2020] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
Differentiation of endometrial stromal cells (ESCs) into secretory decidualized cells (dESCs) is essential for embryo implantation. Adenomyosis is a common benign gynecological disease that causes infertility. However, whether adenomyosis affects decidualization of human ESCs is elusive. Primary eutopic ESCs were obtained from patients with adenomyosis (n = 9) and women with nonendometrial diseases (n = 12). We determined the capacity of decidualization of human ESCs by qRT-PCR, Edu proliferation assay, cytokine array, and ELISA assay. We found that the expression of decidualization markers (IGFBP1 and PRL) in ESCs of adenomyosis was reduced, concomitant with increased cell proliferation. Differential secretion of cytokines in dESCs, including CXCL1/2/3, IL-6, IL-8, MCP-1, VEGF-A, MIP-3α, OPN, SDF-1α, HGF, and MMP-9, was observed between adenomyosis and nonadenomyosis. Moreover, the expression of decidualization regulators (HOXA10 at both mRNA and protein levels, FOXO1, KLF5, CEBPB, and HAND2 at mRNA levels) in the eutopic endometrium of adenomyosis was lower than that of nonadenomyosis. We propose that ESCs from adenomyosis have defected ability to full decidualization, which may lead to a nonreceptive endometrium.
Collapse
Affiliation(s)
| | - Ahmed S. AlGhamdi
- Department of Computer Engineering, Collage of Computers and Information Technology, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Sultan S. Alshamrani
- Department of Information Technology, College of Computer and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
8
|
Han Z, Hao X, Zhou CJ, Wang J, Wen X, Wang XY, Zhang DJ, Liang CG. Clathrin Heavy Chain 1 Plays Essential Roles During Oocyte Meiotic Spindle Formation and Early Embryonic Development in Sheep. Front Cell Dev Biol 2021; 9:609311. [PMID: 33718352 PMCID: PMC7946971 DOI: 10.3389/fcell.2021.609311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
As a major protein of the polyhedral coat of coated pits and vesicles, clathrin molecules have been shown to play a stabilization role for kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridges. Clathrin heavy chain 1 (CLTC), the basic subunit of the clathrin coat, plays vital roles in both spindle assembly and chromosome congression during somatic-cell mitosis. However, its function in oocyte meiotic maturation and early embryo development in mammals, especially in domesticated animals, has not been fully investigated. In this study, the expression profiles and functional roles of CLTC in sheep oocytes were investigated. Our results showed that the expression of CLTC was maintained at a high level from the germinal vesicle (GV) stage to metaphase II stage and that CLTC was distributed diffusely in the cytoplasm of cells at interphase, from the GV stage to the blastocyst stage. After GV breakdown (GVBD), CLTC co-localized with beta-tubulin during metaphase. Oocyte treatments with taxol, nocodazole, or cold did not affect CLTC expression levels but led to disorders of its distribution. Functional impairment of CLTC by specific morpholino injections in GV-stage oocytes led to disruptions in spindle assembly and chromosomal alignment, accompanied by impaired first polar body (PB1) emissions. In addition, knockdown of CLTC before parthenogenetic activation disrupted spindle formation and impaired early embryo development. Taken together, the results demonstrate that CLTC plays a vital role in sheep oocyte maturation via the regulation of spindle dynamics and an essential role during early embryo development.
Collapse
Affiliation(s)
- Zhe Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - De-Jian Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
10
|
Damasceno KNM, de Sá NAR, Tetaping GM, Paes VM, de Lima LF, Monreal ACD, de Sousa FGC, Alves BG, de Figueiredo JR, Araújo VR. Ultra-diluted Folliculinum 6 cH impairs ovine oocyte viability and maturation after in vitro culture. Anim Reprod 2020; 17:e20190100. [PMID: 32714448 PMCID: PMC7375870 DOI: 10.1590/1984-3143-ar2019-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effect of Folliculinum 6 cH on the oocyte meiosis resumption and viability rates, progesterone production and mitochondrial activity after in vitro maturation of cumulus-oocyte complexes (COCs) in sheep. Sheep ovaries were collected at a local slaughterhouse and COCs were recovered by slicing technique. The selected COCs were maturated in TCM199 (Control treatment), or control medium supplemented with 0.05% ethanol (v/v) (the vehicle of the homeopathic preparation - Ethanol treatment) or with Folliculinum 6 cH. After 24 h of in vitro maturation (IVM), oocytes were mechanically denuded and incubated with Hoechst 33342 and MitoTracker (0.5 μM) Orange CMTMRos for analysis of viability and chromatin configuration, and mitochondrial activity, respectively. The results showed that Folliculinum 6 cH addition increased oocyte degeneration and reduced meiotic resumption compared to the control (P < 0.05). Interestingly, the percentages meiotic resumption and oocyte maturation were lower in the Folliculinum 6 cH treatment compared to its vehicle (Ethanol treatment) (P < 0.05). On the other hand, when the treatments were compared, higher mitochondrial activity was observed in the Ethanol treatment (P < 0.05). In conclusion, contrary to its vehicle, the addition of Folliculinum 6 cH to the IVM medium promoted oocyte degeneration and affected negatively the mitochondrial distribution, impairing meiosis resumption.
Collapse
Affiliation(s)
- Kayse Najara Matos Damasceno
- Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Naiza Arcângela Ribeiro de Sá
- Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Gildas Mbemya Tetaping
- Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Victor Macedo Paes
- Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Laritza Ferreira de Lima
- Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Antônio Carlos Duenhas Monreal
- Laboratório de Biotecnologia para Pequenos Ruminantes, Faculdade de Ciências Farmacêuticas, Alimentação e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | | | - Bênner Geraldo Alves
- Laboratório de Biologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - José Ricardo de Figueiredo
- Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | | |
Collapse
|
11
|
Zhao H, Xie S, Zhang N, Ao Z, Wu X, Yang L, Shi J, Mai R, Zheng E, Cai G, Wu Z, Li Z. Source and Follicular Fluid Treatment During the In Vitro Maturation of Recipient Oocytes Affects the Development of Cloned Pig Embryo. Cell Reprogram 2020; 22:71-81. [PMID: 32125895 DOI: 10.1089/cell.2019.0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pig cloning technique is valuable in agriculture, biomedicine, and life sciences. However, the full-term developmental efficiency of cloned pig embryos is only about 1%, which limits pig cloning application. The quality of recipient oocytes greatly affects the developmental competence of cloned pig embryos. Thus, this study investigated the effects of a recipient oocyte source (in vivo matured [IVVM] oocytes vs. slaughter house-derived in vitro matured [IVTM] oocytes), and follicular liquid treatment (slaughter house-derived immature follicle-derived fluid [IFF] vs. in vivo-matured follicle-derived fluid [MFF]) during the in vitro maturation (IVM) of oocytes on the development of the cloned pig embryos. Our results showed that using IVVM oocytes to replace IVTM oocytes as recipient oocytes, and using 10% MFF IVM medium to replace 10% IFF IVM medium could enhance the development of the cloned pig embryos. IFF and MFF contained different levels of oocyte quality-related proteins, resulting in different oocyte quality-related gene expression levels and reactive oxygen species levels between the 10% MFF medium-cultured oocytes and 10% IFF medium-cultured oocytes. This study provided useful information for enhancing the pig cloning efficiency by improving the quality of recipient oocytes.
Collapse
Affiliation(s)
- Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shaoyi Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ning Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liusong Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Ranbiao Mai
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Garcia-Garcia RM, Arias-Alvarez M, Sanchez-Rodriguez A, Lorenzo PL, Rebollar PG. Role of nerve growth factor in the reproductive physiology of female rabbits: A review. Theriogenology 2020; 150:321-328. [PMID: 32088037 DOI: 10.1016/j.theriogenology.2020.01.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/27/2022]
Abstract
Rabbit does are reflex ovulators such that coitus is needed to release GnRH and elicit the LH surge that triggers the ovulation of mature oocytes. However, the mechanisms eliciting ovulation in this species remain unclear. One of the most promising recently discovered candidates with a role in female reproductive physiology is nerve growth factor beta (β-NGF). This neurotrophin and its high-affinity receptor TrkA and low affinity receptor p75, is present in all compartments of the ovary, oviduct and uterus suggesting a physiologic role in ovarian folliculogenesis, steroidogenesis, ovulation, luteogenesis and embryo development. Besides, evidence exists that β-NGF found in seminal plasma could exert a modulatory role in the female hypothalamus-pituitary-ovarian axis contributing to the adrenergic and cholinergic neuronal stimulus of GnRH neurons in an endocrine manner during natural mating. Probably, the paracrine and local roles of the neurotrophin in steroidogenesis and ovulation reinforce the neuroendocrine pathway that leads to ovulation. This review updates knowledge of the role of β-NGF in rabbit reproduction, including its possible contribution to the mechanisms of action that induce ovulation, and discusses perspectives for the future applications of this neurotrophin on rabbit farms.
Collapse
Affiliation(s)
- R M Garcia-Garcia
- Dept. Physiology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain.
| | - M Arias-Alvarez
- Dept. Animal Production, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - A Sanchez-Rodriguez
- Dept. Physiology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - P L Lorenzo
- Dept. Physiology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - P G Rebollar
- Dept. of Agrarian Production, ETSIAAB, Polytechnic University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Garrido MP, Torres I, Vega M, Romero C. Angiogenesis in Gynecological Cancers: Role of Neurotrophins. Front Oncol 2019; 9:913. [PMID: 31608227 PMCID: PMC6761325 DOI: 10.3389/fonc.2019.00913] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, or generation of new blood vessels from other pre-existing, is a key process to maintain the supply of nutrients and oxygen in tissues. Unfortunately, this process is exacerbated in pathologies such as retinopathies and cancers with high angiogenesis as ovarian cancer. Angiogenesis is regulated by multiple systems including growth factors and neurotrophins. One of the most studied angiogenic growth factors is the vascular endothelial growth factor (VEGF), which is overexpressed in several cancers. It has been recently described that neurotrophins could regulate angiogenesis through direct and indirect mechanisms. Neurotrophins are a family of proteins that include nerve growth factor (NGF), brain-derived growth factor (BDNF), and neurotrophins 3 and 4/5 (NT 3, NT 4/5). These molecules and their high affinity receptors (TRKs) regulate the development, maintenance, and plasticity of the nervous system. Furthermore, it was recently described that they display essential functions in non-neuronal tissues, such as reproductive organs among others. Studies have shown that several types of cancer overexpress neurotrophins such as NGF and BDNF, which might contribute to tumor progression and angiogenesis. Besides, in recent years the FDA has approved the use of pharmacologic inhibitors of pan-TRK receptors in patients with TRKs fusion-positive cancers. In this review, we discuss the mechanisms by which neurotrophins stimulate tumor progression and angiogenesis, with emphasis on gynecological cancers.
Collapse
Affiliation(s)
- Maritza P Garrido
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Torres
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|