1
|
Hassanein EM, Szelényi Z, Szenci O. Gonadotropin-Releasing Hormone (GnRH) and Its Agonists in Bovine Reproduction II: Diverse Applications during Insemination, Post-Insemination, Pregnancy, and Postpartum Periods. Animals (Basel) 2024; 14:1575. [PMID: 38891622 PMCID: PMC11171120 DOI: 10.3390/ani14111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The administration of GnRH and its agonists benefits various aspects of bovine reproductive programs, encompassing physiological stages such as estrous synchronization, post-insemination, pregnancy, and the postpartum period. The positive impact of GnRH administration in overcoming challenges like repeat breeder cows, early embryonic loss prevention, and the management of cystic ovarian disease (COD) is thoroughly surveyed. Furthermore, this review focuses on the significance of GnRH administration during the postpartum period, its role in ovulation induction, and how it enhances the productivity of embryo transfer (ET) programs. An emerging feature of this field is introduced, focusing on nano-drug delivery systems for GnRH agonists, and the potential benefits that may arise from such advancements are highlighted. While this review offers valuable insights into various applications of GnRH in bovine reproduction, it emphasizes the crucial need for further research and development in this field to advance reproductive efficiency and health management in dairy cattle.
Collapse
Affiliation(s)
- Eman M. Hassanein
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, H-2225 Üllő, Hungary; (E.M.H.); (Z.S.)
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Zoltán Szelényi
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, H-2225 Üllő, Hungary; (E.M.H.); (Z.S.)
| | - Ottó Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, H-2225 Üllő, Hungary; (E.M.H.); (Z.S.)
| |
Collapse
|
2
|
Nakafeero A, Gonzalez-Bulnes A, Martinez-Ros P. Use of Short-Term CIDR-Based Protocols for Oestrus Synchronisation in Goats at Tropical and Subtropical Latitudes. Animals (Basel) 2024; 14:1560. [PMID: 38891607 PMCID: PMC11171354 DOI: 10.3390/ani14111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This review aims to provide an insight into the application and efficiency of CIDR-based protocols for ES in goats raised under tropical and subtropical environments. In temperate regions, short-term CIDR treatments are replacing long-term treatments and sponges used in earlier decades. In addition, the use of co-treatments for the induction of ovulation is gradually changing from hormonal to non-hormonal methods, given the drive towards clean, green, and ethical techniques for reproductive management. Whereas the subtropical region registers ongoing research in the development of new ES protocols, there are few reports from the tropics, particularly Africa, one of the regions with the highest population of goats. Therefore, this calls for research to develop the most appropriate protocols for these regions, since the protocols currently used are largely hormonal based, as they were developed for goats at higher latitudes. Management and environmental factors determine the breeding pattern of goats at tropical latitudes rather than photoperiods, and they are the main causes of reproductive seasonality. The use of ES methods, particularly short-term CIDR-based protocols, along with artificial insemination, may have a significant impact on the productivity of goats in these regions when these factors are controlled.
Collapse
Affiliation(s)
- Angella Nakafeero
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain;
| | | | - Paula Martinez-Ros
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain;
| |
Collapse
|
3
|
Hou B, Mao M, Dong S, Deng M, Sun B, Guo Y, Li Y, Liu D, Liu G. Transcriptome analysis reveals mRNAs and long non-coding RNAs associated with fecundity in the hypothalamus of high-and low-fecundity goat. Front Vet Sci 2023; 10:1145594. [PMID: 37056233 PMCID: PMC10086355 DOI: 10.3389/fvets.2023.1145594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As an important organ that coordinates the neuroendocrine system, the hypothalamus synthesizes and secretes reproductive hormones that act on the goat organism, thereby precisely regulating follicular development and reproductive processes in goats. However, it is still elusive to explore the mechanism of hypothalamic effects on goat fertility alone. Therefore, RNA-seq was used to analyze the gene expression in hypothalamic tissues of goats in high fertility group (HFG: litter size per litter ≥2) and low fertility group (LFG: litter size per litter = 1), and identified the differential lncRNAs and mRNAs and their associated pathways related to their fertility. The results showed that a total of 23 lncRNAs and 57 mRNAs were differentially expressed in the hypothalamic tissue of high and low fertility goats. GO terms and KEGG functional annotation suggest that DE lncRNAs and DE mRNAs were significantly enriched in hormone-related pathways regulating ovarian development, hormone synthesis and secretion, regulation of reproductive processes, Estrogen signaling pathway, Oxytocin signaling pathway and GnRH signaling pathway. And we constructed a co-expression network of lncRNAs and target genes, and identified reproduction-related genes such as NMUR2, FEZF1, and WT1. The sequencing results of the hypothalamic transcriptome have broadened our understanding of lncRNA and mRNA in goat hypothalamic tissue and provided some new insights into the molecular mechanisms of follicle development and regulation of its fertility in goats.
Collapse
|
4
|
Hashem NM, El-Hawy AS, El-Bassiony MF, El-Hamid ISA, Gonzalez-Bulnes A, Martinez-Ros P. Use of GnRH-Encapsulated Chitosan Nanoparticles as an Alternative to eCG for Induction of Estrus and Ovulation during Non-Breeding Season in Sheep. BIOLOGY 2023; 12:351. [PMID: 36979043 PMCID: PMC10045856 DOI: 10.3390/biology12030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
This study is aimed at determining the reproductive performance of anestrous ewes treated with nanoencapsulated GnRH after a progesterone-based protocol for estrus induction was proposed as a way of replacing eCG. A total of sixty anestrous, multiparous, non-lactating Barki ewes were randomly allocated into three homogenous groups and subjected to a CIDR-based estrus induction protocol. The first group (eCG) received an intramuscular (i.m.) injection of 350 IU of eCG at CIDR removal. The second (LNGnRH) and third (HLNGnR) groups received either 25 µg or 50 µg of encapsulated GnRH nanoparticles by the i.m. route in the form of spherical GnRH-encapsulated chitosan-TPP nanoparticles (which were 490.8 nm and had a 13.6 mV positive charge) 48 h after CIDR removal. Follicular dynamics, estrous behavior, luteal activity, and pregnancy outcomes were evaluated. Three days after CIDR removal, the number of large follicles increased by similar amounts in the LNGnRH and eCG groups and were significantly higher in both groups than in the HNGnRH group. However, no differences were observed in the numbers and diameters of CLs among the experimental groups and, on the other hand, treatment with HNGnRH significantly increased blood serum progesterone levels compared with eCG and LNGnRH. Treatment with HNGnRH increased conception, lambing, and fecundity rates (p < 0.05), with the trend of a higher litter size (p = 0.081) compared with eCG, whereas LNGnRH resulted in intermediate values. In conclusion, a dose of 50 µg of GnRH encapsulated in chitosan-TPP nanoparticles can be used as an alternative to eCG in progesterone-based estrus induction protocols in sheep.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Agriculture Faculty (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Ahmed S. El-Hawy
- Animal and Poultry Physiology Department, Desert Research Center (DRC), Cairo 11753, Egypt
| | | | | | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal, Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Paula Martinez-Ros
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal, Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
5
|
Multifunctional role of chitosan in farm animals: a comprehensive review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
The deacetylation of chitin results in chitosan, a fibrous-like material. It may be produced in large quantities since the raw material (chitin) is plentiful in nature as a component of crustacean (shrimps and crabs) and insect hard outer skeletons, as well as the cell walls of some fungi. Chitosan is a nontoxic, biodegradable, and biocompatible polygluchitosanamine that contains two essential reactive functional groups, including amino and hydroxyl groups. This unique chemical structure confers chitosan with many biological functions and activities such as antimicrobial, anti-inflammatory, antioxidative, antitumor, immunostimulatory and hypocholesterolemic, when used as a feed additive for farm animals. Studies have indicated the beneficial effects of chitosan on animal health and performance, aside from its safer use as an antibiotic alternative. This review aimed to highlight the effects of chitosan on animal health and performance when used as a promising feed additive.
Collapse
|
6
|
Gallab RS, Hassanein EM, Rashad AM, El-Shereif AA. Maximizing the reproductive performances of anestrus dairy buffalo cows using GnRH analogue-loaded chitosan nanoparticles during the low breeding season. Anim Reprod Sci 2022; 244:107044. [DOI: 10.1016/j.anireprosci.2022.107044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
|
7
|
Hashem NM, EL-Sherbiny HR, Fathi M, Abdelnaby EA. Nanodelivery System for Ovsynch Protocol Improves Ovarian Response, Ovarian Blood Flow Doppler Velocities, and Hormonal Profile of Goats. Animals (Basel) 2022; 12:ani12111442. [PMID: 35681906 PMCID: PMC9179570 DOI: 10.3390/ani12111442] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/18/2022] Open
Abstract
Fifteen cyclic, multiparous goats were equally stratified and received the common Ovsynch protocol (GPG: intramuscular, IM, injection of 50 mg gonadorelin, followed by an IM injection of 125 µg cloprostenol 7 days later, and a further IM injection of 50 mg gonadorelin 2 days later) or the Ovsynch protocol using nanofabricated hormones with the same dosages (NGPG) or half dosages (HNGPG) of each hormone. The ovarian structures and ovarian and luteal artery hemodynamic indices after each injection of the Ovsynch protocol using B-mode, color, and spectral Doppler scanning were monitored. Levels of blood serum progesterone (P4), estradiol (E2), and nitric oxide (NO) were determined. After the first gonadotrophin-releasing hormone (GnRH) injection, the number of large follicles decreased (p = 0.02) in NGPG and HNGPG, compared with GPG. HNGPG resulted in larger corpus luteum (CL) diameters (p = 0.001), and improved ovarian and luteal blood flow, compared with GPG and NGPG. Both NGPG and HNGPG significantly increased E2 and NO levels compared with GPG. HNGPG increased (p < 0.001) P4 levels compared with GPG, whereas NGPG resulted in an intermediate value. After prostaglandin F2α (PGF2α) injection, HNGPG had the largest diameter of CLs (p = 0.001) and significantly improved ovarian blood flow compared with GPG and NGPG. Both NGPG and HNGPG increased (p = 0.007) NO levels, compared with GPG. E2 level was increased (p = 0.028) in HNGPG, compared with GPG, whereas NGPG resulted in an intermediate value. During the follicular phase, HNGPG increased (p = 0.043) the number of medium follicles, shortened (p = 0.04) the interval to ovulation, and increased (p < 0.001) ovarian artery blood flow and levels (p < 0.001) of blood serum P4, E2, and NO, compared with GPG and NGPG. During the luteal phase, the numbers of CLs were similar among different experimental groups, whereas the diameter of CLs, luteal blood flow, and levels of blood serum P4 and NO increased (p < 0.001) in HNGPG, compared with GPG and NGPG. Conclusively, the nanodelivery system for the Ovsynch protocol could be recommended as a new strategy for improving estrous synchronization outcomes of goats while enabling lower hormone dose administration.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence:
| | - Hossam R. EL-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (H.R.E.-S.); (M.F.); (E.A.A.)
| | - Mohamed Fathi
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (H.R.E.-S.); (M.F.); (E.A.A.)
| | - Elshymaa A. Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (H.R.E.-S.); (M.F.); (E.A.A.)
| |
Collapse
|
8
|
Wang HQ, Wang WH, Chen CZ, Guo HX, Jiang H, Yuan B, Zhang JB. Regulation of FSH Synthesis by Differentially Expressed miR-488 in Anterior Adenohypophyseal Cells. Animals (Basel) 2021; 11:ani11113262. [PMID: 34827994 PMCID: PMC8614264 DOI: 10.3390/ani11113262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary GnRH and FSH play an important regulatory role in the reproductive activities of mammals. At present, many artificially synthesized GnRH analogues have been used in the regulation of cattle reproduction and the clinical treatment of various reproductive diseases. This study explored the potential mechanism of miR-488 in GnRH regulation of FSH synthesis and secretion and provides a theoretical basis for the application of GnRH analogue in cattle artificial breeding. We hope to provide a research foundation for improving the processing procedures of cattle estrus control and the domestic application of hormone products. Abstract Gonadotropin-releasing hormone (GnRH), which is synthesized and released by the hypothalamus, promotes the synthesis and secretion of follicle-stimulating hormone (FSH), thereby regulating the growth and reproduction of animals. GnRH analogues have been widely used in livestock production. MiRNAs, which are endogenous non-coding RNAs, have been found to play important roles in hormone regulation and other physiological processes in recent years. However, the roles of miRNAs in GnRH-mediated regulation of FSH secretion have rarely been studied. Herein, we treated bovine anterior adenohypophyseal cells with an exogenous GnRH analogue and found that miR-488 was differentially expressed. Through a combination of TargetScan prediction and dual luciferase reporter analysis, miR-488 was confirmed to be able to target the FSHB gene. Based on this finding, we verified the expression of Fshβ and Lhβ mRNA in the rat adenohypophysis before and after exogenous GnRH treatment in vivo and in vitro. Experiments on rat anterior adenohypophyseal cells showed that overexpression of miR-488 significantly inhibited Fshβ expression and FSH synthesis, while knockdown of miR-488 had the opposite effects. Our results demonstrate that GnRH relies on miR-488 to regulate FSH synthesis, providing additional useful evidence for the significance of miRNAs in the regulation of animal reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao Yuan
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| | - Jia-Bao Zhang
- Correspondence: (B.Y.); (J.-B.Z.); Tel.: +86-431-8783-6536 (B.Y.); +86-431-8783-6551 (J.-B.Z.)
| |
Collapse
|
9
|
Hashem NM, Gonzalez-Bulnes A. Nanotechnology and Reproductive Management of Farm Animals: Challenges and Advances. Animals (Basel) 2021; 11:1932. [PMID: 34209536 PMCID: PMC8300313 DOI: 10.3390/ani11071932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Reproductive efficiency of farm animals has central consequences on productivity and profitability of livestock farming systems. Optimal reproductive management is based on applying different strategies, including biological, hormonal, nutritional strategies, as well as reproductive disease control. These strategies should not only guarantee sufficient reproductive outcomes but should also comply with practical and ethical aspects. For example, the efficiency of the biological- and hormonal-based reproductive strategies is mainly related to several biological factors and physiological status of animals, and of nutritional strategies, additional factors, such as digestion and absorption, can contribute. In addition, the management of reproductive-related diseases is challenged by the concerns regarding the intensive use of antibiotics and the development of antimicrobial resistant strains. The emergence of nanotechnology applications in livestock farming systems may present innovative and new solutions for overcoming reproductive management challenges. Many drugs (hormones and antibiotics), biological molecules, and nutrients can acquire novel physicochemical properties using nanotechnology; the main ones are improved bioavailability, higher cellular uptake, controlled sustained release, and lower toxicity compared with ordinary forms. In this review, we illustrate advances in the most common reproductive management strategies by applying nanotechnology, considering the current challenges of each strategy.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad CardenalHerrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
10
|
Abdelnour SA, Alagawany M, Hashem NM, Farag MR, Alghamdi ES, Hassan FU, Bilal RM, Elnesr SS, Dawood MAO, Nagadi SA, Elwan HAM, ALmasoudi AG, Attia YA. Nanominerals: Fabrication Methods, Benefits and Hazards, and Their Applications in Ruminants with Special Reference to Selenium and Zinc Nanoparticles. Animals (Basel) 2021; 11:ani11071916. [PMID: 34203158 PMCID: PMC8300133 DOI: 10.3390/ani11071916] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Nanomaterials can contribute to the sustainability of the livestock sector through improving the quantitative and qualitative production of safe, healthy, and functional animal products. Given the diverse nanotechnology applications in the animal nutrition field, the administration of nanominerals can substantially enhance the bioavailability of respective minerals by increasing cellular uptake and avoiding mineral antagonism. Nanominerals are also helpful for improving reproductive performance and assisted reproductive technologies outcomes of animals. Despite the promising positive effects of nanominerals on animal performance (growth, feed utilization, nutrient bioavailability, antioxidant status, and immune response), there are various challenges related to nanominerals, including their metabolism and fate in the animal’s body. Thus, the economic, legal, and ethical implications of nanomaterials must also be considered by the authority. Abstract Nanotechnology is one of the major advanced technologies applied in different fields, including agriculture, livestock, medicine, and food sectors. Nanomaterials can help maintain the sustainability of the livestock sector through improving quantitative and qualitative production of safe, healthy, and functional animal products. Given the diverse nanotechnology applications in the animal nutrition field, the use of nanomaterials opens the horizon of opportunities for enhancing feed utilization and efficiency in animal production. Nanotechnology facilitates the development of nano vehicles for nutrients (including trace minerals), allowing efficient delivery to improve digestion and absorption for better nutrient metabolism and physiology. Nanominerals are interesting alternatives for inorganic and organic minerals for animals that can substantially enhance the bioavailability and reduce pollution. Nanominerals promote antioxidant activity, and improve growth performance, reproductive performance, immune response, intestinal health, and the nutritional value of animal products. Nanominerals are also helpful for improving assisted reproductive technologies (ART) outcomes by enriching media for cryopreservation of spermatozoa, oocytes, and embryos with antioxidant nanominerals. Despite the promising positive effects of nanominerals on animal performance and health, there are various challenges related to nanominerals, including their metabolism and fate in the animal’s body. Thus, the economic, legal, and ethical implications of nanomaterials must also be considered by the authority. This review highlights the benefits of including nanominerals (particularly nano-selenium and nano-zinc) in animal diets and/or cryopreservation media, focusing on modes of action, physiological effects, and the potential toxicity of their impact on human health.
Collapse
Affiliation(s)
- Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (M.A.); (N.M.H.); (Y.A.A.)
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: (M.A.); (N.M.H.); (Y.A.A.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Etab S. Alghamdi
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Faiz Ul Hassan
- Institute of Animal & Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Rana M. Bilal
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Sameer A. Nagadi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt;
| | - Abeer G. ALmasoudi
- Food Science Department, College of Science, Branch of the College at Turbah, Taif University, Taif 21944, Saudi Arabia;
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.); (N.M.H.); (Y.A.A.)
| |
Collapse
|
11
|
Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143470. [PMID: 33248790 DOI: 10.1016/j.scitotenv.2020.143470] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
Nanomaterials (NMs), both natural and synthetic, are produced, transformed, and exported into our environment daily. Natural NMs annual flux to the environment is around 97% of the total and is significantly higher than synthetic NMs. However, synthetic NMs are considered to have a detrimental effect on the environment. The extensive usage of synthetic NMs in different fields, including chemical, engineering, electronics, and medicine, makes them susceptible to be discharged into the atmosphere, various water sources, soil, and landfill waste. As ever-larger quantities of NMs end up in our environment and start interacting with the biota, it is crucial to understand their behavior under various environmental conditions, their exposure pathway, and their health effects on human beings. This review paper comprises a large portion of the latest research on NMs and the environment. The article describes the natural and synthetic NMs, covering both incidental and engineered NMs and their behavior in the natural environment. The review includes a brief discussion on sampling strategies and various analytical tools to study NMs in complex environmental matrices. The interaction of NMs in natural environments and their pathway to human exposure has been summarized. The potential of NMs to impact human health has been elaborated. The nanotoxicological effect of NMs based on their inherent properties concerning to human health is also reviewed. The knowledge gaps and future research needs on NMs are reported. The findings in this paper will be a resource for researchers working on NMs all over the world to understand better the challenges associated with NMs in the natural environment and their human health effects.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Sushil R Kanel
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA; Department of Chemistry, Wright State University, Dayton, OH 45435, USA.
| | - Chittaranjan Ray
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| |
Collapse
|
12
|
Hassanein EM, Hashem NM, El-Azrak KEDM, Gonzalez-Bulnes A, Hassan GA, Salem MH. Efficiency of GnRH-Loaded Chitosan Nanoparticles for Inducing LH Secretion and Fertile Ovulations in Protocols for Artificial Insemination in Rabbit Does. Animals (Basel) 2021; 11:ani11020440. [PMID: 33567711 PMCID: PMC7914616 DOI: 10.3390/ani11020440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Nano-drug delivery systems can be employed for improving ovulation induction prior to artificial insemination (AI) in rabbits. In this study, different routes of administration and different doses of GnRH–loaded chitosan nanoparticles (GnRH–ChNPs) were assessed for inducing ovulation in rabbits, proving their usefulness to reduce the GnRH dose and animal handling and improving AI outcomes. The use of GnRH–ChNPs allows for the reduction of the conventional intramuscular GnRH dose to half without compromising fertility. However, the addition of GnRH–ChNPs to semen extenders, although successfully inducing ovulation, has negative impacts on fertility. Thus, more studies are needed to allow further adjustments. Abstract Gonadotropin-releasing hormone (GnRH)–loaded chitosan nanoparticles (GnRH–ChNPs) were used at different doses and routes of administration to induce ovulation in rabbits as an attempt to improve artificial insemination (AI) procedures and outcomes. In this study, the characteristics (size, polydispersity, loading efficiency, and zeta-potential) of GnRH–ChNPs and the GnRH release pattern were determined in an in vitro study. A first in vivo study assessed the pituitary and ovarian response to different GnRH–ChNPs doses and routes of administration (two i.m. doses, Group HM = 0.4 µg and Group QM = 0.2 µg, and two intravaginal doses, Group HV = 4 µg and Group QV = 2 µg) against a control group (C) receiving bare GnRH (0.8 µg). The HM, QM, and HV treatments induced an earlier LH-surge (90 min) than that observed in group C (120 min), whilst the QV treatment failed to induce such LH surge. The number of ovulation points was similar among treatments, except for the QV treatment (no ovulation points). A second in vivo study was consequently developed to determine the hormonal (progesterone, P4, and estradiol, E2) profile and pregnancy outcomes of both HM and HV treatments against group C. The treatment HM, but not the treatment HV, showed adequate P4 and E2 concentrations, conception and parturition rates, litter size, litter weight, and viability rate at birth. Overall, the use of GnRH–ChNPs allows for a reduction in the conventional intramuscular GnRH dose to half without compromising fertility. However, the addition of GnRH–ChNPs to semen extenders, although successfully inducing ovulation, has negative impacts on fertility. Thus, more studies are needed to explore this point and allow further adjustments.
Collapse
Affiliation(s)
- Eman M. Hassanein
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| | - Nesrein M. Hashem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Kheir El-Din M. El-Azrak
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Reproduccion Animal, INIA, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Gamal A. Hassan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| | - Mohamed H. Salem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| |
Collapse
|
13
|
Assessment of estrous synchronization protocols and pregnancy specific protein B concentration for the prediction of kidding rate in Lezhi black goats. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2020.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Fate of Biodegradable Engineered Nanoparticles Used in Veterinary Medicine as Delivery Systems from a One Health Perspective. Molecules 2021; 26:molecules26030523. [PMID: 33498295 PMCID: PMC7863917 DOI: 10.3390/molecules26030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
The field of veterinary medicine needs new solutions to address the current challenges of antibiotic resistance and the need for increased animal production. In response, a multitude of delivery systems have been developed in the last 20 years in the form of engineered nanoparticles (ENPs), a subclass of which are polymeric, biodegradable ENPs, that are biocompatible and biodegradable (pbENPs). These platforms have been developed to deliver cargo, such as antibiotics, vaccines, and hormones, and in general, have been shown to be beneficial in many regards, particularly when comparing the efficacy of the delivered drugs to that of the conventional drug applications. However, the fate of pbENPs developed for veterinary applications is poorly understood. pbENPs undergo biotransformation as they are transferred from one ecosystem to another, and these transformations greatly affect their impact on health and the environment. This review addresses nanoparticle fate and impact on animals, the environment, and humans from a One Health perspective.
Collapse
|
15
|
State-of-the-Art and Prospective of Nanotechnologies for Smart Reproductive Management of Farm Animals. Animals (Basel) 2020; 10:ani10050840. [PMID: 32414174 PMCID: PMC7278443 DOI: 10.3390/ani10050840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Many biotechnological assisted reproductive techniques (ART) are currently used to control the reproductive processes of farm animals. Nowadays, smart ART that considers technique efficiency, animal welfare, cost efficiency and environmental health are developed. Recently, the nanotechnology revolution has pervaded all scientific fields including the reproduction of farm animals, facilitating certain improvements in this field. Nanotechnology could be used to improve and overcome many technical obstacles that face different ART. For example, semen purification and semen preservation processes have been developed using different nanomaterials and techniques, to obtain semen doses with high sperm quality. Additionally, nanodrugs delivery could be applied to fabricate several sex hormones (steroids or gonadotrophins) used in the manipulation of the reproductive cycle. Nanofabricated hormones have new specific biological properties, increasing their bioavailability. Applying nanodrugs delivery techniques allow a reduction in hormone dose and improves hormone kinetics in animal body, because of protection from natural biological barriers (e.g., enzymatic degradation). Additionally, biodegradable nanomaterials could be used to fabricate hormone-loaded devices that are made from non-degradable materials, such as silicon and polyvinyl chloride-based matrixes, which negatively impact environmental health. This review discusses the role of nanotechnology in developing some ART outcomes applied in the livestock sector, meeting the concept of smart production.
Collapse
|