1
|
Chen J, Huang G, Wei B, Yue S, Chang X, Han S, Dong X, Zhao Y, Zhang X, Zhao Z, Dong G, Sun Y. Effects of rumen-protected 5-hydroxytryptophan on circulating serotonin concentration, behaviour, and mammary gland involution in goats. Animal 2024; 18:101254. [PMID: 39106553 DOI: 10.1016/j.animal.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
The risk of acquiring new intramammary infections is high at the end of lactation, especially for the high milk-producing dairy animals. Resistance to bacterial infection increases following the completion of mammary gland involution after milking cessation. The serotonin precursor 5-hydroxytryptophan (5-HTP) could accelerate involution by increasing circulating serotonin levels, but ruminal microbes may degrade 5-HTP if orally administered to adult ruminants. It is unclear whether rumen-protected 5-HTP could effectively mediate circulating serotonin (5-hydroxytryptamine, 5-HT) and therefore accelerate mammary gland involution in ruminants. Goats were used as a model in the current study to investigate the effects of rumen-protected 5-HTP on behaviour, 5-HT metabolism, and mammary involution in ruminants. In the first experiment, 16 female Dazu black goats were assigned to one of four groups in a randomised block design. The treatments included a basal diet plus 0, 4, 20, or 100 mg/kg BW of rumen-protected 5-HTP. Serum was collected at 0, 3, 6, 12, and 24 h after offering the rumen-protected 5-HTP in the morning feed, and the behaviours were monitored. In the second experiment, 12 female Dazu black goats (Somatic cell count < 250 000) were randomly assigned to the control (basal diet) or rumen-protected 5-HTP group (basal diet plus 20 mg/kg BW). Milk or mammary secretions were manually collected aseptically on d -1, 1, 2, 3, 4, and 5 around weaning. The results depicted that rumen-protected 5-HTP supplementation elevated circulating 5-HTP and 5-hydroxyindole acetic acid concentrations, while 20 mg/kg BW of rumen-protected 5-HTP supplementation lowered the goats' locomotive activity. A high concentration of rumen-protected 5-HTP (100 mg/kg BW) increased serum alkaline phosphatase and gamma-glutamyl transpeptidase concentrations. Moreover, oral supplementation with 20 mg/kg BW of rumen-protected 5-HTP accelerated mammary gland involution and reduced feed intake in goats after weaning. These results demonstrate that oral supplementation with rumen-protected 5-HTP influences 5-HT metabolism and accelerates mammary gland involution after milking cessation in ruminants.
Collapse
Affiliation(s)
- J Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - G Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - B Wei
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - S Yue
- Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu 611231, China
| | - X Chang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - S Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - X Dong
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Y Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - X Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Z Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - G Dong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Y Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China.
| |
Collapse
|
2
|
Bierworth RM, Ribeiro GO, Terry SA, Malmuthuge N, Penner GB, McKinnon JJ, Hucl P, Randhawa H, Beauchemin KA, Stanford K, Schwartzkopf-Genswein K, Yang WZ, Gruninger R, Guan LL, Gibb D, McAllister TA. High deoxynivalenol and ergot alkaloid levels in wheat grain: effects on growth performance, carcass traits, rumen fermentation, and blood parameters of feedlot cattle. Mycotoxin Res 2024; 40:401-417. [PMID: 38698149 PMCID: PMC11258187 DOI: 10.1007/s12550-024-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
This study was designed to assess the impacts of a mixture of deoxynivalenol (DON) and ergot alkaloids (EAs) on growth performance, rumen function, blood parameters, and carcass traits of feedlot cattle. Forty steers (450 ± 6.0 kg) were stratified by weight and randomly allocated to 1 of 4 treatments; control-low (CON-L), control-high (CON-H) which contained low or high wheat screenings that lacked mycotoxins at the same level as the mycotoxin-low (MYC-L; 5.0 mg/kg DON, 2.1 mg/kg EA), and mycotoxin-high (MYC-H: 10 mg/kg DON, 4.2 mg/kg EA) diets that included wheat screening with mycotoxins. Steers were housed in individual pens for a 112-day finishing trial. Intake was 24.8% lower (P < 0.001) for MYC steers compared to CON steers. As a result, average daily gains of MYC steers were 42.1% lower (P < 0.001) than CON steers. Gain to feed ratio was also lower (P < 0.001) for MYC steers compared to CON steers. Platelets, alanine aminotransferase, globulins, and blood urea nitrogen were lower (P ≤ 0.008), and lymphocytes, glutathione peroxidase activity (GPx), and interleukin-10 (IL-10) were elevated (P ≤ 0.002) in MYC steers compared to CON steers. Hot carcass weights and backfat thickness were reduced (P < 0.001) in MYC steers, resulting in leaner (P < 0.001) carcasses and higher (P < 0.007) meat yield compared to CON steers. Results suggest that a mixture of DON and EAs negatively impacted health, performance, and carcass traits of feedlot steers, with the majority of this response likely attributable to EAs. However, more research is needed to distinguish the relative contribution of each mycotoxin to the specific responses observed.
Collapse
Affiliation(s)
- R M Bierworth
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - G O Ribeiro
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - S A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - N Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - G B Penner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - J J McKinnon
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - P Hucl
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - H Randhawa
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - K A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - K Stanford
- Department of Biological Sciences, University of Lethbridge, Alberta, T1K 3M4, Canada
| | - K Schwartzkopf-Genswein
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - W Z Yang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - R Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - L L Guan
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - D Gibb
- Gowan's Feed Consulting, Raymond, AB, T0K 2S0, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada.
| |
Collapse
|
3
|
Chen X, Xiao J, Zhao W, Li Y, Zhao W, Zhang W, Xin L, Han Z, Wang L, Aschalew ND, Zhang X, Wang T, Qin G, Sun Z, Zhen Y. Mechanistic insights into rumen function promotion through yeast culture ( Saccharomyces cerevisiae) metabolites using in vitro and in vivo models. Front Microbiol 2024; 15:1407024. [PMID: 39081884 PMCID: PMC11287897 DOI: 10.3389/fmicb.2024.1407024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Yeast culture (YC) enhances ruminant performance, but its functional mechanism remains unclear because of the complex composition of YC and the uncertain substances affecting rumen fermentation. The objective of this study was to determine the composition of effective metabolites in YC by exploring its effects on rumen fermentation in vitro, growth and slaughter performance, serum index, rumen fermentation parameters, rumen microorganisms, and metabolites in lambs. Methods In Trial 1, various YCs were successfully produced, providing raw materials for identifying effective metabolites. The experiment was divided into 5 treatment groups with 5 replicates in each group: the control group (basal diet without additives) and YC groups were supplemented with 0.625‰ of four different yeast cultures, respectively (groups A, B, C, and D). Rumen fermentation parameters were determined at 3, 6, 12, and 24 h in vitro. A univariate regression model multiple factor associative effects index (MFAEI; y) was established to correlate the most influential factors on in vitro rumen fermentation with YC metabolites (x). This identified the metabolites promoting rumen fermentation and optimal YC substance levels. In Trial 2, metabolites in YC not positively correlated with MFAEI were excluded, and effective substances were combined with pure chemicals (M group). This experiment validated the effectiveness of YC metabolites in lamb production based on their impact on growth, slaughter performance, serum indices, rumen parameters, microorganisms, and metabolites. Thirty cross-generation rams (Small tail Han-yang ♀ × Australian white sheep ♂) with good body condition and similar body weight were divided into three treatment groups with 10 replicates in each group: control group, YC group, pure chemicals combination group (M group). Results Growth performance and serum index were measured on days 30 and 60, and slaughter performance, rumen fermentation parameters, microorganisms, and metabolites were measured on day 60. The M group significantly increased the dressing percentage, and significantly decreased the GR values of lambs (p < 0.05). The concentration of growth hormone (GH), Cortisol, insulin (INS), and rumen VFA in the M group significantly increased (p < 0.05). Discussion These experiments confirmed that YC or its screened effective metabolites positively impact lamb slaughter performance, rumen fermentation, and microbial metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Jun Xiao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Wanzhu Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanan Li
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Weigang Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Liang Xin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhiyi Han
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Lanhui Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Natnael Demelash Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| |
Collapse
|
4
|
Trotta RJ, Harmon DL, Klotz JL. Serotonin receptor-mediated vasorelaxation occurs primarily through 5-HT 4 activation in bovine lateral saphenous vein. Physiol Rep 2024; 12:e16128. [PMID: 38946059 PMCID: PMC11214916 DOI: 10.14814/phy2.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024] Open
Abstract
To better understand mechanisms of serotonin- (5-HT) mediated vasorelaxation, isolated lateral saphenous veins from cattle were assessed for vasoactivity using myography in response to increasing concentrations of 5-HT or selective 5-HT receptor agonists. Vessels were pre-contracted with 1 × 10-4 M phenylephrine and exposed to increasing concentrations of 5-HT or 5-HT receptor agonists that were selective for 5-HT1B, 5-HT2B, 5-HT4, and 5-HT7. Vasoactive response data were normalized as a percentage of the maximum contractile response induced by the phenylephrine pre-contraction. At 1 × 10-7 M 5-HT, a relaxation was observed with an 88.7% decrease (p < 0.01) from the phenylephrine maximum. At 1 × 10-4 M 5-HT, a contraction was observed with a 165% increase (p < 0.01) from the phenylephrine maximum. Increasing concentrations of agonists selective for 5-HT2B, 5-HT4, or 5-HT7 resulted in a 27%, 92%, or 44% (p < 0.01) decrease from the phenylephrine maximum, respectively. Of these 5-HT receptor agonists, the selective 5-HT4 receptor agonist resulted in the greatest potency (-log EC50) value (6.30) compared with 5-HT2B and 5-HT7 receptor agonists (4.21 and 4.66, respectively). To confirm the involvement of 5-HT4 in 5-HT-mediated vasorelaxation, blood vessels were exposed to either DMSO (solvent control) or a selective 5-HT4 antagonist (1 × 10-5 M) for 5-min prior to the phenylephrine pre-contraction and 5-HT additions. Antagonism of the 5-HT4 receptor attenuated the vasorelaxation caused by 5-HT. Approximately 94% of the vasorelaxation occurring in response to 5-HT could be accounted for through 5-HT4, providing strong evidence that 5-HT-mediated vasorelaxation occurs through 5-HT4 activation in bovine peripheral vasculature.
Collapse
Affiliation(s)
- Ronald J. Trotta
- Department of Animal and Food SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - David L. Harmon
- Department of Animal and Food SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - James L. Klotz
- Forage‐Animal Production Research UnitUSDA‐ARSLexingtonKentuckyUSA
| |
Collapse
|
5
|
Sun Z, Aschalew ND, Cheng L, Xia Y, Zhang L, Yin G, Wang S, Wang Z, Dong J, Zhang W, Zhao W, Qin G, Zhang X, Zhong R, Wang T, Zhen Y. Dietary 5-hydroxytryptophan improves sheep growth performance by enhancing ruminal functions, antioxidant capacity, and tryptophan metabolism: in vitro and in vivo studies. Front Immunol 2024; 15:1398310. [PMID: 38835767 PMCID: PMC11148369 DOI: 10.3389/fimmu.2024.1398310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Background Hydroxytryptophan (5-HTP) can regulate the synthesis of 5-Hydroxytryptamine (5-HT) and melatonin (MT). In a previous metabolome analysis, we found that 5-HTP is an effective ingredient in yeast culture for regulating rumen fermentation. However, research on the effect of this microbial product (5-HTP) as a functional feed additive in sheep production is still not well explained. Therefore, this study examined the effects of 5-HTP on sheep rumen function and growth performance using in vitro and in vivo models. Methods A two-factor in vitro experiment involving different 5-HTP doses and fermentation times was conducted. Then, in the in vivo experiment, 10 sheep were divided into a control group which was fed a basal diet, and a 5-HTP group supplemented with 8 mg/kg 5-HTP for 60 days. Results The results showed that 5-HTP supplementation had a significant effect on in vitro DMD, pH, NH3-N, acetic acid, propionic acid, and TVFA concentrations. 5-HTP altered rumen bacteria composition and diversity indices including Chao1, Shannon, and Simpson. Moreover, the in vivo study on sheep confirmed that supplementing with 8 mg/kg of 5-HTP improved rumen fermentation efficiency and microbial composition. This led to enhanced sheep growth performance and increased involvement in the tryptophan metabolic pathway, suggesting potential benefits. Conclusion Dietary 5-HTP (8 mg/kg DM) improves sheep growth performance by enhancing ruminal functions, antioxidant capacity, and tryptophan metabolism. This study can provide a foundation for the development of 5-HTP as a functional feed additive in ruminants' production.
Collapse
Affiliation(s)
- Zhe Sun
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co. Ltd., Changchun, China
| | - Natnael D Aschalew
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Agriculture and Environmental Science, Dilla University, Dilla, Ethiopia
| | - Long Cheng
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuanhong Xia
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Longyu Zhang
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guopei Yin
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shikun Wang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ziyuan Wang
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianan Dong
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Weigang Zhang
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co. Ltd., Changchun, China
| | - Wei Zhao
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co. Ltd., Changchun, China
| | - Guixin Qin
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xuefeng Zhang
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rongzhen Zhong
- Jilin Province Feed Processing and Ruminant Precision Breeding Cross-Regional Cooperation Technology Innovation Center, Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Tao Wang
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co. Ltd., Changchun, China
| | - Yuguo Zhen
- Jilin Agricultural University (JLAU)-Borui Dairy Science and Technology R&D Center, Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production Product Quality and Security Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co. Ltd., Changchun, China
| |
Collapse
|
6
|
Pszczolkowski VL, Connelly MK, Hoppman A, Benn AD, Laporta J, Hernandez LL, Arriola Apelo SI. Intravenous infusion of 5-hydroxytryptophan to mid-lactation Holstein cows transiently affects milk production and circulating amino acid concentrations. J Dairy Sci 2024; 107:3306-3318. [PMID: 38101740 DOI: 10.3168/jds.2023-23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
In dairy cows, the lactating mammary glands synthesize serotonin, which acts in an autocrine-paracrine manner in the glands and is secreted into the periphery. Serotonin signaling during lactation modulates nutrient metabolism in peripheral tissues such as adipose and liver. We hypothesized that the elevation of circulating serotonin during lactation would increase nutrient partitioning to the mammary glands, thereby promoting milk production. Our objective was to elevate circulating serotonin via intravenous infusion of the serotonin precursor 5-hydroxytryptophan (5-HTP) to determine its effects on mammary supply and extraction efficiency of AA, and milk components production. Twenty-two multiparous mid-lactation Holstein cows were intravenously infused with 5-HTP (1 mg/kg body weight) or saline, in a crossover design with two 21-d periods. Treatments were infused via jugular catheters for 1 h/d, on d 1 to 3, 8 to 10, and 15 to 17 of each period, to maintain consistent elevation of peripheral serotonin throughout the period. Milk and blood samples were collected in the last 96 h of each period. Whole-blood serotonin concentration was elevated above saline control for 96 h after the last 5-HTP infusion. Dry matter intake was decreased for cows receiving 5-HTP, and on average they lost body weight over the 21-d period, in contrast to saline cows who gained body weight. Milk production and milk protein yield were lower in cows receiving 5-HTP during the 3 infusion days, but both recovered to saline cow yields in the days after. Although milk fat yield exhibited a day-by-treatment interaction, no significant difference occurred on any given day. Milk urea nitrogen concentration was lower in 5-HTP cows on the days following the end of infusions, but not different from saline cows on infusion days. Meanwhile, plasma urea nitrogen was not affected by 5-HTP infusion. Circulating concentrations of AA were overall transiently decreased by 5-HTP, with concentrations mostly returning to baseline within 7 h after the end of 5-HTP infusion. Mammary extraction efficiency of AA was unaffected by 5-HTP infusion. Overall, both lactation performance and circulating AA were transiently reduced in cows infused with 5-HTP, despite sustained elevation of circulating serotonin concentration.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Meghan K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - August Hoppman
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Amara D Benn
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
7
|
Valente EEL, Klotz JL, Markmann RC, Edwards JL, Harmon DL. 5-hydroxytryphophan mitigates ergot alkaloid-induced suppression of serotonin and feed intake in cattle. J Anim Sci 2024; 102:skae083. [PMID: 38520304 PMCID: PMC11017510 DOI: 10.1093/jas/skae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024] Open
Abstract
The impact of ergot toxicosis on livestock industries is detrimental and treatments are needed in many countries. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan (5-HTP) supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. Eight Holstein steers (538 ± 18 kg) fitted with ruminal cannulas were used in a replicated 4 × 4 Latin Square design experiment with a 2 × 2 factorial treatment structure. The treatments were the combination of 0 (E-) or 15 µg ergovaline/kg BW (E+) and 0 (5HTP-) or 0.5 mg of 5-hydroxy-l-tryptophan/kg BW (5HTP+) administered daily for 6 d. Toxic endophyte-infected tall fescue seed was used to supply the daily dose of ergovaline. Endophyte-free seed was used to equalize seed intake between treatments. Ground seed was placed into the rumen immediately before feeding. The 5-HTP was dissolved in water and infused into the abomasum via the reticulo-omasal orifice. Blood was collected from a jugular vein catheter at 0, 1, 2, 4, 8, and 24 h after treatment administration. Ergovaline without 5-HTP (E+/5HTP-) decreased dry matter intake (DMI) in comparison to steers without ergovaline and 5-HTP (E-/5HTP-). However, 5-HTP infusion in association with ergovaline (E+/5HTP+) normalized the DMI. Although E + did not affect (P > 0.05) the area under the curve (AUC) of serum 5-HTP, 5-hydroxyindoleacetic acid, tryptophan, and kynurenine, serum and plasma serotonin concentrations were decreased (P < 0.05). The infusion of 5-HTP increased (P < 0.05) the AUC of serum 5-HTP, serum and plasma serotonin, and serum 5-hydroxyindoleacetic acid. In conclusion, acute exposure to ergot alkaloids reduced DMI and circulating serotonin in cattle but 5-HTP administration showed potential to normalize both circulating serotonin and feed intake.
Collapse
Affiliation(s)
- Eriton E L Valente
- Animal Science Department, State University of Western Parana, Marechal Cândido Rondon, PR, Brazil
| | - James L Klotz
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY, USA
| | - Ryana C Markmann
- Animal Science Department, State University of Western Parana, Marechal Cândido Rondon, PR, Brazil
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Trotta RJ, Harmon DL, Ji H, Klotz JL. Duration of ergovaline exposure influences serotonin-mediated vasoactivity of bovine mesenteric vasculature. J Anim Sci 2023; 101:skad100. [PMID: 37004204 PMCID: PMC10132815 DOI: 10.1093/jas/skad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Ergovaline (ERV), produced in toxic endophyte-infected tall fescue, causes potent vasoconstriction of bovine peripheral and visceral vasculature. Ergovaline acts as both an agonist and an antagonist in bovine gut blood vessels through serotonin (5-HT) receptors and it appears that the type of action could be influenced by the extent of ERV exposure. Because it was unclear how the duration of ERV exposure influences 5-HT-mediated vasoactivity, experiments were designed to evaluate how simultaneous or prior ERV exposure influenced 5-HT-mediated vasoactivity of mesenteric artery (MA) and vein (MV) segments from Holstein steers (N = 10). Vessels were incubated in Krebs-Henseleit buffer containing 0, 0.01, or 0.1 μM ERV for 24 h prior to the 5-HT dose-response or exposed to fixed concentrations of 0, 0.01, or 0.1 μM ERV simultaneously during the 5-HT dose-response. Vessels were suspended in chambers of a multimyograph containing Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of 5-HT (5 × 10-8 M to 1 × 10-4 M) every 15 min and contractile responses were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference addition. Two-way analysis of variance was used to separately analyze data for each vessel type and duration of exposure using the MIXED procedure of SAS. When 5-HT concentration increased from 5 × 10-8 to 1 × 10-6 M, simultaneous addition of 0.1 μM ERV increased (P < 0.01) the contractile response of MV compared with additions of 0 and 0.01 μM ERV. At 1 × 10-4 M 5-HT, the simultaneous presence of 0.01 and 0.1 μM ERV decreased (P < 0.01) the contractile response of both MA and MV compared with 0 μM ERV addition. As 5-HT concentrations increased, the contractile response increased (P < 0.01) in both MA and MV with no previous ERV exposure, but decreased in MA and MV with 24 h prior exposure to 0.01 and 0.1 μM ERV. These data demonstrate that the duration of ERV exposure influences 5-HT-mediated vasoconstriction and likely vasorelaxation in bovine mesenteric vasculature. If ERV and 5-HT exposure occur simultaneously, ERV can act as a partial agonist of 5-HT-mediated vasoconstriction. If 5-HT exposure occurs after blood vessels have had prior ERV exposure, it appears that 5-HT may induce vasorelaxation of blood vessels. More research is needed to identify cellular and molecular mechanisms involved with 5-HT-mediated vasoactivity.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - David L Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Huihua Ji
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - James L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY 40546, USA
| |
Collapse
|
9
|
Day time-restricted feeding shows differential synchronizing effects on age-related changes of serotonin metabolism in SCN and the pineal gland in male Wistar rats. Biogerontology 2022; 23:771-788. [PMID: 36322233 DOI: 10.1007/s10522-022-09994-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The circadian timing system is synchronized by the environmental photic and non-photic signals. Light is the major cue that entrains the master circadian oscillator located in suprachiasmatic nucleus (SCN). With aging condition ocular light impairs because of the age-related deficiencies in the eye as a result the clock becomes less sensitive to light. In such case non-photic cues may play a major role in synchronizing the clock. Earlier studies have linked altered meal timings to induce many physiological changes including serotonin in different brain regions such as hypothalamus, brain stem and striatum. Much is not known about the effect of timed food restriction as a non-photic stimulus on serotonergic system in SCN under aging condition. We report here the synchronizing effects of time-restricted feeding (TRF) as a non-photic stimulus on serotonin and its related metabolites in the SCN and pineal gland of male Wistar rats upon aging. Under food restriction daily rhythmicity of serotonin 5-HT and 5-HTOH was abolished whereas NAS, 5-MIAA and NAT showed a significant decrease in their daily pulses upon food restriction in 3 months (m) old rats. Under forced day time feeding schedule the mean 24 h levels of serotonin have significantly decreased in 12 and 24 m old animals in SCN and pineal gland. Most of the serotonin metabolites in the SCN and pineal gland of 12 and 24 m old ad libitum fed group rats have shown rhythmicity. 5-HT, NAS, MEL and NAT have shown daily rhythm in the SCN of 12 and 24 m old rats whereas 5-MIAA and 5-MTOH did not show daily rhythm in both the age groups. The mean 24 h levels of 5-HTP, 5-HIAA, 5-MIAA, 5-MTOH, MEL and NAT were increased in the pineal gland of 12 and 24 months old rats. This work help demonstrate the role of TRF in synchronising age induced desynchronization in serotonin metabolome.
Collapse
|
10
|
Zhang Z, Du W, Liu W, Wong BT, Zheng H. Increasing serotonin concentrations alter calcium metabolism in periparturient dairy goats. J Anim Sci 2022; 100:6541332. [PMID: 35235945 PMCID: PMC9030229 DOI: 10.1093/jas/skac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the large amounts of calcium transferred to milk from mammary glands, periparturient dairy goats face challenges with calcium metabolism disorder and hypocalcemia. Serotonin (5-hydroxytryptamine, 5-HT), the product of 5-hydroxy-l-tryptophan (5-HTP) catalyzed by tryptophan hydroxylase 1, is a multifunctional monoamine thought to be a homeostatic regulator of the animal. The objective of the current study was to investigate the effects and underlying mechanisms of intramuscular 5-HTP injections on calcium homeostasis in the goat mammary glands. In the in vivo experiment, 30 multiparous Guanzhong dairy goats were randomly assigned to 2 groups, one group was injected with 5-HTP intramuscularly and the other group was injected with normal saline. From the first 10 d of the expected date for delivery, 5-HTP or saline was injected into goats through the shoulder muscle every morning before feeding, with a dose of 1 mg/kg per body weight. In the in vitro experiment, goat mammary epithelial cells (GMEC) were treated with 100 μM 5-HT for the evaluation of 5-HT in calcium transportation. The results demonstrated that 5-HTP treatment had no effect on the basic composition of colostrum (P > 0.05) but increased the serum 5-HT concentrations on days -5, -4, -3, and 5 relative to parturition (P < 0.05). The 5-HTP injection group had greater serum calcium concentration on day 4 and greater serum parathyroid hormone-related protein (PTHrP) on days -5, -4, -1, 3, 4, and 5 compared with the saline injection group (P < 0.05). It was further confirmed that 5-HT could increase intracellular calcium levels by increasing PTHrP and decreasing plasma membrane Ca2+-ATPases1 (PMCA1) in GMEC (P < 0.05). In conclusion, 5-HTP treatment in multiparous goats during the transition period from pregnancy to lactation is a feasible way to protect goats from calcium metabolism disorder.
Collapse
Affiliation(s)
- ZhiFei Zhang
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Wei Du
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - WenYi Liu
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Braden T Wong
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - HuiLing Zheng
- Laboratory of Genetic Improvement and Healthy Breeding of Dairy Goats, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China,Corresponding author:
| |
Collapse
|
11
|
Influence of Prolonged Serotonin and Ergovaline Pre-Exposure on Vasoconstriction Ex Vivo. Toxins (Basel) 2021; 14:toxins14010009. [PMID: 35050986 PMCID: PMC8777993 DOI: 10.3390/toxins14010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 11/20/2022] Open
Abstract
Ergot alkaloid mycotoxins interfere in many functions associated with serotonergic neurotransmitters. Therefore, the objective was to evaluate whether the association of serotonin (5-hydroxytryptamine, 5-HT) and ergot alkaloids during a 24 h pre-incubation could affect the vascular contractile response to ergot alkaloids. To evaluate the effects of 24 h exposure to 5-HT and ergot alkaloids (ergovaline, ERV), two assays were conducted. The first assay determined the half-maximal inhibitory concentration (IC50) following the 24 h pre-exposure period, while the second assay evaluated the effect of IC50 concentrations of 5-HT and ERV either individually or in combination. There was an interaction between previous exposure to 5-HT and ERV. Previous exposure to 5-HT at the IC50 concentration of 7.57 × 10−7 M reduced the contractile response by more than 50% of control, while the exposure to ERV at IC50 dose of 1.57 × 10−10 M tended to decrease (p = 0.081) vessel contractility with a response higher than 50% of control. The 24 h previous exposure to both 5-HT and ERV did not potentiate the inhibitory response of blood vessels in comparison with incubation with each compound alone. These results suggest receptor competition between 5-HT and ERV. More studies are necessary to determine the potential of 5-HT to treat toxicosis caused by ergot alkaloids.
Collapse
|
12
|
Valente EEL, Damasceno ML, Klotz JL, Harmon DL. Residual effects of abomasal 5-hydroxytryptophan administration on serotonin metabolism in cattle. Domest Anim Endocrinol 2021; 76:106627. [PMID: 33882449 DOI: 10.1016/j.domaniend.2021.106627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/06/2023]
Abstract
Studies of serotonin in animal husbandry has received growing interest. However, there is limited information about serotonin manipulation using 5-HTP administered postruminally and its residual effects in cattle. The objective of this study was to evaluate the effectiveness of 5-HTP infused into the abomasum for enhancing circulating serotonin in cattle. Four Holstein steers (487 ± 7.6 kg) fitted with ruminal cannulas were used in a 4 × 4 Latin Square design experiment. The treatments were intra-abomasal infusion of 5-HTP at 0, 0.25, 0.5, and 1 mg/kg BW. Blood was collected from the jugular vein of each steer at -60, -30, 0, 30, 60, 120, 240, and 480 min from 5-HTP infusion for basal and short term evaluation and, at 1, 2, 4, and 7 d after 5-HTP infusion for long term evaluation. Dry matter intake was not affected (P > 0.05) by intra-abomasal infusions. The half-life of 5-HTP was dose-independent (128 min). The serum 5-HTP, serotonin, and 5-hydroxyindoleacetic acid area under the curve increased (P < 0.05) linearly with an increased dose of 5-HTP. Serum 5-HTP reached peak concentration in approximately 30 min after dosing while serum and plasma serotonin peaked after 240 min postinfusion. Serotonin was greater than control for all 5-HTP doses 1 d and 2 d after infusion in serum and plasma, respectively. Intra-abomasal infusion of 5-HTP at doses up to 1 mg/ kg BW increases circulating serotonin for up 2 days.
Collapse
Affiliation(s)
- E E L Valente
- Animal Science Department, State University of Western Parana, Brazil
| | - M L Damasceno
- Animal Science Department, State University of Western Parana, Brazil
| | - J L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY
| | - D L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY.
| |
Collapse
|
13
|
Valente EEL, Klotz JL, Ahn G, McLeod KR, Herzing HM, King M, Harmon DL. Ergot alkaloids reduce circulating serotonin in the bovine. J Anim Sci 2021; 98:5981672. [PMID: 33188392 DOI: 10.1093/jas/skaa362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Ergot alkaloids can interact with several serotonin (5-hydroxytryptamine [5-HT]) receptors provoking many physiological responses. However, it is unknown whether ergot alkaloid consumption influences 5-HT or its metabolites. Thus, two experiments were performed to evaluate the effect of ergot alkaloid feeding on 5-HT metabolism. In exp. 1, 12 Holstein steers (260 ± 3 kg body weight [BW]) were used in a completely randomized design. The treatments were the dietary concentration of ergovaline: 0, 0.862, and 1.282 mg/kg of diet. The steers were fed ad libitum, kept in light and temperature cycles mimicking the summer, and had blood sampled before and 15 d after receiving the treatments. The consumption of ergot alkaloids provoked a linear decrease (P = 0.004) in serum 5-HT. However, serum 5-hydroxytryptophan and 5-hydroxyindoleacetic acid did not change (P > 0.05) between treatments. In exp. 2, four ruminally cannulated Holstein steers (318 ± 3 kg BW) were used in a 4 × 4 Latin square design to examine the difference between seed sources on 5-HT metabolism. Treatments were: control-tall fescue seeds free of ergovaline, KY 32 seeds (L42-16-2K32); 5Way-endophyte-infected seeds, 5 way (L152-11-1739); KY31-endophyte-infected seeds, KY 31 (M164-16-SOS); and Millennium-endophyte-infected seeds, 3rd Millennium (L108-11-76). The endophyte-infected seed treatments were all adjusted to provide an ergovaline dosage of 15 μg/kg BW. The basal diet provided 1.5-fold the net energy requirement for maintenance. The seed treatments were dosed directly into the rumen before feeding. The experiment lasted 84 d and was divided into four periods. In each period, the steers received seeds for 7 d followed by a 14-d washout. Blood samples were collected on day 0 (baseline) and day 7 for evaluating the treatment response in each period. A 24 h urine collection was performed on day 7. Similar to exp. 1, serum 5-HT decreased (P = 0.008) with the consumption of all endophyte-infected seed treatments. However, there was no difference (P > 0.05) between the infected seeds. The urinary excretion of 5-hydroxyindoleacetic acid in the urine was not affected (P > 0.05) by the presence of ergot alkaloids. In conclusion, the consumption of ergot alkaloids decreases serum 5-HT with no difference between the source of endophyte-infected seeds in the bovine.
Collapse
Affiliation(s)
- Eriton E L Valente
- Department of Animal Science, State University of Western Parana, Marechal Cândido Rondon, PR, Brazil
| | - James L Klotz
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY
| | - Gyuchul Ahn
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - Kyle R McLeod
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - Hannah M Herzing
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - Mindy King
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington, KY
| |
Collapse
|