1
|
Lim JM, Lee R, Kim Y, Lee IY, Kim E, Choi EJ. MST1 mediates the N-methyl-D-aspartate-induced excitotoxicity in mouse cortical neurons. Cell Mol Life Sci 2021; 79:15. [PMID: 34967918 PMCID: PMC11071856 DOI: 10.1007/s00018-021-04103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Excessive activation of the ionotropic N-methyl-D-aspartate (NMDA) receptor has been shown to cause abnormally high levels of Ca2+ influx, thereby leading to excitotoxic neuronal death. In this study, exposure of mouse primary cortical neurons to NMDA resulted in the cleavage and activation of mammalian sterile 20-like kinase-1 (MST1), both of which were mediated by calpain 1. In vitro cleavage assay data indicated that calpain 1 cleaves out the autoinhibitory domain of MST1 to generate an active form of the kinase. Furthermore, calpain 1 mediated the cleavage and activation of wild-type MST1, but not of MST1 (G339A). Intriguingly, NMDA/calpain-induced MST1 activation promoted the nuclear translocation of the kinase and the phosphorylation of histone H2B in mouse cortical neurons, leading to excitotoxicity. Thus, we propose a previously unrecognized mechanism of MST1 activation associated with NMDA-induced excitotoxic neuronal death.
Collapse
Affiliation(s)
- Jane Melissa Lim
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Rumi Lee
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Yeonsil Kim
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - In Young Lee
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Eunju Kim
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Eui-Ju Choi
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Cao Y, Wang Q, Liu C, Wang W, Lai S, Zou H, Tao E, Wang F, Wan L. Capn4 aggravates angiotensin II-induced cardiac hypertrophy by activating the IGF-AKT signaling pathway. J Biochem 2021; 171:53-61. [PMID: 34580724 DOI: 10.1093/jb/mvab100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022] Open
Abstract
Capn4 belongs to a family of calpains that participate in a wide variety of biological functions, but little is known about the role of Capn4 in cardiac disease. Here, we show that the expression of Capn4 was significantly increased in Angiotensin II (Ang II)-treated cardiomyocytes and Ang II-induced cardiac hypertrophic mouse hearts. Importantly, in agreement with the Capn4 expression patterns, the maximal calpain activity measured in heart homogenates was elevated in Ang II-treated mice, and oral coadministration of SNJ-1945 (calpain inhibitor) attenuated the total calpain activity measured in vitro. Functional assays indicated that overexpression of Capn4 obviously aggravated Ang II-induced cardiac hypertrophy, whereas Capn4 knockdown resulted in the opposite phenotypes. Further investigation demonstrated that Capn4 maintained the activation of the insulin-like growth factor (IGF)-AKT signaling pathway in cardiomyocytes by increasing c-Jun expression. Mechanistic investigations revealed that Capn4 directly bound and stabilized c-Jun, and knockdown of Capn4 increased the ubiquitination level of c-Jun in cardiomyocytes. Additionally, our results demonstrated that the antihypertrophic effect of Capn4 silencing was partially dependent on the inhibition of c-Jun. Overall, these data suggested that Capn4 contributes to cardiac hypertrophy by enhancing the c-Jun-mediated IGF-AKT signaling pathway and could be a potential therapeutic target for hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Yuanping Cao
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Caiyun Liu
- Operating Room, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Songqing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huaxi Zou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ende Tao
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fudong Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Zhuang Q, Fan M, Shen J, Chen Z, Xue D, Lu H, Xu R, He X, Hou J. Overexpression of Capns1 Predicts Poor Prognosis and Correlates with Tumor Progression in Renal Cell Carcinoma. Urol Int 2021; 105:697-704. [PMID: 33887737 DOI: 10.1159/000511638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Calpain small subunit 1 (Capns1) has shown its correlation with the metastasis and invasion of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. However, the expression and function of Capns1 in human renal cell carcinoma (RCC) have not been clarified. This study aimed to examine the expression of Capns1 in RCC tissues and cell lines and to assess its role performed in RCC. METHODS Capns1 expression was evaluated in 75 pairs of RCC and matched adjacent non-tumor tissues by immunohistochemistry. The prognostic value of Capns1 in RCC was assessed by Kaplan-Meier and Cox regression analyses. The action of Capns1 in the proliferation, adhesion, migration, and invasion of RCC cells and the effects on matrix metalloproteinase (MMP) 2 and 9 expression were evaluated after Capns1 silence. RESULTS Capns1 expression was significantly higher in RCC tissues compared with the adjacent non-tumor tissues. Multivariate analysis showed that Capns1 overexpression was an independent poor prognostic marker in RCC. The silencing of Capns1 prohibited cell adhesion and impaired the migration and invasion ability of 786-O cells in vitro. Furthermore, Capns1 silence reduced MMP2 and MMP9 expression. CONCLUSION Capns1 overexpression predicts poor prognosis and correlates with tumor progression in RCC. Capns1 expression might serve a prognostic marker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Commentary on: Calpain-2 participates in the process of calpain-1 inactivation. Biosci Rep 2021; 41:228122. [PMID: 33749774 PMCID: PMC8015336 DOI: 10.1042/bsr20203690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/25/2022] Open
Abstract
Calpain belongs to the calcium-dependent non-lysosomal cysteine protease. Calpain-1 (C1) and calpain-2 (C2) expression are ubiquitous in mammals and an important mediator of the action of calcium. Specific substrate cleavage by C1 and C2 is critical for several calcium-dependent cellular pathways including neuronal function, muscle contraction, signal transduction, cell differentiation, proliferation, and apoptosis. Research suggests that C1 and C2 perform similar functions due to their structurally highly similar isoforms. Increasing evidence suggests that C1 and C2 carry out their specific function in vivo. A recent paper published by Shinkai-Ouchi et al. (Bioscience Reports (2020) 40, DOI: 10.1042/BSR20200552) elucidated the mechanism to differentiate the function of each calpain with respect to the efficiency and longevity for proteolysis after activation. Further, the study represented that C1 and C2 do not synergistically perform their work in vitro. On the other hand, the activity of C1 is reduced in presence of C2. This insight establishes the platform for future studies to examine how C2 regulates the C1 for substrate proteolysis.
Collapse
|
5
|
In Silico Identification of New Targets for Diagnosis, Vaccine, and Drug Candidates against Trypanosoma cruzi. DISEASE MARKERS 2021; 2020:9130719. [PMID: 33488847 PMCID: PMC7787821 DOI: 10.1155/2020/9130719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the parasite Trypanosoma cruzi. Despite the efforts and distinct methodologies, the search of antigens for diagnosis, vaccine, and drug targets for the disease is still needed. The present study is aimed at identifying possible antigens that could be used for diagnosis, vaccine, and drugs targets against T. cruzi using reverse vaccinology and molecular docking. The genomes of 28 T. cruzi strains available in GenBank (NCBI) were used to obtain the genomic core. Then, subtractive genomics was carried out to identify nonhomologous genes to the host in the core. A total of 2630 conserved proteins in 28 strains of T. cruzi were predicted using OrthoFinder and Diamond software, in which 515 showed no homology to the human host. These proteins were evaluated for their subcellular localization, from which 214 are cytoplasmic and 117 are secreted or present in the plasma membrane. To identify the antigens for diagnosis and vaccine targets, we used the VaxiJen software, and 14 nonhomologous proteins were selected showing high binding efficiency with MHC I and MHC II with potential for in vitro and in vivo tests. When these 14 nonhomologous molecules were compared against other trypanosomatids, it was found that the retrotransposon hot spot (RHS) protein is specific only for T. cruzi parasite suggesting that it could be used for Chagas diagnosis. Such 14 proteins were analyzed using the IEDB software to predict their epitopes in both B and T lymphocytes. Furthermore, molecular docking analysis was performed using the software MHOLline. As a result, we identified 6 possible T. cruzi drug targets that could interact with 4 compounds already known as antiparasitic activities. These 14 protein targets, along with 6 potential drug candidates, can be further validated in future studies, in vivo, regarding Chagas disease.
Collapse
|
6
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Mikhaylova M, Rentsch J, Ewers H. Actomyosin Contractility in the Generation and Plasticity of Axons and Dendritic Spines. Cells 2020; 9:cells9092006. [PMID: 32882840 PMCID: PMC7565476 DOI: 10.3390/cells9092006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Actin and non-muscle myosins have long been known to play important roles in growth cone steering and neurite outgrowth. More recently, novel functions for non-muscle myosin have been described in axons and dendritic spines. Consequently, possible roles of actomyosin contraction in organizing and maintaining structural properties of dendritic spines, the size and location of axon initial segment and axonal diameter are emerging research topics. In this review, we aim to summarize recent findings involving myosin localization and function in these compartments and to discuss possible roles for actomyosin in their function and the signaling pathways that control them.
Collapse
Affiliation(s)
- Marina Mikhaylova
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
- DFG Emmy Noether Group ‘Neuronal Protein Transport’, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Correspondence: (M.M.); (H.E.); Tel.: +49-4074-1055-815 (M.M.); +49-30-838-60644 (H.E.)
| | - Jakob Rentsch
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Helge Ewers
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Correspondence: (M.M.); (H.E.); Tel.: +49-4074-1055-815 (M.M.); +49-30-838-60644 (H.E.)
| |
Collapse
|
8
|
Zhao C, Yuan G, Jiang Y, Xu J, Ye L, Zhan W, Wang J. Capn4 contributes to tumor invasion and metastasis in gastric cancer via activation of the Wnt/β-catenin/MMP9 signalling pathways. Exp Cell Res 2020; 395:112220. [PMID: 32777225 DOI: 10.1016/j.yexcr.2020.112220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Capn4, a small regulatory subunit of the calpain proteolytic system, functions as a potential tumor promoter in several cancers. However, the biological functions and molecular mechanisms of Capn4 in gastric cancer (GC) remain poorly understood. In the current study, we found that upregulation of Capn4 was detected frequently in GC tissues, and was associated with significantly worse survival among the GC patients. Multivariate analyses revealed that abundance of Capn4 was an independent predictive marker for the poor prognosis of GC. Further, Capn4 knockdown notably suppressed GC invasion and metastasis in vitro. Consistently, a xenograft assay showed that silencing of Capn4 in GC cells suppressed their dissemination to lung tissue in vivo. Moreover, our results indicated that Capn4 promotes gastric cancer metastasis by increasing MMP9 expression, and demonstrated that MMP9 is crucial for the pro-metastasis role of Capn4 in GC cells. Further investigation revealed that Capn4 regulated MMP9 expression via activation of Wnt/β-catenin signaling pathway. Mechanistically, we found that Capn4 can decreased β-catenin ubiquitination to enhance the protein stability of β-catenin in GC cells. Collectively, Capn4 has a central role in gastric cancer metastasis, which could be a potential diagnostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Chuanwen Zhao
- Department of General Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Guohui Yuan
- Department of Hepatopancreatobiliary Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Yuemei Jiang
- Department of prosthodontics, The Affiliated Stomatological Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jianfeng Xu
- Department of Hepatopancreatobiliary Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Lin Ye
- Department of General Surgery, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Wenhui Zhan
- Department of Maxillofacial Surgery, The Affiliated Stomatological Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Junfu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
9
|
Targeted inhibition of endothelial calpain delays wound healing by reducing inflammation and angiogenesis. Cell Death Dis 2020; 11:533. [PMID: 32665543 PMCID: PMC7360547 DOI: 10.1038/s41419-020-02737-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are a well-known family of calcium-dependent cysteine proteases that regulate several processes, including cellular adhesion, proliferation, and migration, as well as inflammation and angiogenesis. CAPNS1, the common regulatory subunit of Calpain-1 and 2, is indispensable for catalytic subunit stabilization and activity. Calpain inhibition has been shown to reduce organ damage in various disease models. Here, we report that endothelial calpain-1/2 is crucially involved in skin wound healing. Using a mouse genetic model where Capns1 is deleted only in endothelial cells, we showed that calpain-1/2 disruption is associated with reduced injury-activated inflammation, reduced CD31+ blood vessel density, and delayed wound healing. Moreover, in cultured HUVECs, inhibition of calpain reduced TNF-α-induced proliferation, migration, and tube formation. Deletion of Capns1 was associated with elevated levels of IκB and downregulation of β-catenin expression in endothelial cells. These observations delineate a novel mechanistic role for calpain in the crosstalk between inflammation and angiogenesis during skin repair.
Collapse
|
10
|
Li M, Ruan B, Wei J, Yang Q, Chen M, Ji M, Hou P. ACYP2 contributes to malignant progression of glioma through promoting Ca 2+ efflux and subsequently activating c-Myc and STAT3 signals. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:106. [PMID: 32517717 PMCID: PMC7285537 DOI: 10.1186/s13046-020-01607-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Background Acylphosphatase 2 (ACYP2) is involved in cell differentiation, energy metabolism and hydrolysis of intracellular ion pump. It has been reported as a negative regulator in leukemia and a positive regulator in colon cancer, respectively. However, its biological role in glioma remains totally unclear. Methods We performed quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC) and western blot assays to evaluate ACYP2 expression. The functions of ACYP2 in glioma cells were determined by a series of in vitro and in vivo experiments, including cell proliferation, colony formation, cell cycle, apoptosis, migration, invasion and nude mouse tumorigenicity assays. In addition, western blot and co-immunoprecipitation (Co-IP) assays were used to identify its downstream targets. Results Knocking down ACYP2 in glioma cells significantly inhibited cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice, and induced cell cycle arrest and apoptosis. Conversely, ectopic expression of ACYP2 in glioma cells dramatically promoted malignant phenotypes of glioma cells. Mechanistically, ACYP2 promoted malignant progression of glioma cells through regulating intracellular Ca2+ homeostasis via its interaction with PMCA4, thereby activating c-Myc and PTP1B/STAT3 signals. This could be effectively reversed by Ca2+ chelator BAPTA-AM or calpain inhibitor calpeptin. Conclusions Our data demonstrate that ACYP2 functions as an oncogene in glioma through activating c-Myc and STAT3 signals via the regulation of intracellular Ca2+ homeostasis, and indicate that ACYP2 may be a potential therapeutic target and prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Mengdan Li
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Banjun Ruan
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jing Wei
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Qi Yang
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Peng Hou
- Key Laboratory for tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China. .,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
11
|
Protective role of endothelial calpain knockout in lipopolysaccharide-induced acute kidney injury via attenuation of the p38-iNOS pathway and NO/ROS production. Exp Mol Med 2020; 52:702-712. [PMID: 32346126 PMCID: PMC7210976 DOI: 10.1038/s12276-020-0426-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
To explore the role of calpain and its signaling pathway in lipopolysaccharide (LPS)-induced acute kidney injury (AKI), animal models of endotoxemia were established by administration of LPS to mice with endothelial-specific Capn4 knockout (TEK/Capn4−/−), mice with calpastatin (an endogenous calpain inhibitor) overexpression (Tg-CAST) and mice with myeloid-specific Capn4 knockout (LYZ/Capn4−/−). Mouse pulmonary microvascular endothelial cells (PMECs) were used as a model of the microvascular endothelium and were stimulated with LPS. Renal function, renal inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) expression, cellular apoptosis, plasma and renal levels of NO and reactive oxygen species (ROS), and phosphorylation of mitogen-activated protein kinase (MAPK) family members (p38, ERK1/2, and JNK1/2) were examined. Moreover, a calpain inhibitor, calpastatin overexpression adenoviruses and MAPK inhibitors were used. Significant renal dysfunction was induced by LPS stimulation, and recovery was observed in TEK/Capn4−/− and Tg-CAST mice but not in LYZ/Capn4−/− mice. Endothelial Capn4 knockout also abrogated the LPS-induced increases in renal iNOS expression, caspase-3 activity and apoptosis and plasma and renal NO and ROS levels but did not obviously affect renal eNOS expression. Moreover, LPS increased both calpain and caspase-3 activity, and only the expression of iNOS in PMECs was accompanied by increased phosphorylation of p38 and JNK. Inhibiting calpain activity or p38 phosphorylation alleviated the increased iNOS expression, NO/ROS production, and cellular apoptosis induced by LPS. These results suggest that endothelial calpain plays a protective role in LPS-induced AKI by inhibiting p38 phosphorylation, thus attenuating iNOS expression and further decreasing NO and ROS overproduction-induced endothelial apoptosis. Therapies that inhibit the enzyme calpain could alleviate the effects of acute kidney injury according to researchers in China and Canada. Acute kidney injury is induced by endotoxemia, in which changes in the permeability of the intestine allow lipopolysaccharides (LPS) to pass from gut bacteria into the bloodstream. Calpain is known to be active during this process. Zhifeng Liu at the General Hospital of Guangzhou Military Command and co-workers induced endotoxemia in various mouse models by injecting them with LPS. The LPS induced significant kidney dysfunction and cell death, but these were alleviated in mice that were genetically modified to block calpain activity in the blood vessel lining, and in mice that overexpressed calpastatin, a calpain inhibitor. Blocking calpain reduces the expression of nitric oxide synthases that damage endothelial cells.
Collapse
|
12
|
Calpain Small Subunit 1 Protein in the Prognosis of Cancer Survivors and Its Clinicopathological Correlation. BIOMED RESEARCH INTERNATIONAL 2020; 2019:8053706. [PMID: 32083121 PMCID: PMC7012277 DOI: 10.1155/2019/8053706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/07/2019] [Indexed: 12/03/2022]
Abstract
Background/Aims. Calpain small subunit 1 (Capn4) is implicated in tumorigenesis and plays a key role in multiple tumors. This study aimed to fully illustrate the prognostic value of Capn4 protein in cancer patients.
Collapse
|
13
|
Zhu J, Kovacs L, Han W, Liu G, Huo Y, Lucas R, Fulton D, Greer PA, Su Y. Reactive Oxygen Species-Dependent Calpain Activation Contributes to Airway and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease. Antioxid Redox Signal 2019; 31:804-818. [PMID: 31088299 PMCID: PMC7061305 DOI: 10.1089/ars.2018.7648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/25/2023]
Abstract
Aims: Airway and pulmonary vascular remodeling is an important pathological feature in the pathogenesis of chronic obstructive pulmonary disease (COPD). Tobacco smoke (TS) induces the production of large amounts of reactive oxygen species (ROS) in COPD lungs. We investigated how ROS lead to airway and pulmonary vascular remodeling in COPD. Results: We used in vitro bronchial and pulmonary artery smooth muscle cells (BSMCs and PASMCs), in vivo TS-induced COPD rodent models, and lung tissues of COPD patients. We found that H2O2 and TS extract (TSE) induced calpain activation in BSMCs and PASMCs. Calpain activation was elevated in smooth muscle of bronchi and pulmonary arterioles in COPD patients and TS-induced COPD rodent models. Calpain inhibition attenuated H2O2- and TSE-induced collagen synthesis and proliferation of BSMCs and PASMCs. Exposure to TS causes increases in airway resistance, right ventricular systolic pressure (RVSP), and thickening of bronchi and pulmonary arteries. Calpain inhibition by smooth muscle-specific knockout of calpain and the calpain inhibitor MDL28170 attenuated increases in airway resistance, RVSP, and thickening of bronchi and pulmonary arteries. Moreover, smooth muscle-specific knockout of calpain did not reduce TS-induced emphysema in the mouse model, but MDL28170 did reduce TS-induced emphysema in the rat model. Innovation: This study provides the first evidence that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling in TS-induced COPD. Calpain might be a novel therapeutic target for the treatment of COPD. Conclusion: These results indicate that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling and pulmonary hypertension in COPD.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, the People's Hospital of China Three Gorges University, Yichang, China
| | - Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Weihong Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guojun Liu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Peter A. Greer
- Queen's University Cancer Research Institute, Kingston, Canada
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
14
|
Dumas S, Ntambi JM. Co-conspirators in a new mechanism for the degradation of Δ9-desaturase. J Biol Chem 2019; 292:19987-19988. [PMID: 29222194 DOI: 10.1074/jbc.h117.801936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Δ9-Desaturases are central enzymes in unsaturated fatty acid synthesis regulated at the transcriptional and mRNA levels and by proteasomal degradation. A new study by Murakami et al. uncovers a novel regulatory pathway in which an N-terminal di-proline motif in the Drosophila Δ9-desaturase mediates protein degradation by a calcium-dependent cysteine protease in response to unsaturated fatty acids. This study provides new details of desaturase regulation with therapeutic implications for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Sabrina Dumas
- Departments of Nutritional Sciences, Madison, Wisconsin 53706
| | - James M Ntambi
- Departments of Nutritional Sciences, Madison, Wisconsin 53706; Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.
| |
Collapse
|
15
|
Hsieh M, Hsieh BY, Ma CY, Li YT, Liu CS, Lo CM. Protective roles of carbonic anhydrase 8 in Machado-Joseph Disease. J Neurosci Res 2019; 97:1278-1297. [PMID: 31157458 DOI: 10.1002/jnr.24474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/27/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an inherited neurodegenerative disease that can lead to a regression of motor coordination and muscle control in the extremities. It is known that expansion of CAG repeats encodes abnormally long polyQ in mutant ataxin-3, the disease protein. It is also noted that mutant ataxin-3 interacts with 1,4,5-trisphosphate receptor type 1 (IP3R1) and induces abnormal Ca2+ release. Previously, we have shown a significant increase in the expression of carbonic anhydrase VIII (CA8) in SK-N-SH-MJD78 cells, which are human neuroblastoma cells overexpressing mutant ataxin-3 with 78 glutamine repeats. In the current study, we showed the presence of significantly increased CA8 expression in MJD mouse cerebellum in either early or late disease stage, with a gradual decrease in CA8 expression as the MJD mice naturally aged. By immunofluorescence and immunoprecipitation analysis, we also found that CA8 co-localized and interacted with mutant ataxin-3 in SK-N-SH-MJD78 cells harboring overexpressed CA8 (SK-MJD78-CA8). In addition, we found that SK-MJD78-CA8 cells, as well as cerebellar granule neurons (CGNs) of MJD transgenic (Tg) mouse with overexpressed CA8, were more resistant to reactive oxygen species (ROS) stress than the control cells. Importantly, overexpression of CA8 in SK-MJD78-CA8 cells and in MJD CGNs rescued abnormal Ca2+ release and caused an increase in cell survival. In summary, we demonstrate the protective function of CA8 in MJD disease models and speculate that the declining expression of CA8 following an initial increased expression may be related to the late onset phenomenon of MJD.
Collapse
Affiliation(s)
- Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China.,Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Benjamin Y Hsieh
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chung-Yung Ma
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Yi-Ting Li
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan, Republic of China.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan, Republic of China.,Graduate Institute of Integrative Chinese and Western Medicine, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Che-Min Lo
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| |
Collapse
|
16
|
Zhao YL, Li JB, Li YJ, Li SJ, Zhou SH, Xia H. Capn4 promotes esophageal squamous cell carcinoma metastasis by regulating ZEB1 through the Wnt/β-catenin signaling pathway. Thorac Cancer 2018; 10:24-32. [PMID: 30444080 PMCID: PMC6312849 DOI: 10.1111/1759-7714.12893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Capn4 and ZEB1 play important roles in the metastasis of several types of cancer. However, the roles and relationship of Capn4 and ZEB1 in esophageal squamous cell carcinoma (ESCC) remain unclear. METHODS ESCC tumor tissues and corresponding normal esophageal epithelial tissues were obtained from 86 patients undergoing resection surgery at the Department of General Surgery, First Affiliated Hospital of Chinese PLA General Hospital from 2012 to 2017. Cell migration and invasion were examined via quantitative real-time PCR and Western blot assay. RESULTS Our results indicate that both Capn4 and ZEB1 are significantly upregulated in ESCC tissues compared to corresponding adjacent tissues, and a positive correlation between expression and associated malignant characteristics was found. Silencing of Capn4 expression markedly inhibited ESCC invasion and metastasis in vitro and in vivo, and was accompanied by decreased ZEB1 expression. Furthermore, the anti-metastasis role of Capn4 silencing was reversed by ZEB1 overexpression, whereas knockdown of ZEB1 decreased ESCC metastasis driven by the upregulation of Capn4. Mechanistically, Capn4 regulated ZEB1 expression via activation of the Wnt/β-catenin signaling pathway in ESCC cells. CONCLUSION Overall, our results show that enhanced Capn4 expression activates the Wnt/β-catenin signaling pathway, resulting in increased ZEB1 expression and the promotion of ESCC cell metastasis.
Collapse
Affiliation(s)
- Yun-Long Zhao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Jing-Bo Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Ying-Jie Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Shao-Jun Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Shao-Hua Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Hui Xia
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Gutiérrez S, Morón M, Griera M, Sucunza D, Calleros L, García-Jérez A, Coderch C, Hermoso FJ, Burgos C, Rodríguez-Puyol M, de Pascual-Teresa B, Diez-Marques ML, Jimenez A, Toro-Londoño M, Rodríguez-Puyol D, Vaquero JJ. Discovery of potent calpain inhibitors based on the azolo-imidazolidenone scaffold. Eur J Med Chem 2018; 157:946-959. [DOI: 10.1016/j.ejmech.2018.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
|
18
|
Romo-Mancillas A, Lemus R, Pérez-Estrada R, Kuribreña-Romero de Terreros F, Domínguez-Ramírez L. Molecular dynamic simulations of the catalytic subunit of calpains 1, 2, 5, and 10: Structural analysis with an aim toward drug design. Chem Biol Drug Des 2018; 93:38-49. [PMID: 30107087 DOI: 10.1111/cbdd.13376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/21/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022]
Abstract
Calpains are cysteine proteases involved in the development of several human chronic illnesses such as neurodegenerative diseases, cardiovascular ailments, diabetes, and obesity which constitutes them into possible therapeutic targets. Here, using molecular dynamic simulations and docking, we studied the binding of known inhibitors to representative members of classical and nonclassical calpains. Our aim is to gain better understanding on the inhibition mechanism of calpains and to develop better and more specific inhibitors. Our atomistic models confirmed the importance of calcium ions for the structure of calpains and, as a consequence, their functionality. With these models and their subsequent use in molecular docking, essential structural requirements were identified for the binding of ligands to the calpain catalytic site that provide useful information for the design of new selective calpain inhibitors.
Collapse
Affiliation(s)
- Antonio Romo-Mancillas
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, México.,Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | - Roselyn Lemus
- Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | - Raúl Pérez-Estrada
- Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | | | - Lenin Domínguez-Ramírez
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Santa Catarina Mártir Cholula, Puebla, Mexico
| |
Collapse
|
19
|
Yang MF, Lou YL, Liu SS, Wang SS, Yin CH, Cheng XH, Huang OP. Capn4 overexpression indicates poor prognosis of ovarian cancer patients. J Cancer 2018; 9:304-309. [PMID: 29344277 PMCID: PMC5771338 DOI: 10.7150/jca.22004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown a close correlation between Capn4 expression and the prognosis of patients with solid tumors. This study aimed to investigate clinical role of Capn4 in ovarian cancer. The expression of Capn4 in 113 ovarian cancer and 35 non-tumor tissue samples were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Capn4 expression was significantly upregulated in ovarian cancer tissues compared with non-tumor tissues (p < 0.01), and was positively correlated to FIGO stage, tumor grade and distant metastasis of ovarian cancer. Kaplan-Meier analysis indicated that patients with high Capn4 expression had shorter overall survival (HR = 1.929, 95%CI: 1.210-3.077, P= 0.006) and progress-free survival (PFS) (HR = 2.043, 95%CI: 1.276-3.271, P= 0.003). Moreover, univariate Cox regression analysis demonstrated that Capn4 overexpression was an unfavorable prognostic factor for ovarian cancer (HR = 2.819, 95%CI: 1.365-3.645, P = 0.003). After the adjustment with age, histological type and tumor size, multivariate Cox regression analysis showed that Capn4 expression level (HR = 2.157,95%CI: 1.091-3.138, P = 0.014), distant metastasis (HR = 1.576, 95%CI: 1.025-3.012, P = 0.028), tumor grade (HR = 1.408, 95%CI: 0.687-2.884, P = 0.037), and FIGO stage (HR = 1.791, 95%CI: 1.016-3.158, P=0.036) were independent poor prognostic indicators for ovarian cancer. In conclusion, Capn4 has the potential as a new prognostic marker for patients with ovarian cancer.
Collapse
Affiliation(s)
- Ming-Fang Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yuan-Lei Lou
- Institute of Urology, Nanchang University, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Si-Sun Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shan-Shan Wang
- Department of Pathology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Chun-Hua Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiao-Hua Cheng
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ou-Ping Huang
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| |
Collapse
|
20
|
Machado VM, Lourenço AS, Florindo C, Fernandes R, Carvalho CM, Araújo IM. Calpastatin Overexpression Preserves Cognitive Function Following Seizures, While Maintaining Post-Injury Neurogenesis. Front Mol Neurosci 2017; 10:60. [PMID: 28386216 PMCID: PMC5362605 DOI: 10.3389/fnmol.2017.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/22/2017] [Indexed: 01/27/2023] Open
Abstract
In the adult mammalian brain, new neurons continue to be produced throughout life in two main regions in the brain, the subgranular zone (SGZ) in the hippocampus and the subventricular zone in the walls of the lateral ventricles. Neural stem cells (NSCs) proliferate in these niches, and migrate as neuroblasts, to further differentiate in locations where new neurons are needed, either in normal or pathological conditions. However, the endogenous attempt of brain repair is not very efficient. Calpains are proteases known to be involved in neuronal damage and in cell proliferation, migration and differentiation of several cell types, though their effects on neurogenesis are not well known. Previous work by our group has shown that the absence of calpastatin (CAST), the endogenous inhibitor of calpains, impairs early stages of neurogenesis. Since the hippocampus is highly associated with learning and memory, we aimed to evaluate whether calpain inhibition would help improve cognitive recovery after lesion and efficiency of post-injury neurogenesis in this region. For that purpose, we used the kainic acid (KA) model of seizure-induced hippocampal lesion and mice overexpressing CAST. Selected cognitive tests were performed on the 3rd and 8th week after KA-induced lesion, and cell proliferation, migration and differentiation in the dentate gyrus (DG) of the hippocampus of adult mice were analyzed using specific markers. Cognitive recovery was evaluated by testing the animals for recognition, spatial and associative learning and memory. Cognitive function was preserved by CAST overexpression following seizures, while modulation of post-injury neurogenesis was similar to wild type (WT) mice. Calpain inhibition could still be potentially able to prevent the impairment in the formation of new neurons, given that the levels of calpain activity could be reduced under a certain threshold and other harmful effects from the pathological environment could also be controlled.
Collapse
Affiliation(s)
- Vanessa M Machado
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal
| | - Ana Sofia Lourenço
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal
| | - Cláudia Florindo
- Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal
| | - Raquel Fernandes
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal
| | - Caetana M Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Inês M Araújo
- Center for Biomedical Research, CBMR, University of AlgarveFaro, Portugal; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of AlgarveFaro, Portugal; Algarve Biomedical Center, University of AlgarveFaro, Portugal
| |
Collapse
|
21
|
Nguyen HH, Varadi M, Tompa P, Pauwels K. Affinity purification of human m-calpain through an intrinsically disordered inhibitor, calpastatin. PLoS One 2017; 12:e0174125. [PMID: 28319173 PMCID: PMC5358782 DOI: 10.1371/journal.pone.0174125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022] Open
Abstract
Calpains are calcium-activated proteases that have biomedical and biotechnological potential. Their activity is tightly regulated by their endogenous inhibitor, calpastatin that binds to the enzyme only in the presence of calcium. Conventional approaches to purify calpain comprise multiple chromatographic steps, and are labor-intensive, leading to low yields. Here we report a new purification procedure for the human m-calpain based on its reversible calcium-mediated interaction with the intrinsically disordered calpastatin. We exploit the specific binding properties of human calpastatin domain 1 (hCSD1) to physically capture human m-calpain from a complex biological mixture. The dissociation of the complex is mediated by chelating calcium, upon which heterodimeric calpain elutes while hCSD1 remains immobilized onto the stationary phase. This novel affinity-based purification was compared to the conventional multistep purification strategy and we find that it is robust, it yields a homogeneous preparation, it can be scaled up easily and it rests on a non-disruptive step that maintains close to physiological conditions that allow further biophysical and functional studies.
Collapse
Affiliation(s)
- Hung Huy Nguyen
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mihaly Varadi
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Tompa
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Kris Pauwels
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Chen B, Wang G, Li W, Liu W, Lin R, Tao J, Jiang M, Chen L, Wang Y. Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke. Exp Cell Res 2017; 351:163-172. [PMID: 28069373 DOI: 10.1016/j.yexcr.2016.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
Ischemic stroke, the second leading cause of death worldwide, leads to excessive glutamate release, over-activation of N-methyl-D-aspartate receptor (NMDAR), and massive influx of calcium (Ca2+), which may activate calpain and caspase-3, resulting in cellular damage and death. Memantine is an uncompetitive NMDAR antagonist with low-affinity/fast off-rate. We investigated the potential mechanisms through which memantine protects against ischemic stroke in vitro and in vivo. Middle cerebral artery occlusion-reperfusion (MCAO) was performed to establish an experimental model of ischemic stroke. The neuroprotective effects of memantine on ischemic rats were evaluated by neurological deficit scores and infarct volumes. The activities of calpain and caspase-3, and expression levels of microtubule-associated protein-2 (MAP2) and postsynaptic density-95 (PSD95) were determined by Western blotting. Additionally, Nissl staining and immunostaining were performed to examine brain damage, cell apoptosis, and neuronal loss induced by ischemia. Our results show that memantine could significantly prevent ischemic stroke-induced neurological deficits and brain infarct, and reduce ATP depletion-induced neuronal death. Moreover, memantine markedly suppressed the activation of the calpain-caspase-3 pathway and cell apoptosis, and consequently, attenuated brain damage and neuronal loss in MCAO rats. These results provide a molecular basis for the role of memantine in reducing neuronal apoptosis and preventing neuronal damage, suggesting that memantine may be a promising therapy for stroke patients.
Collapse
Affiliation(s)
- Bin Chen
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiwei Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Weilin Liu
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ruhui Lin
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jing Tao
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Min Jiang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lidian Chen
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yun Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Why calpain inhibitors are interesting leading compounds to search for new therapeutic options to treat leishmaniasis? Parasitology 2016; 144:117-123. [PMID: 27869056 PMCID: PMC5300003 DOI: 10.1017/s003118201600189x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leishmaniasis is a neglected disease, which needs improvements in drug development, mainly due to the toxicity, parasite resistance and low compliance of patients to treatment. Therefore, the development of new chemotherapeutic compounds is an urgent need. This opinion article will briefly highlight the feasible use of calpain inhibitors as leading compounds to search for new therapeutic options to treat leishmaniasis. The milestone of this approach is to take advantage on the myriad of inhibitors developed against calpains, some of which are in advanced clinical trials. The deregulated activity of these enzymes is associated with several pathologies, such as strokes, diabetes and Parkinson's disease, to name a few. In Leishmania, calpain upregulation has been associated to drug resistance and virulence. Whereas the difficulties in developing new drugs for neglected diseases are more economical than biotechnological, repurposing approach with compounds already approved for clinical use by the regulatory agencies can be an interesting shortcut to a successful chemotherapeutic treatment for leishmaniasis.
Collapse
|
24
|
Ji J, Su L, Liu Z. Critical role of calpain in inflammation. Biomed Rep 2016; 5:647-652. [PMID: 28101338 DOI: 10.3892/br.2016.785] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
Calpains are a family of cysteine proteases, implicated in a wide range of cellular calcium-regulated functions. Evidence from previous studies using an inhibitor of calpain indicates that calpain activation is involved in the process of numerous inflammation-associated diseases. As a result of in-depth studies, calpains have been proposed to influence the process of inflammation via a variety of mechanisms. The aim of the present study is to provide an overview of recent reports regarding the role of calpain in the process of inflammation, including regulation of immune cell migration, modulation of the activation of inflammatory mediators, degradation of certain associated proteins and induction of cell apoptosis. Understanding these mechanisms may contribute to the investigation of novel therapeutic targets for inflammation-associated diseases.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China; Graduate School, Guangzhou Medical University, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
25
|
Tangmansakulchai K, Abubakar Z, Kitiyanant N, Suwanjang W, Leepiyasakulchai C, Govitrapong P, Chetsawang B. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion. Mitochondrion 2016; 30:151-61. [DOI: 10.1016/j.mito.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
26
|
Blanc F, Furio L, Moisy D, Yen HL, Chignard M, Letavernier E, Naffakh N, Mok CKP, Si-Tahar M. Targeting host calpain proteases decreases influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2016; 310:L689-99. [PMID: 26747784 DOI: 10.1152/ajplung.00314.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
Influenza A viruses (IAV) trigger contagious acute respiratory diseases. A better understanding of the molecular mechanisms of IAV pathogenesis and host immune responses is required for the development of more efficient treatments of severe influenza. Calpains are intracellular proteases that participate in diverse cellular responses, including inflammation. Here, we used in vitro and in vivo approaches to investigate the role of calpain signaling in IAV pathogenesis. Calpain expression and activity were found altered in IAV-infected bronchial epithelial cells. With the use of small-interfering RNA (siRNA) gene silencing, specific synthetic inhibitors of calpains, and mice overexpressing calpastatin, we found that calpain inhibition dampens IAV replication and IAV-triggered secretion of proinflammatory mediators and leukocyte infiltration. Remarkably, calpain inhibition has a protective impact in IAV infection, since it significantly reduced mortality of mice challenged not only by seasonal H3N2- but also by hypervirulent H5N1 IAV strains. Hence, our study suggests that calpains are promising therapeutic targets for treating IAV acute pneumonia.
Collapse
Affiliation(s)
- Fany Blanc
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Laetitia Furio
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Dorothée Moisy
- Institut Pasteur, Unité de Génétique Moléculaire des Virus ARN, Paris, France
| | - Hui-Ling Yen
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Michel Chignard
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Emmanuel Letavernier
- Institut National de la Santé et de la Recherche Médicale UMR-S1155, Paris, France
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus ARN, Paris, France
| | - Chris Ka Pun Mok
- The HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Mustapha Si-Tahar
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France; Institut National de la Santé et de la Recherche Médicale U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; and Université François Rabelais, Tours, France
| |
Collapse
|
27
|
Ferreira AK, Tavares MT, Pasqualoto KFM, de Azevedo RA, Teixeira SF, Ferreira-Junior WA, Bertin AM, de-Sá-Junior PL, Barbuto JAM, Figueiredo CR, Cury Y, Damião MCFCB, Parise-Filho R. RPF151, a novel capsaicin-like analogue: in vitro studies and in vivo preclinical antitumor evaluation in a breast cancer model. Tumour Biol 2015; 36:7251-67. [DOI: 10.1007/s13277-015-3441-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/11/2015] [Indexed: 12/01/2022] Open
|
28
|
Mechanism of action of thalassospiramides, a new class of calpain inhibitors. Sci Rep 2015; 5:8783. [PMID: 25740631 PMCID: PMC4350077 DOI: 10.1038/srep08783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic “warheads” in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide's α,β-unsaturated carbonyl moiety to the thiol group of calpain's catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.
Collapse
|
29
|
Zhang S, Meng T, Liu J, Zhang X, Zhang J. Cardiac protective effects of dexrazoxane on animal cardiotoxicity model induced by anthracycline combined with trastuzumab is associated with upregulation of calpain-2. Medicine (Baltimore) 2015; 94:e445. [PMID: 25634181 PMCID: PMC4602968 DOI: 10.1097/md.0000000000000445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiotoxicity is a well-recognized side effect induced by chemotherapeutic drugs such as anthracycline and trastuzumab through different mechanisms. Currently, accumulating evidence supports that dexrazoxane (DZR) can minimize the risk of cardiotoxicity. In this study, we investigated whether dexrzoxane could reduce cardiotoxicity in the treatment of anthracycline combined with trastuzumab. We randomly divided 90 experimental F344 rats into control group, chemotherapeutics and trastuzumab (doxorubicin [DOX] + herceptin [Her]) group, and chemotherapeutics, trastuzumab, and DZR (DOX + Her + DZR) group. Animal status and body weight, cardiac function, serum cardiac markers, cardiomyocyte apoptosis of the rats, and expression level of calpain-2 were evaluated. Left ventricular ejection fraction (LVEF) and fractional shortening (FS) of the left ventricle were observed. The serum levels of malondialdehyde (MDA) and cardiac troponin I (cTnI) and cardiomyocyte apoptosis were detected by enzyme linked immunosorbent assay and TdT-mediated dUTP nick end labeling assays. The mRNA and protein level of calpain-2 were measured by reverse transcriptase polymerase chain reaction and Western blot. We observed that the LVEF and FS of the left ventricle were significantly higher in the DOX + Her + DZR group than that in the DOX + Her group (P < 0.05). The serum levels of MDA and cTnI between DOX + Her group and DOX + Her + DZR group were significantly different. In addition, cardiomyocyte apoptosis in the DOX + Her + DZR group was significantly less severe than that in the DOX + Her group (P < 0.05). After DZR treatment, the calpain-2 mRNA and protein levels in the DOX + Her + DZR group were significantly higher than the DOX + Her group (P < 0.05). Our results suggest that DZR can effectively reduce the cardiotoxicity of combinatorial treatment of trastuzumab and anthracycline partly through upregulating calpain-2.
Collapse
Affiliation(s)
- Sheng Zhang
- From the 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education; and Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | | | | | | | | |
Collapse
|
30
|
Abstract
INTRODUCTION Calpain is a family of cysteine proteases found in eukaryotes and a few bacteria. There is considerable interest in the search for calpain inhibitors because the enzyme has been implicated in several diseases including ocular disorders, neurodegenerative disorders, metabolic disorders and cancer. AREAS COVERED An overview of calpain inhibitors disclosed between 2012 and 2014 is presented. Among these are epoxysuccinates, dipeptide imaging agents, macrocyclic inhibitors, α-helical peptidomimetic inhibitors, carboxamides, 5-azolones and α-mercaptoacrylates. Additionally, preclinical studies of calpain inhibitors in pathologies such blood disorders, ocular disorders, neurological disorders and muscle disorders are discussed. EXPERT OPINION Major advances made in calpain inhibitor research between 2012 and 2014 include: i) the discovery of cytosolic-stable carboxamide calpain inhibitors; ii) synthesis of epoxysuccinates with excellent bioavailability; iii) disclosure of the X-ray crystal structures of novel α-mercaptoacrylates bound to the pentaEF hand region from human calpain; and iv) disclosure of calpain inhibitors as anti-sickling agents. Several calpain inhibitors were reported but limited effort was directed towards the discovery of calpain isoform selective agents, which continues to dampen the therapeutic potential of calpain inhibitors.
Collapse
Affiliation(s)
- Isaac O Donkor
- The University of Tennessee Health Science Center , Memphis, TN , USA
| |
Collapse
|
31
|
Understanding the interaction determinants of CAPN1 inhibition by CAST4 from bovines using molecular modeling techniques. Molecules 2014; 19:14316-51. [PMID: 25215589 PMCID: PMC6271145 DOI: 10.3390/molecules190914316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
HCV-induced CAPN activation and its effects on virus-infected cells in a host-immune system have been studied recently. It has been shown that the HCV-nonstructural 5A protein acts as both an inducer and a substrate for host CAPN protease; it participates in suppressing the TNF-α-induced apoptosis response and downstream IFN-induced antiviral processes. However, little is known regarding the disturbance of antiviral responses generated by bovine CAPN activation by BVDV, which is a surrogate model of HCV and is one of the most destructive diseases leading to great economic losses in cattle herds worldwide. This is also thought to be associated with the effects of either small CAPN inhibitors or the natural inhibitor CAST. They mainly bind to the binding site of CAPN substrate proteins and competitively inhibit the binding of the enzyme substrates to possibly defend against the two viruses (HCV and BVDV) for anti-viral immunity. To devise a new stratagem to discover lead candidates for an anti-BVDV drug, we first attempted to understand the bovine CAPN-CAST interaction sites and the interaction constraints of local binding architectures, were well reflected in the geometry between the pharmacophore features and its shape constraints identified using our modeled bovine CAPN1/CAST4 complex structures. We propose a computer-aided molecular design of an anti-BVDV drug as a mimetic CAST inhibitor to develop a rule-based screening function for adjusting the puzzle of relationship between bovine CAPN1 and the BVDV nonstructural proteins from all of the data obtained in the study.
Collapse
|
32
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
33
|
Probing of primed and unprimed sites of calpains: Design, synthesis and evaluation of epoxysuccinyl-peptide derivatives as selective inhibitors. Eur J Med Chem 2014; 82:274-80. [DOI: 10.1016/j.ejmech.2014.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/20/2022]
|
34
|
Jerónimo-Santos A, Vaz SH, Parreira S, Rapaz-Lérias S, Caetano AP, Buée-Scherrer V, Castrén E, Valente CA, Blum D, Sebastião AM, Diógenes MJ. Dysregulation of TrkB Receptors and BDNF Function by Amyloid-β Peptide is Mediated by Calpain. Cereb Cortex 2014; 25:3107-21. [PMID: 24860020 DOI: 10.1093/cercor/bhu105] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length (FL) receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and regulating synaptic plasticity and memory. TrkB and BDNF signaling are impaired in Alzheimer's disease (AD), a neurodegenerative disease involving accumulation of amyloid-β (Aβ) peptide. We recently showed that Aβ leads to a decrease of TrkB-FL receptor and to an increase of truncated TrkB receptors by an unknown mechanism. In the present study, we found that (1) Aβ selectively increases mRNA levels for the truncated TrkB isoforms without affecting TrkB-FL mRNA levels, (2) Aβ induces a calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc-binding site, originating a new truncated TrkB receptor (TrkB-T') and an intracellular fragment (TrkB-ICD), which is also detected in postmortem human brain samples, (3) Aβ impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, and long-term potentiation in hippocampal slices. It is concluded that Aβ-induced calpain activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions.
Collapse
Affiliation(s)
- André Jerónimo-Santos
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sandra Henriques Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sara Parreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sofia Rapaz-Lérias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - António P Caetano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Valérie Buée-Scherrer
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Claudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - David Blum
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| |
Collapse
|
35
|
Chai HH, Lim D, Lee SH, Chai HY, Jung E. Homology modeling study of bovine μ-calpain inhibitor-binding domains. Int J Mol Sci 2014; 15:7897-938. [PMID: 24806345 PMCID: PMC4057710 DOI: 10.3390/ijms15057897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/19/2023] Open
Abstract
The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca2+-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca2+-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca2+-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1–4; CAST1–4) when CAPN is activated by Ca2+-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure-function relationships for the design of small molecules inhibitors to prevent uncontrolled and unspecific degradation in the proteolysis of key protease substrates.
Collapse
Affiliation(s)
- Han-Ha Chai
- Animal Genome & Bioinformatics Division, National Institute of Animal Science, RDA, Suwon 441-706, Korea.
| | - Dajeong Lim
- Animal Genome & Bioinformatics Division, National Institute of Animal Science, RDA, Suwon 441-706, Korea.
| | - Seung-Hwan Lee
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, PyeongChang 232-950, Korea.
| | - Hee-Yeoul Chai
- Division of Biosafety Evaluation and Control, Korea National Institute of Helth 187 Osongsaengmyeong2-ro, Gango-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, Korea.
| | - Eunkyoung Jung
- Insilicotech Co., Ltd., C-602 Korea Bio Park, 694-1 Sampyeong-Dong, Bundang-Gu, Seongnam-Shi, Gyeonggi-do 463-400, Korea.
| |
Collapse
|
36
|
Cai JJ, Qi ZX, Hua W, Zhu JJ, Zhang X, Yao Y, Mao Y. Increased expression of Capn4 is associated with the malignancy of human glioma. CNS Neurosci Ther 2014; 20:521-7. [PMID: 24628706 DOI: 10.1111/cns.12248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022] Open
Abstract
AIMS Recent evidence indicates that the increased expression of calpain small subunit 1 (Capn4) is associated with tumorigenesis. This study was designed to explore the role which Capn4 plays in human glioma. METHODS We detected the expression of Capn4 by immunohistochemistry in tissue microarrays and tissue samples. Following the down-regulation of Capn4 in glioma cell lines by a specific short hairpin RNA, the function of Capn4 in invasion, migration, and proliferation was assessed. We then evaluated the prognostic role of Capn4 using univariate and multivariate analysis in 94 glioblastoma (GBM) patients. RESULTS Glioma tissues exhibited notably higher expression of Capn4 compared with control brain tissues and was positively correlated with histological malignancy. The down-regulation of Capn4 in glioma cells led to a decrease in invasion and migration in vitro. Through univariate analysis, the prognosis of GBM patients with Capn4 overexpression was significantly poorer with respect to progression-free survival (PFS) and overall survival (OS). Based on the results of the multivariate analysis, Capn4(high) was demonstrated to be a negative independent prognostic indicator for PFS and OS in GBM patients. CONCLUSION The overexpression of Capn4 is a novel negative prognostic marker, and Capn4 may be used as a new target in therapeutic strategies for human glioma.
Collapse
Affiliation(s)
- Jia-Jun Cai
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Analysis of the structure of calpain-10 and its interaction with the protease inhibitor SNJ-1715. Comput Biol Med 2013; 43:1334-40. [DOI: 10.1016/j.compbiomed.2013.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 01/24/2023]
|
38
|
Heo M, Kim E. Beneficial effects of antecedent exercise training on limb motor function and calpain expression in a rat model of stroke. J Phys Ther Sci 2013; 25:943-6. [PMID: 24259890 PMCID: PMC3820215 DOI: 10.1589/jpts.25.943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/28/2013] [Indexed: 01/11/2023] Open
Abstract
[Purpose] In the present study, we investigated the effects of antecedent exercise on functional recovery and calpain protein expression following focal cerebral ischemia injury. [Subjects and Methods] The rat middle cerebral artery occlusion model was employed. Adult male Sprague-Dawley rats were randomly divided into 4 groups. Group I comprised untreated normal rats (n=10); Group II comprised untreated rats with focal cerebral ischemia (n=10); Group III comprised rats that performed treadmill exercise (20 m/min) training after focal cerebral ischemia (n=10); and Group IV comprised rats that performed antecedent treadmill exercise (20 m/min) training before focal cerebral ischemia (n=10). At different time points (1, 7, 14, and 21 days), limb placement test score and the levels of calpain protein in the hippocampus were examined. [Results] In the antecedent exercise group, improvements in the motor behavior index (limb placement test) were observed and hippocampal calpain protein levels were decreased. [Conclusion] These results indicated that antecedent treadmill exercise prior to focal cerebral ischemia exerted neuroprotective effects against ischemic brain injury by improving motor performance and decreasing the levels of calpain expression. Furthermore, these results suggest that antecedent treadmill exercise of an appropriate intensity is critical for post-stroke rehabilitation.
Collapse
Affiliation(s)
- Myoung Heo
- Department of Occupational Therapy, Gwangju University
| | | |
Collapse
|
39
|
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 2013; 8:863-84. [PMID: 23176689 DOI: 10.2217/fca.12.58] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia-reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia-reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular & Cellular Pharmacology, University of Miami Medical Center, FL 33101, USA.
| |
Collapse
|
40
|
Bánóczi Z, Tantos Á, Farkas A, Majer Z, Dókus LE, Tompa P, Hudecz F. New m-calpain substrate-based azapeptide inhibitors. J Pept Sci 2013; 19:370-6. [DOI: 10.1002/psc.2511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Zoltán Bánóczi
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences; Eötvös Loránd University; Budapest Hungary
| | - Ágnes Tantos
- Institute of Enzymology, Biological Research Center; Hungarian Academy of Sciences; Budapest Hungary
| | - Attila Farkas
- Institute of Enzymology, Biological Research Center; Hungarian Academy of Sciences; Budapest Hungary
| | - Zsuzsa Majer
- Institute of Chemistry; Eötvös Loránd University; Budapest Hungary
| | - Levente E. Dókus
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences; Eötvös Loránd University; Budapest Hungary
| | - Péter Tompa
- Institute of Enzymology, Biological Research Center; Hungarian Academy of Sciences; Budapest Hungary
| | - Ferenc Hudecz
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences; Eötvös Loránd University; Budapest Hungary
- Institute of Chemistry; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
41
|
Lu JR, Lu WW, Lai JZ, Tsai FL, Wu SH, Lin CW, Kung SH. Calcium flux and calpain-mediated activation of the apoptosis-inducing factor contribute to enterovirus 71-induced apoptosis. J Gen Virol 2013; 94:1477-1485. [PMID: 23515028 DOI: 10.1099/vir.0.047753-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of an array of childhood diseases with severe neurological manifestations implicated. EV71 infection is known to induce caspase-dependent apoptosis in cell cultures and animal models. However, whether an alternative apoptotic pathway independent of caspase activation can be triggered by EV71 infection has not been explored. In this study, we showed that calcium (Ca²⁺)-activated calpains are capable of mediating caspase-independent pathway activation during EV71-induced apoptosis in HeLa cells. Results from subcellular fractionation analysis and confocal imaging indicated that during EV71 infection, apoptosis-inducing factor (AIF), a primary mediator of the caspase-independent pathway, became truncated and translocated from the mitochondrion to nucleus. This was accompanied by the release of cytochrome c, and sharply decreased mitochondrial membrane potential. AIF knockdown data indicated significant protection against apoptotic cell death, with greater protection provided by the addition of a pan-caspase inhibitor. The Ca²⁺-dependent, calpain isoforms 1 and 2, but not cathepsins, were proven crucial for the altered AIF behaviour as studied by the pharmacological inhibitor and the knockdown approaches. We then analysed Ca²⁺ dynamics in the infected cells and found elevated levels of mitochondrial Ca²⁺. Treatment with ruthenium red, a mitochondrial Ca²⁺ influx inhibitor, significantly blocked calpain activations and AIF cleavage. Our conclusion was that calpain activation via Ca²⁺ flux plays an essential role in eliciting an AIF-mediated, caspase-independent apoptotic pathway in EV71-infected cells. These findings should be useful for understanding the virus-induced cytopathology and the impact of Ca²⁺ homeostasis on EV71 infection.
Collapse
Affiliation(s)
- Jia-Rong Lu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wen-Wen Lu
- Department of Clinical Pathology, Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan, Republic of China
| | - Jian-Zhong Lai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Fu-Lian Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Szu-Hsien Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, Republic of China
| | - Szu-Hao Kung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
42
|
Prognostic significance of Capn4 overexpression in intrahepatic cholangiocarcinoma. PLoS One 2013; 8:e54619. [PMID: 23349941 PMCID: PMC3551843 DOI: 10.1371/journal.pone.0054619] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/13/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Calpain small subunit 1 (Capn4) has been shown to correlate with the metastasis/invasion of hepatocellular carcinoma. This study aimed to investigate the role of Capn4 in intrahepatic cholangiocarcinoma (ICC). METHODS Capn4 expression was measured in 33 ICC tissues by quantitative real-time polymerase chain reaction and western blot. The role of Capn4 in the migration, invasion and proliferation of ICC cells and matrix metalloproteinase 2 (MMP2) expression were assessed after Capn4 depletion by specific small interfering RNA. Capn4 expression was further examined by immunohistochemistry in a tissue microarray consisting of 140 ICC patients and 13 normal liver tissues, and the prognostic role of Capn4 in ICC was evaluated by Kaplan-Meier and Cox regression analyses. RESULTS Capn4 expression was significantly higher in the ICC tissues compared to the peritumor tissues. Capn4 down-regulation impaired the migration/invasion ability of HCCC-9810 and QBC939 cells in vitro and decreased MMP2 expression. Capn4 overexpression significantly correlated with the presence of lymphatic metastasis of ICC (p = 0.026) and the tumor-node-metastasis (TNM) stage (p = 0.009). The postoperative 2- and 5-year overall survivals in patients with Capn4(low) were higher than those in the Capn4(high) group. The cumulative recurrence rate in patients with Capn4(low) was much lower than in the Capn4(high) group. Multivariate analysis showed that Capn4 overexpression was an independent prognostic marker in ICC. CONCLUSIONS Capn4 overexpression was implicated in ICC metastasis/invasion, and Capn4 overexpression may be used as a molecular therapeutic target for ICC.
Collapse
|
43
|
Branquinha MH, Marinho FA, Sangenito LS, Oliveira SSC, Goncalves KC, Ennes-Vidal V, d'Avila-Levy CM, Santos ALS. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Curr Med Chem 2013; 20:3174-85. [PMID: 23899207 PMCID: PMC4181241 DOI: 10.2174/0929867311320250010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 12/03/2022]
Abstract
The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids.
Collapse
Affiliation(s)
- M H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes-IMPG, Centro de Ciências da Saúde-CCS, Bloco Esubsolo, Sala 05, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kókai E, Páldy FS, Somogyi K, Chougule A, Pál M, Kerekes É, Deák P, Friedrich P, Dombrádi V, Ádám G. CalpB modulates border cell migration in Drosophila egg chambers. BMC DEVELOPMENTAL BIOLOGY 2012; 12:20. [PMID: 22827336 PMCID: PMC3441222 DOI: 10.1186/1471-213x-12-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/24/2012] [Indexed: 12/14/2022]
Abstract
Background Calpains are calcium regulated intracellular cysteine proteases implicated in a variety of physiological functions and pathological conditions. The Drosophila melanogaster genome contains only two genes, CalpA and CalpB coding for canonical, active calpain enzymes. The movement of the border cells in Drosophila egg chambers is a well characterized model of the eukaryotic cell migration. Using this genetically pliable model we can investigate the physiological role of calpains in cell motility. Results We demonstrate at the whole organism level that CalpB is implicated in cell migration, while the structurally related CalpA paralog can not fulfill the same function. The downregulation of the CalpB gene by mutations or RNA interference results in a delayed migration of the border cells in Drosophila egg chambers. This phenotype is significantly enhanced when the focal adhesion complex genes encoding for α-PS2 integrin ( if), β-PS integrin ( mys) and talin ( rhea) are silenced. The reduction of CalpB activity diminishes the release of integrins from the rear end of the border cells. The delayed migration and the reduced integrin release phenotypes can be suppressed by expressing wild-type talin-head in the border cells but not talin-headR367A, a mutant form which is not able to bind β-PS integrin. CalpB can cleave talin in vitro, and the two proteins coimmunoprecipitate from Drosophila extracts. Conclusions The physiological function of CalpB in border cell motility has been demonstrated in vivo. The genetic interaction between the CalpB and the if, mys, as well as rhea genes, the involvement of active talin head-domains in the process, and the fact that CalpB and talin interact with each other collectively suggest that the limited proteolytic cleavage of talin is one of the possible mechanisms through which CalpB regulates cell migration.
Collapse
Affiliation(s)
- Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei krt, 98, Debrecen H-4032, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
High Molecular Weight Calmodulin-Binding Protein: 20 Years Onwards—A Potential Therapeutic Calpain Inhibitor. Cardiovasc Drugs Ther 2012; 26:321-30. [DOI: 10.1007/s10557-012-6399-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design. PLoS One 2012; 7:e32637. [PMID: 22431978 PMCID: PMC3303795 DOI: 10.1371/journal.pone.0032637] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/28/2012] [Indexed: 11/19/2022] Open
Abstract
Noncanonical amino acids (NCAAs) can be used in a variety of protein design contexts. For example, they can be used in place of the canonical amino acids (CAAs) to improve the biophysical properties of peptides that target protein interfaces. We describe the incorporation of 114 NCAAs into the protein-modeling suite Rosetta. We describe our methods for building backbone dependent rotamer libraries and the parameterization and construction of a scoring function that can be used to score NCAA containing peptides and proteins. We validate these additions to Rosetta and our NCAA-rotamer libraries by showing that we can improve the binding of a calpastatin derived peptides to calpain-1 by substituting NCAAs for native amino acids using Rosetta. Rosetta (executables and source), auxiliary scripts and code, and documentation can be found at (http://www.rosettacommons.org/).
Collapse
|
47
|
Novel metabolic aspects related to adenosine deaminase inhibition in a human astrocytoma cell line. Neurochem Int 2012; 60:523-32. [PMID: 22353632 DOI: 10.1016/j.neuint.2012.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 11/21/2022]
Abstract
Adenosine deaminase, which catalyzes the deamination of adenosine and deoxyadenosine, plays a central role in purine metabolism. Indeed, its deficiency is associated with severe immunodeficiency and abnormalities in the functioning of many organs, including nervous system. We have mimicked an adenosine deaminase-deficient situation by incubating a human astrocytoma cell line in the presence of deoxycoformycin, a strong adenosine deaminase inhibitor, and deoxyadenosine, which accumulates in vivo when the enzyme is deficient, and have monitored the effect of the combination on cell viability, mitochondrial functions, and other metabolic features. Astrocytomas are the most common neoplastic transformations occurring in glial cell types, often characterized by a poor prognosis. Our experimental approach may provide evidence both for the response to a treatment affecting purine metabolism of a tumor reported to be particularly resistant to chemotherapeutic approaches and for the understanding of the molecular basis of neurological manifestations related to errors in purine metabolism. Cells incubated in the presence of the combination, but not those incubated with deoxyadenosine or deoxycoformycin alone, underwent apoptotic death, which appears to proceed through a mitochondrial pathway, since release of cytochrome c has been observed. The inhibition of adenosine deaminase increases both mitochondrial reactive oxygen species level and mitochondrial mass. A surprising effect of the combination is the significant reduction in lactate production, suggestive of a reduced glycolytic capacity, not ascribable to alterations in NAD⁺/NADH ratio, nor to a consumption of inorganic phosphate. This is a hitherto unknown effect presenting early during the incubation with deoxyadenosine and deoxycoformycin, which precedes their effect on cell viability.
Collapse
|
48
|
Childers MK, Bogan JR, Bogan DJ, Greiner H, Holder M, Grange RW, Kornegay JN. Chronic administration of a leupeptin-derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of duchenne muscular dystrophy. Front Pharmacol 2012; 2:89. [PMID: 22291646 PMCID: PMC3253583 DOI: 10.3389/fphar.2011.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/18/2011] [Indexed: 11/18/2022] Open
Abstract
Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD). Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the present study, we sought to measure benefit from administration of a novel calpain inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothesis that treatment with C101 mitigates progressive weakness and severe muscle pathology observed in young dogs with golden retriever muscular dystrophy (GRMD). Young (6-week-old) GRMD dogs were treated daily with either C101 (17 mg/kg twice daily oral dose, n = 9) or placebo (vehicle only, n = 7) for 8 weeks. A battery of functional tests, including tibiotarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed at baseline and every 2 weeks during the 8-week study. Results indicate that C101-treated GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors) while placebo-treated dogs progressively lost strength. However, concomitant improvement was not observed in posterior pelvic limb muscles (tibiotarsal extensors). C101 treatment did not mitigate force drop following repeated eccentric contractions and no improvement was seen in the development of joint contractures, lean muscle mass, or muscle histopathology. Taken together, these data do not support the hypothesis that treatment with C101 mitigates progressive weakness or ameliorates severe muscle pathology observed in young dogs with GRMD.
Collapse
Affiliation(s)
- Martin K Childers
- Department of Neurology, Wake Forest University Health Sciences Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Morón M, Burgos C, Alvarez-Builla J, Salgado A, Mosquera MEG, Vaquero JJ. A cascade reaction of azolopyrimidines. Synthesis of unusual indole and azaindole derivatives. Chem Commun (Camb) 2012; 48:9171-3. [DOI: 10.1039/c2cc34539k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. PLoS Genet 2011; 7:e1002396. [PMID: 22144912 PMCID: PMC3228830 DOI: 10.1371/journal.pgen.1002396] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/10/2011] [Indexed: 01/09/2023] Open
Abstract
Autosomal recessive mutations in the cytolinker protein plectin account for the multisystem disorders epidermolysis bullosa simplex (EBS) associated with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and congenital myasthenia (EBS-CMS). In contrast, a dominant missense mutation leads to the disease EBS-Ogna, manifesting exclusively as skin fragility. We have exploited this trait to study the molecular basis of hemidesmosome failure in EBS-Ogna and to reveal the contribution of plectin to hemidesmosome homeostasis. We generated EBS-Ogna knock-in mice mimicking the human phenotype and show that blistering reflects insufficient protein levels of the hemidesmosome-associated plectin isoform 1a. We found that plectin 1a, in contrast to plectin 1c, the major isoform expressed in epidermal keratinocytes, is proteolytically degraded, supporting the notion that degradation of hemidesmosome-anchored plectin is spatially controlled. Using recombinant proteins, we show that the mutation renders plectin's 190-nm-long coiled-coil rod domain more vulnerable to cleavage by calpains and other proteases activated in the epidermis but not in skeletal muscle. Accordingly, treatment of cultured EBS-Ogna keratinocytes as well as of EBS-Ogna mouse skin with calpain inhibitors resulted in increased plectin 1a protein expression levels. Moreover, we report that plectin's rod domain forms dimeric structures that can further associate laterally into remarkably stable (paracrystalline) polymers. We propose focal self-association of plectin molecules as a novel mechanism contributing to hemidesmosome homeostasis and stabilization. Hemidesmosomes are specialized protein complexes that promote anchorage of the basal keratinocyte cell layer of the epidermis to the underlying dermis. They provide tissue integrity and resistance to mechanical forces. When hemidesmosomes do not function properly, skin blistering ensues in response to mechanical trauma. Plectin is an essential component of hemidesmosomes. Humans carrying recessive mutations in the plectin gene most frequently develop multisystem disorders, where in addition to skin other tissues are also affected. However, there is a unique dominant plectin mutation, which leads to the disease epidermolysis bullosa simplex Ogna (EBS-Ogna), affecting skin exclusively. Because of that, EBS-Ogna is an exceptional system to study the contribution of plectin to hemidesmosome function. We have generated an EBS-Ogna mouse model that mimics the human disease. Using this model, we have learned that selective degradation of hemidesmosome-associated plectin isoform 1a by proteases activated specifically in keratinocytes results in reduced numbers and dysfunction of hemidesmosomes. In contrast, plectin-1c, another plectin isoform expressed in keratinocytes, is not degraded. Moreover, we find that plectin dimers can oligomerize via their long coiled-coil rod domain, a process likely to be instrumental in maintenance of hemidesmosome integrity. These findings highlight the importance of plectin-1a for hemidesmosome function.
Collapse
|