1
|
Pilsova Z, Pilsova A, Zelenkova N, Klusackova B, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction. Front Endocrinol (Lausanne) 2024; 15:1427069. [PMID: 39324123 PMCID: PMC11423738 DOI: 10.3389/fendo.2024.1427069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is produced in various tissues and cells of the male reproductive system, including testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate, penile tissues, and sperm cells. This review aims to summarize the knowledge about the presence and effects of H2S in male reproductive tissues and outline possible therapeutic strategies in pathological conditions related to male fertility, e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S supports spermatogenesis by maintaining the integrity of the blood-testicular barrier (BTB), stimulating testosterone production, and providing cytoprotective effects. In spermatozoa, H2S modulates sperm motility, promotes sperm maturation, capacitation, and acrosome reaction, and has significant cytoprotective effects. Given its vasorelaxant effects, it supports the erection of penile tissue. These findings suggest the importance and therapeutic potential of H2S in male reproduction, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Zuzana Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Zhang F, Wan X, Zhan J, Shen M, Li R. Sulforaphane inhibits the growth of prostate cancer by regulating the microRNA-3919/DJ-1 axis. Front Oncol 2024; 14:1361152. [PMID: 38515566 PMCID: PMC10955061 DOI: 10.3389/fonc.2024.1361152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Background Prostate cancer (PCa) is the second most common solid cancer among men worldwide and the fifth leading cause of cancer-related deaths in men. Sulforaphane (SFN), an isothiocyanate compound, has been shown to exert inhibitory effects on a variety of cancers. However, the biological function of SFN in PCa has not been fully elucidated. The objective of this study was conducted to further investigate the possible underlying mechanism of SFN in PCa using in vitro cell culture and in vivo tumor model experiments. Methods Cell viability, migration, invasion, and apoptosis were analyzed by Cell Counting Kit-8 (CCK-8), wound healing assay, transwell assay, or flow cytometry. Expression of microRNA (miR)-3919 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) or in situ hybridization assay. Xenograft assay was conducted to validated the antitumor effect of miR-3919. The targeting relationship between miR-3919 and DJ-1 was verified by dual-luciferase reporter assay. The level of DJ-1was measured by qRT-PCR or western blotting (WB). Results In the present study, SFN downregulated mRNA and protein expression of DJ-1, an oncogenic gene. Small RNA sequencing analysis and dual-luciferase reporter assay confirmed that microRNA (miR)-3919 directly targeted DJ-1 to inhibition its expression. Furthermore, miR-3919 overexpression impeded viability, migration, and invasion and promoted apoptosis of PCa cells. Tumor growth in nude mice was also inhibited by miR-3919 overexpression, and miR-3919 expression in PCa tissues was lower than that in peritumoral tissues in an in situ hybridization assay. Transfection with miR-3919 inhibitors partially reversed the effects of SFN on cell viability, migration, invasion, and apoptosis. Conclusion Overall, the miR-3919/DJ-1 axis may be involved in the effects of SFN on the malignant biological behavior of PCa cells, which might be a new therapeutic target in PCa.
Collapse
Affiliation(s)
- Fangxi Zhang
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
- Department of Pharmacy and Examination, Heze Medical Collge, Heze, China
| | - Xiaofeng Wan
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Ming Shen
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Runsheng Li
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
4
|
Otoo RA, Allen AR. Sulforaphane's Multifaceted Potential: From Neuroprotection to Anticancer Action. Molecules 2023; 28:6902. [PMID: 37836745 PMCID: PMC10574530 DOI: 10.3390/molecules28196902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 10/15/2023] Open
Abstract
Sulforaphane (SFN) is a naturally occurring compound found in cruciferous vegetables such as broccoli and cauliflower. It has been widely studied for its potential as a neuroprotective and anticancer agent. This review aims to critically evaluate the current evidence supporting the neuroprotective and anticancer effects of SFN and the potential mechanisms through which it exerts these effects. SFN has been shown to exert neuroprotective effects through the activation of the Nrf2 pathway, the modulation of neuroinflammation, and epigenetic mechanisms. In cancer treatment, SFN has demonstrated the ability to selectively induce cell death in cancer cells, inhibit histone deacetylase, and sensitize cancer cells to chemotherapy. SFN has also shown chemoprotective properties through inhibiting phase I metabolizing enzymes, modulating phase II xenobiotic-metabolizing enzymes, and targeting cancer stem cells. In addition to its potential as a therapeutic agent for neurological disorders and cancer treatment, SFN has shown promise as a potential treatment for cerebral ischemic injury and intracranial hemorrhage. Finally, the ongoing and completed clinical trials on SFN suggest potential therapeutic benefits, but more research is needed to establish its effectiveness. Overall, SFN holds significant promise as a natural compound with diverse therapeutic applications.
Collapse
Affiliation(s)
- Raymond A. Otoo
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Kwon HH, Ahn CH, Lee HJ, Sim DY, Park JE, Park SY, Kim B, Shim BS, Kim SH. The Apoptotic and Anti-Warburg Effects of Brassinin in PC-3 Cells via Reactive Oxygen Species Production and the Inhibition of the c-Myc, SIRT1, and β-Catenin Signaling Axis. Int J Mol Sci 2023; 24:13912. [PMID: 37762214 PMCID: PMC10530901 DOI: 10.3390/ijms241813912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Though Brassinin is known to have antiangiogenic, anti-inflammatory, and antitumor effects in colon, prostate, breast, lung, and liver cancers, the underlying antitumor mechanism of Brassinin is not fully understood so far. Hence, in the current study, the apoptotic mechanism of Brassinin was explored in prostate cancer. Herein, Brassinin significantly increased the cytotoxicity and reduced the expressions of pro-Poly ADP-ribose polymerase (PARP), pro-caspase 3, and B-cell lymphoma 2 (Bcl-2) in PC-3 cells compared to DU145 and LNCaP cells. Consistently, Brassinin reduced the number of colonies and increased the sub-G1 population and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)-positive cells in the PC-3 cells. Of note, Brassinin suppressed the expressions of pyruvate kinase-M2 (PKM2), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase (LDH) as glycolytic proteins in the PC-3 cells. Furthermore, Brassinin significantly reduced the expressions of SIRT1, c-Myc, and β-catenin in the PC-3 cells and also disrupted the binding of SIRT1 with β-catenin, along with a protein-protein interaction (PPI) score of 0.879 and spearman's correlation coefficient of 0.47 being observed between SIRT1 and β-catenin. Of note, Brassinin significantly increased the reactive oxygen species (ROS) generation in the PC-3 cells. Conversely, ROS scavenger NAC reversed the ability of Brassinin to attenuate pro-PARP, pro-Caspase3, SIRT1, and β-catenin in the PC-3 cells. Taken together, these findings support evidence that Brassinin induces apoptosis via the ROS-mediated inhibition of SIRT1, c-Myc, β-catenin, and glycolysis proteins as a potent anticancer candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (H.H.K.); (C.-H.A.); (H.-J.L.); (D.Y.S.); (J.E.P.); (S.-Y.P.); (B.K.); (B.-S.S.)
| |
Collapse
|
6
|
Demir K, Sarıkamış G, Çakırer Seyrek G. Effect of LED lights on the growth, nutritional quality and glucosinolate content of broccoli, cabbage and radish microgreens. Food Chem 2023; 401:134088. [DOI: 10.1016/j.foodchem.2022.134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
7
|
Accumulation of Sulforaphane and Alliin in Human Prostate Tissue. Nutrients 2022; 14:nu14163263. [PMID: 36014767 PMCID: PMC9415180 DOI: 10.3390/nu14163263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Diets rich in cruciferous vegetables have been associated with a lower risk of incidence and progression of prostate cancer. Sulforaphane, an isothiocyanate derived from 4-methylsulphinylbutyl glucosinolate (glucoraphanin) that accumulates in certain of these vegetables, notably broccoli, has been implicated in their protective effects. Likewise, the consumption of garlic and its sulphur-containing compounds such as alliin have been associated with a reduction in risk of prostate cancer. In this study, we tested whether consuming glucoraphanin derived from broccoli seeds and alliin derived from garlic resulted in the occurrence of these potential bioactive compounds in the prostate, which may contribute to our understanding of the putative protective effects of these dietary components. We recruited 42 men scheduled for a trans-perineal prostate biopsy into a randomised, double-blinded, 2 × 2-factorial dietary supplement four-week intervention study, and 39 completed the study. The two active interventions were supplements providing glucoraphanin from broccoli (BroccoMax®) and alliin from garlic (Kwai Heartcare®). Following the intervention, prostate biopsy tissue was analysed for the presence of sulforaphane and its thiol conjugates and for alliin and associated metabolites. Sulforaphane occurred in significantly higher levels in the prostate tissue (both within the transition and peripheral zone) of men consuming the glucoraphanin containing supplements (p < 0.0001) compared to men not consuming these supplements. However, while alliin and alliin-derived metabolites were detected within the prostate, there was no significant difference in the concentrations of these compounds in the prostate of men consuming supplements derived from garlic compared to men not consuming these supplements.
Collapse
|
8
|
Zhang Y, Lu Q, Li N, Xu M, Miyamoto T, Liu J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 2022; 8:40. [PMID: 35332167 PMCID: PMC8948359 DOI: 10.1038/s41523-022-00402-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer metastasis is the main cause of cancer death in women, so far, no effective treatment has inhibited breast cancer metastasis. Sulforaphane (SFN), a natural compound derived from broccoli, has shown potential health benefits in many cancers. However, research on breast cancer metastasis is still insufficient. Here, we showed that SFN, including its two isomers of R-SFN and S-SFN, significantly inhibited TGF-β1-induced migration and invasion in breast cancer cells. Proteomic and phosphoproteomic analysis showed that SFN affected the formation of the cytoskeleton. Subsequent experiments confirmed that SFN significantly inhibited TGF-β1-induced actin stress fiber formation and the expression of actin stress fiber formation-associated proteins, including paxillin, IQGAP1, FAK, PAK2, and ROCK. Additionally, SFN is directly bound to RAF family proteins (including ARAF, BRAF, and CRAF) and inhibited MEK and ERK phosphorylation. These in vitro results indicate that SFN targets the RAF/MEK/ERK signaling pathway to inhibit the formation of actin stress fibers, thereby inhibiting breast cancer cell metastasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Qian Lu
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nan Li
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
9
|
Connolly EL, Sim M, Travica N, Marx W, Beasy G, Lynch GS, Bondonno CP, Lewis JR, Hodgson JM, Blekkenhorst LC. Glucosinolates From Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front Pharmacol 2021; 12:767975. [PMID: 34764875 PMCID: PMC8575925 DOI: 10.3389/fphar.2021.767975] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
An increasing body of evidence highlights the strong potential for a diet rich in fruit and vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic, neurological, and musculoskeletal conditions, and certain cancers. A possible protective component, glucosinolates, which are phytochemicals found almost exclusively in cruciferous vegetables, have been identified from preclinical and clinical studies. Current research suggests that glucosinolates (and isothiocyanates) act via several mechanisms, ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates in relation to the specified health conditions. Although there is evidence that consumption of a high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale placebo-controlled human trials including standardized glucosinolate supplements are needed.
Collapse
Affiliation(s)
- Emma L Connolly
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Marc Sim
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Nikolaj Travica
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Gemma Beasy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Gordon S Lynch
- Department of Anatomy and Physiology, Centre for Muscle Research, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan M Hodgson
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Lauren C Blekkenhorst
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Qin Z, Ou S, Xu L, Sorensen K, Zhang Y, Hu DP, Yang Z, Hu WY, Chen F, Prins GS. Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-Deficient prostate cancer cells. Chem Biol Drug Des 2021; 97:1059-1078. [PMID: 33470049 PMCID: PMC8168342 DOI: 10.1111/cbdd.13826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Sustained androgen receptor (AR) signaling and apoptosis evasion are among the main hurdles of castration-resistant prostate cancer (CRPC) treatment. We designed and synthesized isothiocyanate (ITC)-containing hybrid AR antagonist (ITC-ARi) and rationally combined ITC-ARi with GSH synthesis inhibitor buthionine sulfoximine (BSO) to efficiently downregulate AR/AR splice variant and induce ferroptosis in CRPC cells. The representative ITC-ARi 13 is an AR ligand that contains an N-acetyl cysteine-masked ITC moiety and gradually releases parental unconjugated ITC 12b in aqueous solution. The in vitro anti-PCa activities of 13, such as growth inhibition and AR downregulation, are significantly enhanced when combined with BSO. The drug combination caused notable lipid peroxidation and the cell viability was effectively rescued by iron chelator, antioxidants or the inhibitor of heme oxygenase-1, supporting the induction of ferroptosis. 13 and BSO cooperatively downregulate AR and induce ferroptosis likely through increasing the accessibility of 13/12b to cellular targets, escalating free intracellular ferrous iron and attenuating GSH-centered cellular defense and adaptation. Further studies on the combination of ITC-ARi and GSH synthesis inhibitor could result in a new modality against CRPC.
Collapse
Affiliation(s)
- Zhihui Qin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Siyu Ou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Kathleen Sorensen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Liu SH, Chen PS, Huang CC, Hung YT, Lee MY, Lin WH, Lin YC, Lee AYL. Unlocking the Mystery of the Therapeutic Effects of Chinese Medicine on Cancer. Front Pharmacol 2021; 11:601785. [PMID: 33519464 PMCID: PMC7843369 DOI: 10.3389/fphar.2020.601785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, the rise of cancer immunotherapy has coincided with a remarkable breakthrough in cancer therapy, which attracted increased interests in public. The scientific community clearly showed that the emergence of immunotherapy is an inevitable outcome of a holistic approach for cancer treatment. It is well established that traditional Chinese medicine (TCM) utilizes the principle of homeostasis and balance to adjust the healthy status of body. TCM treatment toward cancer has a long history, and the diagnosis and treatment of tumors were discussed in the ancient and classical literatures of Chinese medicine, such as the Yellow Emperor’s Inner Canon. Precious heritage has laid the foundation for the innovation and development of cancer treatment with TCM. The modern study indicated that TCM facilitates the treatment of cancer and enhances the survival rate and life expectancy of patients. However, the pharmacological mechanisms underlying these effects are not yet completely understood. In addition, physicians cannot always explain why the TCM treatment is effective and the mechanism of action cannot be explained in scientific terms. Here, we attempted to provide insights into the development of TCM in the treatment and interpret how TCM practitioners treat cancer through six general principles of TCM by using modern scientific language and terms based on newly discovered evidence.
Collapse
Affiliation(s)
- Shao-Hsiang Liu
- Celgen Biotech, Taipei, Taiwan.,Taiwan Instrument Research Institute, National Applied Research Laboratories, Zhubei, Taiwan
| | | | - Chun-Chieh Huang
- Department of Chinese Medicine, Taitung Christian Hospital, Taitung, Taiwan
| | - Yi-Tu Hung
- HanPoo Chinese Medical Clinic, Taipei, Taiwan
| | - Mei-Ying Lee
- Chinese Medicine Women Doctors Association, Taipei, Taiwan
| | | | | | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Damiani E, Duran MN, Mohan N, Rajendran P, Dashwood RH. Targeting Epigenetic 'Readers' with Natural Compounds for Cancer Interception. J Cancer Prev 2020; 25:189-203. [PMID: 33409252 PMCID: PMC7783241 DOI: 10.15430/jcp.2020.25.4.189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Natural compounds from diverse sources, including botanicals and commonly consumed foods and beverages, exert beneficial health effects via mechanisms that impact the epigenome and gene expression during disease pathogenesis. By targeting the so-called epigenetic 'readers', 'writers', and 'erasers', dietary phytochemicals can reverse abnormal epigenome signatures in cancer cells and preneoplastic stages. Thus, such agents provide avenues for cancer interception via prevention or treatment/therapeutic strategies. To date, much of the focus on dietary agents has been directed towards writers (e.g., histone acetyltransferases) and erasers (e.g., histone deacetylases), with less attention given to epigenetic readers (e.g., BRD proteins). The drug JQ1 was developed as a prototype epigenetic reader inhibitor, selectively targeting members of the bromodomain and extraterminal domain (BET) family, such as BRD4. Clinical trials with JQ1 as a single agent, or in combination with standard of care therapy, revealed antitumor efficacy but not without toxicity or resistance. In pursuit of second-generation epigenetic reader inhibitors, attention has shifted to natural sources, including dietary agents that might be repurposed as 'JQ1-like' bioactives. This review summarizes the current status of nascent research activity focused on natural compounds as inhibitors of BET and other epigenetic 'reader' proteins, with a perspective on future directions and opportunities.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Ancona, Italy
| | - Munevver N. Duran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health Science Center, TX, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Nrf-2 activator sulforaphane protects retinal cells from oxidative stress-induced retinal injury. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Chen L, Chan LS, Lung HL, Yip TTC, Ngan RKC, Wong JWC, Lo KW, Ng WT, Lee AWM, Tsao GSW, Lung ML, Mak NK. Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153058. [PMID: 31394414 DOI: 10.1016/j.phymed.2019.153058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sulforaphane (SFN), a natural compound present in cruciferous vegetable, has been shown to possess anti-cancer activities. Cancer stem cell (CSC) in bulk tumor is generally considered as treatment resistant cell and involved in cancer recurrence. The effects of SFN on nasopharyngeal carcinoma (NPC) CSCs have not yet been explored. PURPOSE The present study aims to examine the anti-tumor activities of SFN on NPC cells with CSC-like properties and the underlying mechanisms. METHODS NPC cells growing in monolayer culture, CSCs-enriched NPC tumor spheres, and also the NPC nude mice xenograft were used to study the anti-tumor activities of SFN on NPC. The population of cells expressing CSC-associated markers was evaluated using flow cytometry and aldehyde dehydrogenase (ALDH) activity assay. The effect of DNA methyltransferase 1 (DNMT1) on the growth of NPC cells was analyzed by using small interfering RNA (siRNA)-mediated silencing method. RESULTS SFN was found to inhibit the formation of CSC-enriched NPC tumor spheres and reduce the population of cells with CSC-associated properties (SRY (Sex determining Region Y)-box 2 (SOX2) and ALDH). In the functional study, SFN was found to restore the expression of Wnt inhibitory factor 1 (WIF1) and the effect was accompanied with the downregulation of DNMT1. The functional activities of WIF1 and DNMT1 were confirmed using exogenously added recombinant WIF1 and siRNA knockdown of DNMT1. Moreover, SFN was found to inhibit the in vivo growth of C666-1 cells and enhance the anti-tumor effects of cisplatin. CONCLUSION Taken together, we demonstrated that SFN could suppress the growth of NPC cells via the DNMT1/WIF1 axis.
Collapse
Affiliation(s)
- Luo Chen
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Lai Sheung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Timothy Tak Chun Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, Kowloon, Hong Kong, China; Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Roger Kai Cheong Ngan
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, Kowloon, Hong Kong, China; Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wai Tong Ng
- Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - George Sai Wah Tsao
- Department of Anatomy, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China.
| |
Collapse
|
15
|
Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20092066. [PMID: 31027362 PMCID: PMC6540097 DOI: 10.3390/ijms20092066] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.
Collapse
|
16
|
Khurana N, Sikka SC. Targeting Crosstalk between Nrf-2, NF-κB and Androgen Receptor Signaling in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10100352. [PMID: 30257470 PMCID: PMC6210752 DOI: 10.3390/cancers10100352] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress, inflammation and androgen receptor (AR) signaling play a pivotal role in the initiation, development and progression of prostate cancer (PCa). Numerous papers in the literature have documented the interconnection between oxidative stress and inflammation; and how antioxidants can combat the inflammation. It has been shown in the literature that both oxidative stress and inflammation regulate AR, the key receptor involved in the transition of PCa to castration resistant prostate cancer (CRPC). In this review, we discuss about the importance of targeting Nrf-2-antioxidant signaling, NF-κB inflammatory response and AR signaling in PCa. Finally, we discuss about the crosstalk between these three critical pathways as well as how the anti-inflammatory antioxidant phytochemicals like sulforaphane (SFN) and curcumin (CUR), which can also target AR, can be ideal candidates in the chemoprevention of PCa.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Internal Medicine-Medical Oncology, Washington University in St. Louis Medical Campus, 660 S Euclid Ave, St. Louis, MO 63110-1010, USA.
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine,1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
17
|
Dygut J, Piwowar M, Fijałkowska K, Guevara I, Jakubas R, Gonzales G, Popławski K, Strokowska A, Wikariak H, Jurkowski W. Effect of Cabbage Wraps on the Reduction of Post-Traumatic Knee Exudates in Men. J Altern Complement Med 2018; 24:1113-1119. [PMID: 29782183 DOI: 10.1089/acm.2017.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The study investigates measurable effects of cabbage leaf wraps on post-traumatic knee injury exudate absorption in men. DESIGN Case-control experiment on the same group of patients (before and after treatment). SETTINGS/LOCATION One academic center and two hospitals. SUBJECTS The study was carried out on a group of patients with different degrees of injury severity in the acute stage of the knee injury who were divided into three groups based on the width of suprapatellar recess gap (3-5 mm in group 1, 6-10 mm in group 2, and 11 mm or more in group 3) as assessed by ultrasonography. INTERVENTIONS Each group of patients was divided into two subgroups, one of which comprised patients whose knees were treated with wraps containing cabbage leaves with ice (cases) and the others comprised patients treated with wraps without cabbage leaves, with cooling dressing only (controls). RESULTS Significant progression in knee fluid uptake was observed in the acute stage of the knee injuries treated with cabbage wraps compared with control groups (p < 0.05). It was shown that the time, type of wraps, and a degree of severity of post-traumatic exudative knee inflammation affect the process of knee recovery (Friedman test for repeated measures p < 0.05). The most significant results were observed within first 24 h after the injury. Further decrease in the width of the recess gap after 5 days was observed. CONCLUSIONS Application of cabbage wraps with ice to the knee in men may promote a reduction of swelling (by accelerating absorption of knee exudates) if applied during the acute stage of the knee injury.
Collapse
Affiliation(s)
- Jacek Dygut
- 1 ARTROMED Medical Center , Przemyśl, Poland .,2 Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College , Krakow, Poland
| | - Monika Piwowar
- 2 Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College , Krakow, Poland
| | - Kinga Fijałkowska
- 3 Department of Laboratory Diagnostics, Provincial Hospital in Przemysl , Przemyśl, Poland
| | - Ibeth Guevara
- 4 Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | - Gustaw Gonzales
- 5 Department of Traumatology and Orthopedics, Provincial Hospital in Przemysl , Przemyśl, Poland .,6 Nonpublic Healthcare Facility RehStab , Limanowa, Poland
| | - Krzysztof Popławski
- 5 Department of Traumatology and Orthopedics, Provincial Hospital in Przemysl , Przemyśl, Poland .,6 Nonpublic Healthcare Facility RehStab , Limanowa, Poland
| | - Anna Strokowska
- 7 The Center for Rehabilitation of the Organ Movement , Krzeszowice, Poland
| | - Hanna Wikariak
- 8 Rehabilitation Clinic, 10 Military Clinical Hospital with Polyclinic , Bydgoszcz, Poland
| | - Wiktor Jurkowski
- 9 Earlham Institute , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
18
|
Lan H, Yuan H, Lin C. Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway. Mol Med Rep 2017; 16:7796-7804. [PMID: 28944886 DOI: 10.3892/mmr.2017.7558] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Sulforaphane (SFN) has been revealed to inhibit the growth and induce apoptosis of cancer cells. However, the detailed anticancer effects of SFN on p53‑deficient colon cancer cells has yet to be clearly elucidated. The present study employed p53‑deficient SW480 cells to establish an SFN‑induced in vitro model of apoptosis. The critical events leading to apoptosis were then evaluated in SFN‑treated p53‑deficient SW480 cells, by performing an MTT assay, flow cytometry, western blotting and ELISA. The results demonstrated that SFN at concentrations of 5, 10, 15 and 20 µM induced mitochondria‑associated cell apoptosis, which was further confirmed by disruption of the mitochondrial membrane potential, an increase in the Bax/Bcl‑2 ratio, as well as activation of caspase‑3, ‑7 and ‑9. In addition, SFN‑induced apoptosis was associated with an increase in the generation of reactive oxygen species (ROS), and the activation of extracellular signal‑regulated kinases (Erk) and p38 mitogen‑activated protein kinases. However, SFN did not induce expression of the p53 family member, p73. SFN‑induced apoptosis was subsequently confirmed to be ROS‑dependent and associated with Erk/p38, as the specific inhibitors for ROS, phosphorylated (p)‑Erk and p‑p38, completely or partially attenuated the SFN‑induced reduction in SW480 cell viability. In addition, the results demonstrated that even at the lowest concentrations (5 µM), SFN increased the sensitivity of p53‑proficient HCT‑116 cells to cisplatin. In conclusion, the results suggest that SFN may induce apoptosis in p53‑deficient SW480 cells via p53/p73‑independent and ROS‑Erk/p38‑dependent signaling pathways.
Collapse
Affiliation(s)
- Hai Lan
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongyin Yuan
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Congyao Lin
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
19
|
Khurana N, Kim H, Chandra PK, Talwar S, Sharma P, Abdel-Mageed AB, Sikka SC, Mondal D. Multimodal actions of the phytochemical sulforaphane suppress both AR and AR-V7 in 22Rv1 cells: Advocating a potent pharmaceutical combination against castration-resistant prostate cancer. Oncol Rep 2017; 38:2774-2786. [PMID: 28901514 PMCID: PMC5780030 DOI: 10.3892/or.2017.5932] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) cells expressing full-length androgen receptor (AR-FL) are susceptible to androgen deprivation therapy (ADT). However, outgrowth of castration-resistant prostate cancer (CRPC) can occur due to the expression of constitutively active (ligand-independent) AR splice variants, particularly AR-V7. We previously demonstrated that sulforaphane (SFN), an isothiocyanate phytochemical, can decrease AR-FL levels in the PCa cell lines, LNCaP and C4-2B. Here, we examined the efficacy of SFN in targeting both AR-FL and AR-V7 in the CRPC cell line, CWR22Rv1 (22Rv1). MTT cell viability, wound-heal assay, and colony forming unit (CFU) measurements revealed that 22Rv1 cells are resistant to the anti-androgen, enzalutamide (ENZ). However, co-exposure to SFN sensitized these cells to the potent anticancer effects of ENZ (P<0.05). Immunoblot analyses showed that SFN (5–20 µM) rapidly decreases both AR-FL and AR-V7 levels, and immunofluorescence microscopy (IFM) depicted decreased AR in both cytoplasm and nucleus with SFN treatment. SFN increased both ubiquitination and proteasomal activity in 22Rv1 cells. Studies using a protein synthesis inhibitor (cycloheximide) or a proteasomal inhibitor (MG132) indicated that SFN increases both ubiquitin-mediated aggregation and subsequent proteasomal-degradation of AR proteins. Previous studies reported that SFN inhibits the chaperone activity of heat-shock protein 90 (Hsp90) and induces the nuclear factor erythroid-2-like 2 (Nrf2) transcription factor. Therefore, we investigated whether the Hsp90 inhibitor, ganetespib (G) or the Nrf2 activator, bardoxolone methyl (BM) can similarly suppress AR levels in 22Rv1 cells. Low doses of G and BM, alone or in combination, decreased both AR-FL and AR-V7 levels, and combined exposure to G+BM sensitized 22Rv1 cells to ENZ. Therefore, adjunct treatment with the phytochemical SFN or a safe pharmaceutical combination of G+BM may be effective against CRPC cells, especially those expressing AR-V7.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sudha Talwar
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pankaj Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Zou X, Qu Z, Fang Y, Shi X, Ji Y. Endoplasmic reticulum stress mediates sulforaphane-induced apoptosis of HepG2 human hepatocellular carcinoma cells. Mol Med Rep 2016; 15:331-338. [PMID: 27959410 DOI: 10.3892/mmr.2016.6016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN) is a naturally occurring chemopreventive agent, which effectively inhibits proliferation of HepG2 human hepatocellular carcinoma cells via mitochondria‑mediated apoptosis. Endoplasmic reticulum stress is considered the most important cause of cell apoptosis; therefore, the present study aimed to determine whether the endoplasmic reticulum pathway was involved in SFN-induced apoptosis of HepG2 cells. An MTT assay was used to detect the inhibitory effects of SFN on HepG2 cells. Fluorescence microscopy was used to observe the morphological changes in apoptotic cells, and western blot analysis was conducted to detect the expression of binding immunoglobulin protein (Bip)/glucose-regulated protein 78 (GRP78), X‑box binding protein‑1 (XBP‑1) and BH3 interacting domain death agonist (Bid). Furthermore, flow cytometry was used to determine the apoptotic rate of HepG2 cells, and the protein expression of C/EBP homologous protein (CHOP)/growth arrest‑ and DNA damage‑inducible gene 153 (GADD153) and caspase-12 in HepG2 cells. The results indicated that SFN significantly inhibited the proliferation of HepG2 cells; the half maximal inhibitory concentration values were 32.03±0.96, 20.90±1.96 and 13.87±0.44 µmol/l, following treatment with SFN for 24, 48 and 72 h, respectively. Following 48 h of SFN treatment (10, 20 and 40 µmol/l), the apoptotic rates of HepG2 cells were 31.8, 61.3 and 77.1%, respectively. Furthermore, after 48 h of exposure to SFN, the cells presented typical morphological alterations of apoptosis, as detected under fluorescence microscopy. Treatment with SFN for 48 h also significantly upregulated the protein expression levels of Bip/GRP78, XBP‑1, caspase‑12, CHOP/GADD153 and Bid in HepG2 cells. In conclusion, endoplasmic reticulum stress may be considered the most important mechanism underlying SFN-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin, Heilongjiang 150076, P.R. China
| | - Zhongyuan Qu
- College of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Yueni Fang
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin, Heilongjiang 150076, P.R. China
| | - Xin Shi
- Post Doctoral Research Center of Materia Medica, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Yubin Ji
- Post Doctoral Research Center of Materia Medica, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| |
Collapse
|
21
|
Katsarou D, Omirou M, Liadaki K, Tsikou D, Delis C, Garagounis C, Krokida A, Zambounis A, Papadopoulou KK. Glucosinolate biosynthesis in Eruca sativa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:452-466. [PMID: 27816826 DOI: 10.1016/j.plaphy.2016.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/06/2016] [Accepted: 10/25/2016] [Indexed: 05/27/2023]
Abstract
Glucosinolates (GSLs) are a highly important group of secondary metabolites in the Caparalles order, both due to their significance in plant-biome interactions and to their chemoprotective properties. This study identified genes involved in all steps of aliphatic and indolic GSL biosynthesis in Eruca sativa, a cultivated plant closely related to Arabidopsis thaliana with agronomic and nutritional value. The impact of nitrogen (N) and sulfur (S) availability on GSL biosynthetic pathways at a transcriptional level, and on the final GSL content of plant leaf and root tissues, was investigated. N and S supply had a significant and interactive effect on the GSL content of leaves, in a structure-specific and tissue-dependent manner; the metabolites levels were significantly correlated with the relative expression of the genes involved in their biosynthesis. A more complex effect was observed in roots, where aliphatic and indolic GSLs and related biosynthetic genes responded differently to the various nutritional treatments suggesting that nitrogen and sulfur availability are important factors that control plant GSL content at a transcriptional level. The biological activity of extracts derived from these plants grown under the specific nutritional schemes was examined. N and S availability were found to significantly affect the cytotoxicity of E. sativa extracts on human cancer cells, supporting the notion that carefully designed nutritional schemes can promote the accumulation of chemoprotective substances in edible plants.
Collapse
Affiliation(s)
- Dimitra Katsarou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Michalis Omirou
- Agricultural Research Institute, Ministry of Agriculture, Natural Resources and Environment, Nicosia, Cyprus
| | - Kalliopi Liadaki
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Daniela Tsikou
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Costas Delis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | | - Afrodite Krokida
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | - Antonis Zambounis
- University of Thessaly, Department of Biochemistry & Biotechnology, Larisa, Greece
| | | |
Collapse
|
22
|
Long MJC, Aye Y. The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making. Chem Res Toxicol 2016; 29:1575-1582. [PMID: 27617777 PMCID: PMC5069682 DOI: 10.1021/acs.chemrestox.6b00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
This perspective sets out to critically
evaluate the scope of reactive
electrophilic small molecules as unique chemical signal carriers in
biological information transfer cascades. We consider these electrophilic
cues as a new volatile cellular currency and compare them to canonical
signaling circulation such as phosphate in terms of chemical properties,
biological specificity, sufficiency, and necessity. The fact that
nonenzymatic redox sensing properties are found in proteins undertaking
varied cellular tasks suggests that electrophile signaling is a moonlighting
phenomenon manifested within a privileged set of sensor proteins.
The latest interrogations into these on-target electrophilic responses
set forth a new horizon in the molecular mechanism of redox signal
propagation wherein direct low-occupancy electrophilic modifications
on a single sensor target are biologically sufficient to drive functional
redox responses with precision timing. We detail how the various mechanisms
through which redox signals function could contribute to their interesting
phenotypic responses, including hormesis.
Collapse
Affiliation(s)
- Marcus J C Long
- Department of Chemistry & Chemical Biology, Cornell University , 244 Baker Laboratory, Ithaca, New York 14850, United States
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University , 244 Baker Laboratory, Ithaca, New York 14850, United States.,Department of Biochemistry, Weill Cornell Medicine , 1300 York Avenue, New York, New York 10065, United States
| |
Collapse
|
23
|
Cheng YM, Tsai CC, Hsu YC. Sulforaphane, a Dietary Isothiocyanate, Induces G₂/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association. Int J Mol Sci 2016; 17:ijms17091530. [PMID: 27626412 PMCID: PMC5037805 DOI: 10.3390/ijms17091530] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins.
Collapse
Affiliation(s)
- Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Ching-Chou Tsai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Chiayi 61333, Taiwan.
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
- Bachelor Degree Program of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan.
| |
Collapse
|
24
|
Khurana N, Talwar S, Chandra PK, Sharma P, Abdel-Mageed AB, Mondal D, Sikka SC. Sulforaphane increases the efficacy of anti-androgens by rapidly decreasing androgen receptor levels in prostate cancer cells. Int J Oncol 2016; 49:1609-19. [PMID: 27499349 DOI: 10.3892/ijo.2016.3641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) cells utilize androgen for their growth. Hence, androgen deprivation therapy (ADT) using anti-androgens, e.g. bicalutamide (BIC) and enzalutamide (ENZ), is a mainstay of treatment. However, the outgrowth of castration resistant PCa (CRPC) cells remains a significant problem. These CRPC cells express androgen receptor (AR) and utilize the intratumoral androgen towards their continued growth and invasion. Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, can decrease AR protein levels. In the present study, we tested the combined efficacy of anti-androgens and SFN in suppressing PCa cell growth, motility and clonogenic ability. Both androgen-dependent (LNCaP) and androgen-independent (C4-2B) cells were used to monitor the effects of BIC and ENZ, alone and in combination with SFN. Co-exposure to SFN significantly (p<0.005) enhanced the anti-proliferative effects of anti-androgens and downregulated expression of the AR-responsive gene, prostate specific antigen (PSA) (p<0.05). Exposure to SFN decreased AR protein levels in a time- and dose-dependent manner with almost no AR detected at 24 h with 15 µM SFN (p<0.005). This rapid and potent AR suppression by SFN occurred by both AR protein degradation, as suggested by cycloheximide (CHX) co-exposure studies, and by suppression of AR gene expression, as evident from quantitative RT-PCR experiments. Pre-exposure to SFN also reduced R1881-stimulated nuclear localization of AR, and combined treatment with SFN and anti-androgens abrogated the mitogenic effects of this AR-agonist (p<0.005). Wound-healing assays revealed that co-exposure to SFN and anti-androgens can significantly (p<0.005) reduce PCa cell migration. In addition, long-term exposures (14 days) to much lower concentrations of these agents, SFN (0.2 µM), BIC (1 µM) and/or ENZ (0.4 µM) significantly (p<0.005) decreased the number of colony forming units (CFUs). These findings clearly suggest that SFN may be used as a promising adjunct agent to augment the efficacy of anti-androgens against aggressive PCa cells.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sudha Talwar
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pankaj Sharma
- Amity Institute of Biotechnology, Amity University, Noida, U.P. 201313, India
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
25
|
Lee W, Yun JM. Suppression of β-catenin Signaling Pathway in Human Prostate Cancer PC3 Cells by Delphinidin. J Cancer Prev 2016; 21:110-4. [PMID: 27390740 PMCID: PMC4933435 DOI: 10.15430/jcp.2016.21.2.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 01/21/2023] Open
Abstract
Delphinidin possesses strong anti-oxidant, anti-inflammatory, and anti-cancer properties. Suppression of the Wnt/β-catenin signaling pathway is a potential strategy for chemoprevention and therapy. As aberrant activation of the β-catenin signaling pathway contributes to prostate cancer progression, we evaluated the effect of delphinidin on this pathway in human PC3 prostate cancer cells. An MTT assay showed that treatment with delphinidin (15–180 μM, 72 hours) resulted in a dose-dependent growth inhibition of cells. Treatment with delphinidin increased the phosphorylation of serine or threonine residues on β-catenin and decreased the levels of cytoplasmic β-catenin. Moreover, treatment with delphinidin inhibited the nuclear translocation of β-catenin and the expression of β-catenin target genes such as cyclin D1, c-myc, Axin-2, and T cell factor-1. Delphinidin also induced the phosphorylation of glycogen synthase kinase 3β and the expression of adenomatous polyposis coli and Axin proteins. Our results indicate that inhibition of cell growth by delphinidin is mediated, at least in part, through modulation of the β-catenin signaling pathway. We suggest that delphinidin is a potent inhibitor of Wnt/β-catenin signaling in prostate cancer cells.
Collapse
Affiliation(s)
- Wooje Lee
- National Research Center for Dementia, Chosun University, Gwangju, Korea
| | - Jung-Mi Yun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| |
Collapse
|
26
|
Luang-In V, Albaser AA, Nueno-Palop C, Bennett MH, Narbad A, Rossiter JT. Glucosinolate and Desulfo-glucosinolate Metabolism by a Selection of Human Gut Bacteria. Curr Microbiol 2016; 73:442-451. [DOI: 10.1007/s00284-016-1079-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022]
|
27
|
Novío S, Cartea ME, Soengas P, Freire-Garabal M, Núñez-Iglesias MJ. Effects of Brassicaceae Isothiocyanates on Prostate Cancer. Molecules 2016; 21:E626. [PMID: 27187332 PMCID: PMC6272898 DOI: 10.3390/molecules21050626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022] Open
Abstract
Despite the major progress made in the field of cancer biology, cancer is still one of the leading causes of mortality, and prostate cancer (PCa) is one of the most encountered malignancies among men. The effective management of this disease requires developing better anticancer agents with greater efficacy and fewer side effects. Nature is a large source for the development of chemotherapeutic agents, with more than 50% of current anticancer drugs being of natural origin. Isothiocyanates (ITCs) are degradation products from glucosinolates that are present in members of the family Brassicaceae. Although they are known for a variety of therapeutic effects, including antioxidant, immunostimulatory, anti-inflammatory, antiviral and antibacterial properties, nowadays, cell line and animal studies have additionally indicated the chemopreventive action without causing toxic side effects of ITCs. In this way, they can induce cell cycle arrest, activate apoptosis pathways, increase the sensitivity of resistant PCa to available chemodrugs, modulate epigenetic changes and downregulate activated signaling pathways, resulting in the inhibition of cell proliferation, progression and invasion-metastasis. The present review summarizes the chemopreventive role of ITCs with a particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo cancer animal models.
Collapse
Affiliation(s)
- Silvia Novío
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (CSIC) Aptdo. 28, 36080 Pontevedra, Spain.
| | - Manuel Freire-Garabal
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| | - María Jesús Núñez-Iglesias
- Lennart Levi Stress and Neuroimmunology Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, c/San Francisco, s/n, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
28
|
Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics. Prostate Cancer 2016; 2016:8108549. [PMID: 27019751 PMCID: PMC4785274 DOI: 10.1155/2016/8108549] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR) signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer.
Collapse
|
29
|
Sikdar S, Papadopoulou M, Dubois J. What do we know about sulforaphane protection against photoaging? J Cosmet Dermatol 2016; 15:72-7. [PMID: 26799467 DOI: 10.1111/jocd.12176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN), a natural compound occurring in cruciferous vegetables, has been known for years as a chemopreventive agent against many types of cancer. Recently, it has been investigated as an antioxidant and anti-aging agent, and interesting conclusions have been made over the last decade. SFN demonstrated protective effects against ultraviolet (UV)-induced skin damage through several mechanisms of action, for example, decrease of reactive oxygen species production, inhibition of matrix metalloproteinase expression, and induction of phase 2 enzymes. SFN used as a protective agent against UV damage is a whole new matter, and it seems to be a very promising ingredient in upcoming anti-aging drugs and cosmetics.
Collapse
Affiliation(s)
- Sohely Sikdar
- Laboratoire de Chimie Bioanalytique, Toxicologie et Chimie Physique Appliquée, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Papadopoulou
- Laboratoire de Chimie Bioanalytique, Toxicologie et Chimie Physique Appliquée, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacques Dubois
- Laboratoire de Chimie Bioanalytique, Toxicologie et Chimie Physique Appliquée, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
30
|
Greaney AJ, Maier NK, Leppla SH, Moayeri M. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J Leukoc Biol 2015; 99:189-99. [PMID: 26269198 DOI: 10.1189/jlb.3a0415-155rr] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/28/2015] [Indexed: 12/18/2022] Open
Abstract
The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to our understanding of the beneficial effects of sulforaphane.
Collapse
Affiliation(s)
- Allison J Greaney
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Nolan K Maier
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Armah CN, Derdemezis C, Traka MH, Dainty JR, Doleman JF, Saha S, Leung W, Potter JF, Lovegrove JA, Mithen RF. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Mol Nutr Food Res 2015; 59:918-26. [PMID: 25851421 PMCID: PMC4692095 DOI: 10.1002/mnfr.201400863] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Abstract
SCOPE Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C. METHODS AND RESULTS One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: -1.8%, -12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, -7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: -2.1%, -8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, -5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031). CONCLUSION Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-C.
Collapse
|