1
|
Mag P, Nemes-Terényi M, Jerzsele Á, Mátyus P. Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules 2024; 29:4475. [PMID: 39339469 PMCID: PMC11433938 DOI: 10.3390/molecules29184475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Drug innovation traditionally follows a de novo approach with new molecules through a complex preclinical and clinical pathway. In addition to this strategy, drug repositioning has also become an important complementary approach, which can be shorter, cheaper, and less risky. This review provides an overview of drug innovation in both human and veterinary medicine, with a focus on drug repositioning. The evolution of drug repositioning and the effectiveness of this approach are presented, including the growing role of data science and computational modeling methods in identifying drugs with potential for repositioning. Certain business aspects of drug innovation, especially the relevant factors of market exclusivity, are also discussed. Despite the promising potential of drug repositioning for innovation, it remains underutilized, especially in veterinary applications. To change this landscape for mutual benefits of human and veterinary drug innovation, further exploitation of the potency of drug repositioning is necessary through closer cooperation between all stakeholders, academia, industry, pharmaceutical authorities, and innovation policy makers, and the integration of human and veterinary repositioning into a unified innovation space. For this purpose, the establishment of the conceptually new "One Health Drug Repositioning Platform" is proposed. Oncology is one of the disease areas where this platform can significantly support the development of new drugs for human and dog (or other companion animals) anticancer therapies. As an example of the utilization of human and veterinary drugs for veterinary repositioning, the use of COX inhibitors to treat dog cancers is reviewed.
Collapse
Affiliation(s)
- Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Melinda Nemes-Terényi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Péter Mátyus
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| |
Collapse
|
2
|
Kaur R, Suresh PK. Chemoresistance Mechanisms in Non-Small Cell Lung Cancer-Opportunities for Drug Repurposing. Appl Biochem Biotechnol 2024; 196:4382-4438. [PMID: 37721630 DOI: 10.1007/s12010-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/19/2023]
Abstract
Globally, lung cancer contributes significantly to the public health burden-associated mortality. As this form of cancer is insidious in nature, there is an inevitable diagnostic delay leading to chronic tumor development. Non-small cell lung cancer (NSCLC) constitutes 80-85% of all lung cancer cases, making this neoplasia form a prevalent subset of lung carcinoma. One of the most vital aspects for proper diagnosis, prognosis, and adequate therapy is the precise classification of non-small cell lung cancer based on biomarker expression profiling. This form of biomarker profiling has provided opportunities for improvements in patient stratification, mechanistic insights, and probable druggable targets. However, numerous patients have exhibited numerous toxic side effects, tumor relapse, and development of therapy-based chemoresistance. As a result of these exacting situations, there is a dire need for efficient and effective new cancer therapeutics. De novo drug development approach is a costly and tedious endeavor, with an increased attrition rate, attributed, in part, to toxicity-related issues. Drug repurposing, on the other hand, when combined with computer-assisted systems biology approach, provides alternatives to the discovery of new, efficacious, and safe drugs. Therefore, in this review, we focus on a comparison of the conventional therapy-based chemoresistance mechanisms with the repurposed anti-cancer drugs from three different classes-anti-parasitic, anti-depressants, and anti-psychotics for cancer treatment with a primary focus on NSCLC therapeutics. Certainly, amalgamating these novel therapeutic approaches with that of the conventional drug regimen in NSCLC-affected patients will possibly complement/synergize the existing therapeutic modalities. This approach has tremendous translational significance, since it can combat drug resistance and cytotoxicity-based side effects and provides a relatively new strategy for possible application in therapy of individuals with NSCLC.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - P K Suresh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Benkő BM, Tóth G, Moldvai D, Kádár S, Szabó E, Szabó ZI, Kraszni M, Szente L, Fiser B, Sebestyén A, Zelkó R, Sebe I. Cyclodextrin encapsulation enabling the anticancer repositioning of disulfiram: Preparation, analytical and in vitro biological characterization of the inclusion complexes. Int J Pharm 2024; 657:124187. [PMID: 38697585 DOI: 10.1016/j.ijpharm.2024.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Drug repositioning is a high-priority and feasible strategy in the field of oncology research, where the unmet medical needs are continuously unbalanced. Disulfiram is a potential non-chemotherapeutic, adjuvant anticancer agent. However, the clinical translation is limited by the drug's poor bioavailability. Therefore, the molecular encapsulation of disulfiram with cyclodextrins is evaluated to enhance the solubility and stability of the drug. The present work describes for the first time the complexation of disulfiram with randomly methylated-β-cyclodextrin. A parallel analytical andin vitrobiological comparison of disulfiram inclusion complexes with hydroxypropyl-β-cyclodextrin, randomly methylated-β-cyclodextrin and sulfobutylether-β-cyclodextrin is conducted. A significant drug solubility enhancement by about 1000-folds and fast dissolution in 1 min is demonstrated. Thein vitrodissolution-permeation studies and proliferation assays demonstrate the solubility-dependent efficacy of the drug. Throughout the different cancer cell lines' characteristics and disulfiram unspecific antitumoral activity, the inhibitory efficacy of the cyclodextrin encapsulated drug on melanoma (IC50 about 100 nM) and on glioblastoma (IC50 about 7000 nM) cell lines differ by a magnitude. This pre-formulation screening experiment serves as a proof of concept of using cyclodextrin encapsulation as a platform tool for further drug delivery development in repositioning areas.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Dorottya Moldvai
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Szabina Kádár
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Zoltán-István Szabó
- Faculty of Pharmacy Department of Drugs Industry and Pharmaceutical Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Str. 38, Târgu Mureș 540142, Romania.
| | - Márta Kraszni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory Ltd., Illatos út 7, Budapest 1097, Hungary.
| | - Béla Fiser
- Institute of Chemistry, Faculty of Materials Science and Chemical Engineering, University of Miskolc, Egyetemváros, Miskolc 3515, Hungary; Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland; Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine.
| | - Anna Sebestyén
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Egis Pharmaceuticals Plc., R&D Directorate, P.O. Box 100, Budapest 1475, Hungary.
| |
Collapse
|
4
|
Tripathi S, Gupta E, Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep (Hoboken) 2024; 7:e2078. [PMID: 38711272 PMCID: PMC11074523 DOI: 10.1002/cnr2.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Statins, frequently prescribed medications, work by inhibiting the rate-limiting enzyme HMG-CoA reductase (HMGCR) in the mevalonate pathway to reduce cholesterol levels. Due to their multifaceted benefits, statins are being adapted for use as cost-efficient, safe and effective anti-cancer treatments. Several studies have shown that specific types of cancer are responsive to statin medications since they rely on the mevalonate pathway for their growth and survival. RECENT FINDINGS Statin are a class of drugs known for their potent inhibition of cholesterol production and are typically prescribed to treat high cholesterol levels. Nevertheless, there is growing interest in repurposing statins for the treatment of malignant neoplastic diseases, often in conjunction with chemotherapy and radiotherapy. The mechanism behind statin treatment includes targeting apoptosis through the BCL2 signaling pathway, regulating the cell cycle via the p53-YAP axis, and imparting epigenetic modulations by altering methylation patterns on CpG islands and histone acetylation by downregulating DNMTs and HDACs respectively. Notably, some studies have suggested a potential chemo-preventive effect, as decreased occurrence of tumor relapse and enhanced survival rate were reported in patients undergoing long-term statin therapy. However, the definitive endorsement of statin usage in cancer therapy hinges on population based clinical studies with larger patient cohorts and extended follow-up periods. CONCLUSIONS The potential of anti-cancer properties of statins seems to reach beyond their influence on cholesterol production. Further investigations are necessary to uncover their effects on cancer promoting signaling pathways. Given their distinct attributes, statins might emerge as promising contenders in the fight against tumorigenesis, as they appear to enhance the efficacy and address the limitations of conventional cancer treatments.
Collapse
Affiliation(s)
- Sneha Tripathi
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Ekta Gupta
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Sanjeev Galande
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
- Centre of Excellence in Epigenetics, Department of Life SciencesShiv Nadar Institution of EminenceGautam Buddha NagarIndia
| |
Collapse
|
5
|
Du R, Xiao N, Han L, Guo K, Li K, Chen Z, Zhang H, Zhou Z, Huang Y, Zhao X, Bian H. Dexrazoxane inhibits the growth of esophageal squamous cell carcinoma by attenuating SDCBP/MDA-9/syntenin-mediated EGFR-PI3K-Akt pathway activation. Sci Rep 2024; 14:9167. [PMID: 38649770 PMCID: PMC11035576 DOI: 10.1038/s41598-024-59665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Syndecan-binding protein (SDCBP) was reported to stimulate the advancement of esophageal squamous cell carcinoma (ESCC) and could potentially be a target for ESCC treatment. There is a growing corpus of research on the anti-tumor effects of iron chelators; however, very few studies have addressed the involvement of dexrazoxane in cancer. In this study, structure-based virtual screening was employed to select drugs targeting SDCBP from the Food and Drug Administration (FDA)-approved drug databases. The sepharose 4B beads pull-down assay revealed that dexrazoxane targeted SDCBP by interacting with its PDZ1 domain. Additionally, dexrazoxane inhibited ESCC cell proliferation and anchorage-independent colony formation via SDCBP. ESCC cell apoptosis and G2 phase arrest were induced as measured by the flow cytometry assay. Subsequent research revealed that dexrazoxane attenuated the binding ability between SDCBP and EGFR in an immunoprecipitation assay. Furthermore, dexrazoxane impaired EGFR membrane localization and inactivated the EGFR/PI3K/Akt pathway. In vivo, xenograft mouse experiments indicated that dexrazoxane suppressed ESCC tumor growth. These data indicate that dexrazoxane might be established as a potential anti-cancer agent in ESCC by targeting SDCBP.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China.
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
| | - Nan Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - KeLei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Hui Zhang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Zijun Zhou
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Yunlong Huang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Xulin Zhao
- Oncology Department, Nanyang First People's Hospital, Nan Yang, 473004, Henan, People's Republic of China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China.
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
| |
Collapse
|
6
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Zarei P, Ghasemi F. The Application of Artificial Intelligence and Drug Repositioning for the Identification of Fibroblast Growth Factor Receptor Inhibitors: A Review. Adv Biomed Res 2024; 13:9. [PMID: 38525398 PMCID: PMC10958741 DOI: 10.4103/abr.abr_170_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 03/26/2024] Open
Abstract
Artificial intelligence talks about modeling intelligent behavior through a computer with the least human involvement. Drug repositioning techniques based on artificial intelligence accelerate the research process and decrease the cost of experimental studies. Dysregulation of fibroblast growth factor (FGF) receptors as the tyrosine kinase family of receptors plays a vital role in a wide range of malignancies. Because of their functional significance, they were considered promising drug targets for the therapy of various cancers. This review has summarized small molecules capable of inhibiting FGF receptors that progressed using artificial intelligence and repositioning drugs examined in clinical trials associated with cancer therapy. This review is based on a literature search in PubMed, Web of Science, Scopus EMBASE, and Google Scholar databases to gather the necessary information in each chapter by employing keywords like artificial intelligence, computational drug design, drug repositioning, and FGF receptor inhibitors. To achieve this goal, a spacious literature review of human studies in these fields-published over the last 20 decades-was performed. According to published reports, nonselective FGF receptor inhibitors can be used for cancer management, and multitarget kinase inhibitors are the first drug class approved due to more advanced clinical studies. For example, AZD4547 and BGJ398 are gradually entering the consumption cycle and are good options as combined treatments. Artificial intelligence and drug repositioning methods can help preselect suitable drug targets more successfully for future inhibition of carcinogenicity.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Tamura R. Drug Repositioning for Refractory Benign Tumors of the Central Nervous System. Int J Mol Sci 2023; 24:12997. [PMID: 37629179 PMCID: PMC10455557 DOI: 10.3390/ijms241612997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Drug repositioning (DR) is the process of identifying novel therapeutic potentials for already-approved drugs and discovering new therapies for untreated diseases. DR can play an important role in optimizing the pre-clinical process of developing novel drugs by saving time and cost compared with the process of de novo drug discovery. Although the number of publications related to DR has rapidly increased, most therapeutic approaches were reported for malignant tumors. Surgical resection represents the definitive treatment for benign tumors of the central nervous system (BTCNS). However, treatment options remain limited for surgery-, chemotherapy- and radiation-refractory BTCNS, as well as malignant tumors. Meningioma, pituitary neuroendocrine tumor (PitNET), and schwannoma are the most common BTCNS. The treatment strategy using DR may be applied for refractory BTCNS, such as Grade 2 meningiomas, neurofibromatosis type 2-related schwannomatosis, and PitNETs with cavernous sinus invasion. In the setting of BTCNS, stable disease can provide significant benefit to the patient. DR may provide a longer duration of survival without disease progression for patients with refractory BTCNS. This article reviews the utility of DR for refractory BTCNS.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Martinelli A, Volpicelli R, Verzini M, Cotarca L, Maini L, Pengo P, Pasquato L. Stereoselective Solvolysis in the Synthesis of Dorzolamide Intermediates. ACS OMEGA 2023; 8:28851-28858. [PMID: 37576669 PMCID: PMC10413462 DOI: 10.1021/acsomega.3c03959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
The key intermediate in the synthesis of dorzolamide, (4S,6S)-methyl-5,6-dihydro-4H-thieno[2,3-b]thiopyran-4-ol-7,7-dioxide, can be obtained in the diastereoisomerically pure form in two straightforward steps starting from diastereoisomeric mixtures of cis/trans-(6S)-6-methyl-5,6-dihydro-4H-thieno[2,3-b]thiopyran-4-yl acetate, regardless of their ratio. The reaction of crucial importance in this scheme is a remarkably stereoselective solvolysis of the acetate ester in an acetone/phosphate buffer mixture as the solvent system. Investigation of this so far unrecognized stereoselective reaction reveals that it proceeds via an SN1-like pathway as indicated by the correlation of the solvolysis rate constants with the YOTs values of different solvent mixtures and by trapping of the reaction intermediate with sodium azide. The structure of (4S,6S)-methyl-5,6-dihydro-4H-thieno[2,3-b]thiopyran-4-ol-7,7-dioxide was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Andrea Martinelli
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Raffaella Volpicelli
- Research
and Development Laboratories, ZaCh System, via Dovaro, 36045 Almisano di Lonigo, Vicenza, Italy
| | - Massimo Verzini
- Research
and Development Laboratories, ZaCh System, via Dovaro, 36045 Almisano di Lonigo, Vicenza, Italy
| | - Livius Cotarca
- Research
and Development Laboratories, ZaCh System, via Dovaro, 36045 Almisano di Lonigo, Vicenza, Italy
| | - Lucia Maini
- Department
of Chemistry “G. Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Paolo Pengo
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Lucia Pasquato
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
11
|
Choi MS, Kim JH, Lee CY, Lee YM, Lee S, Chang HK, Kim HJ, Heo K. Gentian Violet Inhibits Cell Proliferation through Induction of Apoptosis in Ovarian Cancer Cells. Biomedicines 2023; 11:1657. [PMID: 37371752 DOI: 10.3390/biomedicines11061657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Gentian violet (GV) is known to have antibacterial and antifungal effects, but recent studies have demonstrated its inhibitory effects on the growth of several types of cancer cells. Here, we investigated the anticancer efficacy of GV in ovarian cancer cells. GV significantly reduced the proliferation of OVCAR8, SKOV3, and A2780 cells. Results of transferase dUTP nick and labeling (TUNEL) assay and Western blot assay indicated that the inhibitory effect of GV on ovarian cancer cells was due to the induction of apoptosis. Moreover, GV significantly increased reactive oxygen species (ROS) and upregulated the expression of p53, PUMA, BAX, and p21, critical components for apoptosis induction, in ovarian cancer cells. Our results suggest that GV is a novel antiproliferative agent and is worthy of exploration as a potential therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Min Sung Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyeon Kim
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Chae Yeon Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Yul Min Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Kyun Chang
- Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15855, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
12
|
Zanjirband M, Baharlooie M, Safaeinejad Z, Nasr-Esfahani MH. Transcriptomic screening to identify hub genes and drug signatures for PCOS based on RNA-Seq data in granulosa cells. Comput Biol Med 2023; 154:106601. [PMID: 36738709 DOI: 10.1016/j.compbiomed.2023.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most incident reproductive diseases, and remains the main cause of female infertility. Granulosa cells play a critical role in normal follicle development and steroid hormones synthesis. In spite of extensive research, no sole medication has been approved by FDA to treat PCOS. This study aimed to investigate the novel therapeutics targets in PCOS, focusing on granulosa cells transcriptome functional analysis with a drug repositioning approach. METHODS PCOS microarray and RNA-Seq datasets in granulosa cells were screened and reanalyzed. KEGG pathway enrichment and interaction network analyses were performed and followed by a set of drug signature screening and Poly-pharmacology survey. RESULTS 545 deregulated genes were identified via filters including padj < 0.05 and |log2FC| > 1. Amongst the top 15 KEGG pathways significantly enriched, metabolism of xenobiotics by cytochrome P450, steroid hormone biosynthesis and ovarian steroidogenesis were observed. The Protein-Protein Interaction network identified 18 hub genes amongst this set. Interestingly, most candidate drug signatures have been introduced by databases are either FDA approved or entered into clinical trials, including melatonin, resveratrol and raloxifene. Investigational or experimental introduced drugs obey rules of drug-likeness with almost safe and acceptable ADMET properties. Notably, 21 top target genes of the final drug set were also included in the granulosa significant differentially expressed genes. CONCLUSION Results of the current study represent approved, investigational and experimental drug signatures according to the differentially expressed genes in granulosa cells with supported literature reviews. This data might be useful for researchers and clinicians to pave the way for better management of PCOS.
Collapse
Affiliation(s)
- M Zanjirband
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - M Baharlooie
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Z Safaeinejad
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - M H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
13
|
It Takes Two to Tango, Part II: Synthesis of A-Ring Functionalised Quinones Containing Two Redox-Active Centres with Antitumour Activities. Molecules 2023; 28:molecules28052222. [PMID: 36903471 PMCID: PMC10005332 DOI: 10.3390/molecules28052222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
In 2021, our research group published the prominent anticancer activity achieved through the successful combination of two redox centres (ortho-quinone/para-quinone or quinone/selenium-containing triazole) through a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The combination of two naphthoquinoidal substrates towards a synergetic product was indicated, but not fully explored. Herein, we report the synthesis of 15 new quinone-based derivatives prepared from click chemistry reactions and their subsequent evaluation against nine cancer cell lines and the murine fibroblast line L929. Our strategy was based on the modification of the A-ring of para-naphthoquinones and subsequent conjugation with different ortho-quinoidal moieties. As anticipated, our study identified several compounds with IC50 values below 0.5 µM in tumour cell lines. Some of the compounds described here also exhibited an excellent selectivity index and low cytotoxicity on L929, the control cell line. The antitumour evaluation of the compounds separately and in their conjugated form proved that the activity is strongly enhanced in the derivatives containing two redox centres. Thus, our study confirms the efficiency of using A-ring functionalized para-quinones coupled with ortho-quinones to obtain a diverse range of two redox centre compounds with potential applications against cancer cell lines. Here as well, it literally takes two for an efficient tango!
Collapse
|
14
|
Andrade-Meza A, Arias-Romero LE, Armas-López L, Ávila-Moreno F, Chirino YI, Delgado-Buenrostro NL, García-Castillo V, Gutiérrez-Cirlos EB, Juárez-Avelar I, Leon-Cabrera S, Mendoza-Rodríguez MG, Olguín JE, Perez-Lopez A, Pérez-Plasencia C, Reyes JL, Sánchez-Pérez Y, Terrazas LI, Vaca-Paniagua F, Villamar-Cruz O, Rodríguez-Sosa M. Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies. Int J Mol Sci 2023; 24:ijms24032115. [PMID: 36768437 PMCID: PMC9917340 DOI: 10.3390/ijms24032115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.
Collapse
Affiliation(s)
- Antonio Andrade-Meza
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Luis E. Arias-Romero
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yolanda I. Chirino
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Norma L. Delgado-Buenrostro
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Verónica García-Castillo
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Emma B. Gutiérrez-Cirlos
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Sonia Leon-Cabrera
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Mónica G. Mendoza-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Jonadab E. Olguín
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Araceli Perez-Lopez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - José L. Reyes
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Luis I. Terrazas
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333
| |
Collapse
|
15
|
Meco D, Attinà G, Mastrangelo S, Navarra P, Ruggiero A. Emerging Perspectives on the Antiparasitic Mebendazole as a Repurposed Drug for the Treatment of Brain Cancers. Int J Mol Sci 2023; 24:ijms24021334. [PMID: 36674870 PMCID: PMC9862092 DOI: 10.3390/ijms24021334] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Repurposing approved non-antitumor drugs is a promising and affordable strategy in drug discovery to identify new therapeutic uses different from the original medical indication that may help increase the number of possible, effective anticancer drugs. The use of drugs in ways other than their original FDA-approved indications could offer novel avenues such as bypassing the chemoresistance and recurrence seen with conventional therapy and treatment; moreover, it can offer a safe and economic strategy for combination therapy. Recent works have demonstrated the anticancer properties of the FDA-approved drug Mebendazole. This synthetic benzimidazole proved effective against a broad spectrum of intestinal Helminthiasis. Mebendazole can penetrate the blood-brain barrier and has been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration, or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. Moreover, several preclinical models and ongoing clinical trials explore the efficacy of Mebendazole in multiple cancers, including acute myeloid leukemia, brain cancer, oropharyngeal squamous cell carcinoma, breast cancer, gastrointestinal cancer, lung carcinoma, adrenocortical carcinoma, prostate cancer, and head and neck cancer. The present review summarizes central literature regarding the anticancer effects of MBZ in cancer cell lines, animal tumor models, and clinical trials to suggest possible strategies for safe and economical combinations of anticancer therapies in brain cancer. Mebendazole might be an excellent candidate for the treatment of brain tumors because of its efficacy both when used as monotherapy and in combination as an enhancement to standard chemotherapeutics and radiotherapy, due to its effectiveness on tumor angiogenesis inhibition, cell cycle arrest, apoptosis induction, and targeting of critical pathways involved in cancer such as Hedgehog signaling. Therefore, attention to MBZ repurposing has recently increased because of its potential therapeutic versatility and significant clinical implications, such as reducing medical care costs and optimizing existing therapies. Using new treatments is essential, particularly when current therapeutics for patients with brain cancer fail.
Collapse
Affiliation(s)
- Daniela Meco
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3058203; Fax: +39-06-3052751
| |
Collapse
|
16
|
Wasim R, Ansari TM, Siddiqui MH, Ahsan F, Shamim A, Singh A, Shariq M, Anwar A, Siddiqui AR, Parveen S. Repurposing of Drugs for Cardiometabolic Disorders: An Out and Out Cumulation. Horm Metab Res 2023; 55:7-24. [PMID: 36599357 DOI: 10.1055/a-1971-6965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiometabolic disorders (CMD) is a constellation of metabolic predisposing factors for atherosclerosis such as insulin resistance (IR) or diabetes mellitus (DM), systemic hypertension, central obesity, and dyslipidemia. Cardiometabolic diseases (CMDs) continue to be the leading cause of mortality in both developed and developing nations, accounting for over 32% of all fatalities globally each year. Furthermore, dyslipidemia, angina, arrhythmia, heart failure, myocardial infarction (MI), and diabetes mellitus are the major causes of death, accounting for an estimated 19 million deaths in 2012. CVDs will kill more than 23 million individuals each year by 2030. Nonetheless, new drug development (NDD) in CMDs has been increasingly difficult in recent decades due to increased costs and a lower success rate. Drug repositioning in CMDs looks promising in this scenario for launching current medicines for new therapeutic indications. Repositioning is an ancient method that dates back to the 1960s and is mostly based on coincidental findings during medication trials. One significant advantage of repositioning is that the drug's safety profile is well known, lowering the odds of failure owing to undesirable toxic effects. Furthermore, repositioning takes less time and money than NDD. Given these facts, pharmaceutical corporations are becoming more interested in medication repositioning. In this follow-up, we discussed the notion of repositioning and provided some examples of repositioned medications in cardiometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Farogh Ahsan
- Pharmacology, Integral University, Lucknow, India
| | | | - Aditya Singh
- Pharmaceutics, Integral University, Lucknow, India
| | | | - Aamir Anwar
- Pharmacy, Integral University, Lucknow, India
| | | | - Saba Parveen
- Pharmacology, Integral University, Lucknow, India
| |
Collapse
|
17
|
Shete MB, Deshpande AS, Shende PK. Nanostructured lipid carrier-loaded metformin hydrochloride: Design, optimization, characterization, assessment of cytotoxicity and ROS evaluation. Chem Phys Lipids 2023; 250:105256. [PMID: 36372117 DOI: 10.1016/j.chemphyslip.2022.105256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Metformin hydrochloride (MET) is commonly used in diabetes treatment. Recently, it has gained interest for its anticancer potential against a wide range of cancers. Owing to its hydrophilic nature, the delivery and clinical actions of MET are limited. Therefore, the present work aims to develop MET-encapsulated NLCs using the hot-melt emulsification and probe-sonication method. The optimization was accomplished by 33 BB design wherein lipid ratio, surfactant concentration, and sonication time were independent variables while the PS (nm), PDI, and EE (%) were dependent variables. The PS, PDI, % EE and ZP of optimized GMSMET-NLCs were found to be 114.9 ± 1.32 nm, 0.268 ± 0.04 %, 60.10 ± 2.23 %, and ZP - 15.76 mV, respectively. The morphological features, DSC and PXRD, and FTIR analyses suggested the confirmation of formation of the NLCs. Besides, optimized GMSMET-NLCs showed up to 88 % MET release in 24 h. Moreover, GMSMET-NLCs showed significant cell cytotoxicity against KB oral cancer cells compared with MET solution as shown by the reduction of IC50 values. Additionally, GMSMET-NLCs displayed significantly increased intracellular ROS levels suggesting the GMSMET-NLCs induced cell death in KB cells. GMSMET-NLCs can therefore be explored to deliver MET through different routes of administration for the effective treatment of oral cancer.
Collapse
Affiliation(s)
- Meghanath B Shete
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India; Department of Pharmaceutical Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist., Dhule 425405, Maharashtra, India
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Pravin K Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile-Parle (W), Mumbai, Maharashtra, India.
| |
Collapse
|
18
|
Hassan AHE, Kim HJ, Gee MS, Park JH, Jeon HR, Lee CJ, Choi Y, Moon S, Lee D, Lee JK, Park KD, Lee YS. Positional scanning of natural product hispidol's ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases. J Enzyme Inhib Med Chem 2022; 37:768-780. [PMID: 35196956 PMCID: PMC8881063 DOI: 10.1080/14756366.2022.2036737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022] Open
Abstract
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Rim Jeon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Cheol Jung Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yeonwoo Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Suyeon Moon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Shi J, Xu J, Li Y, Li B, Ming H, Nice EC, Huang C, Li Q, Wang C. Drug repurposing in cancer neuroscience: From the viewpoint of the autophagy-mediated innervated niche. Front Pharmacol 2022; 13:990665. [PMID: 36105204 PMCID: PMC9464986 DOI: 10.3389/fphar.2022.990665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the bidirectional interactions between neurology and cancer science, the burgeoning field “cancer neuroscience” has been proposed. An important node in the communications between nerves and cancer is the innervated niche, which has physical contact with the cancer parenchyma or nerve located in the proximity of the tumor. In the innervated niche, autophagy has recently been reported to be a double-edged sword that plays a significant role in maintaining homeostasis. Therefore, regulating the innervated niche by targeting the autophagy pathway may represent a novel therapeutic strategy for cancer treatment. Drug repurposing has received considerable attention for its advantages in cost-effectiveness and safety. The utilization of existing drugs that potentially regulate the innervated niche via the autophagy pathway is therefore a promising pharmacological approach for clinical practice and treatment selection in cancer neuroscience. Herein, we present the cancer neuroscience landscape with an emphasis on the crosstalk between the innervated niche and autophagy, while also summarizing the underlying mechanisms of candidate drugs in modulating the autophagy pathway. This review provides a strong rationale for drug repurposing in cancer treatment from the viewpoint of the autophagy-mediated innervated niche.
Collapse
Affiliation(s)
- Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jia Xu
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qifu Li
- Department of Neurology and Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| |
Collapse
|
20
|
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC Health Serv Res 2022; 22:970. [PMID: 35906687 PMCID: PMC9336118 DOI: 10.1186/s12913-022-08272-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repurposing is a drug development strategy receiving heightened attention after the Food and Drug Administration granted emergency use authorization of several repurposed drugs to treat Covid-19. There remain knowledge gaps on the root causes, facilitators and barriers for repurposing. METHOD This systematic review used controlled vocabulary and free text terms to search ABI/Informa, Academic Search Premier, Business Source Complete, Cochrane Library, EconLit, Google Scholar, Ovid Embase, Ovid Medline, Pubmed, Scopus, and Web of Science Core Collection databases for the characteristics, reasons and example of companies deprioritizing development of promising drugs and barriers, facilitators and examples of successful re-purposing. RESULTS We identified 11,814 articles, screened 5,976 for relevance, found 437 eligible for full text review, 115 of which were included in full analysis. Most articles (66%, 76/115) discussed why promising drugs are abandoned, with lack of efficacy or superiority to other therapies (n = 59), strategic business reasons (n = 35), safety problems (n = 28), research design decisions (n = 12), the complex nature of a studied disease or drug (n = 7) and regulatory bodies requiring more information (n = 2) among top reasons. Key barriers to repurposing include inadequate resources (n = 42), trial data access and transparency around abandoned compounds (n = 20) and expertise (n = 11). Additional barriers include uncertainty about the value of repurposing (n = 13), liability risks (n = 5) and intellectual property (IP) challenges (n = 26). Facilitators include the ability to form multi-partner collaborations (n = 38), access to compound databases and database screening tools (n = 32), regulatory modifications (n = 5) and tax incentives (n = 2). CONCLUSION Promising drugs are commonly shelved due to insufficient efficacy or superiority to alternate therapies, poor market prospects, and industry consolidation. Inadequate resources and data access and challenges negotiating IP are key barriers to repurposing reaching its full potential as a core approach in drug development. Multi-partner collaborations and the availability and use of compound databases and tax incentives are key facilitators for repurposing. More research is needed on the current value of repurposing in drug development and how to better facilitate resources to support it, where valuable, especially financial, staffing for out-licensing shelved products, and legal expertise to negotiate IP agreements in multi-partner collaborations. TRIAL REGISTRATION The protocol was registered on Open Science Framework ( https://osf.io/f634k/ ) as it was not eligible for registration on PROSPERO as the review did not focus on a health-related outcome.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA
| | - Alyssa A Grimshaw
- Cushing/Whitney Medical Library, Yale University, 333 Cedar Street, Box 208014, New Haven, CT, 06520, USA
| | - Sydney A Axson
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA
| | - Sung Hee Choe
- Milken Institute Center for Faster Cures, 730 15th Street NW, Washington, DC, 20005, USA
| | - Jennifer E Miller
- Internal Medicine Department, Yale University School of Medicine, 367 Cedar Street, 4th Floor, New Haven, CT, 06520, USA.
| |
Collapse
|
21
|
Tilija Pun N, Lee N, Song SH, Jeong CH. Pitavastatin Induces Cancer Cell Apoptosis by Blocking Autophagy Flux. Front Pharmacol 2022; 13:854506. [PMID: 35387352 PMCID: PMC8977529 DOI: 10.3389/fphar.2022.854506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Statins, a class of lipid-lowering drugs, are used in drug repositioning for treatment of human cancer. However, the molecular mechanisms underlying statin-induced cancer cell death and autophagy are not clearly defined. In the present study, we showed that pitavastatin could increase apoptosis in a FOXO3a-dependent manner in the oral cancer cell line, SCC15, and the colon cancer cell line, SW480, along with the blockade of autophagy flux. The inhibition of autophagy by silencing the LC3B gene reduced apoptosis, while blockade of autophagy flux using its inhibitor, Bafilomycin A1, further induced apoptosis upon pitavastatin treatment, which suggested that autophagy flux blockage was the cause of apoptosis by pitavastatin. Further, the FOXO3a protein accumulated due to the blockade of autophagy flux which in turn was associated with the induction of ER stress by transcriptional upregulation of PERK-CHOP pathway, subsequently causing apoptosis due to pitavastatin treatment. Taken together, pitavastatin-mediated blockade of autophagy flux caused an accumulation of FOXO3a protein, thereby leading to the induction of PERK, ultimately causing CHOP-mediated apoptosis in cancer cells. Thus, the present study highlighted the additional molecular mechanism underlying the role of autophagy flux blockade in inducing ER stress, eventually leading to apoptosis by pitavastatin.
Collapse
Affiliation(s)
- Nirmala Tilija Pun
- College of Pharmacy, Keimyung University, Daegu, South Korea.,Boston Children's Hospital, Boston, MA, United States
| | - Naeun Lee
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
22
|
Aydin B, Yildirim E, Erdogan O, Arga KY, Yilmaz BK, Bozkurt SU, Bayrakli F, Turanli B. Past, Present, and Future of Therapies for Pituitary Neuroendocrine Tumors: Need for Omics and Drug Repositioning Guidance. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:115-129. [PMID: 35172108 DOI: 10.1089/omi.2021.0221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innovation roadmaps are important, because they encourage the actors in an innovation ecosystem to creatively imagine multiple possible science future(s), while anticipating the prospects and challenges on the innovation trajectory. In this overarching context, this expert review highlights the present unmet need for therapeutic innovations for pituitary neuroendocrine tumors (PitNETs), also known as pituitary adenomas. Although there are many drugs used in practice to treat PitNETs, many of these drugs can have negative side effects and show highly variable outcomes in terms of overall recovery. Building innovation roadmaps for PitNETs' treatments can allow incorporation of systems biology approaches to bring about insights at multiple levels of cell biology, from genes to proteins to metabolites. Using the systems biology techniques, it will then be possible to offer potential therapeutic strategies for the convergence of preventive approaches and patient-centered disease treatment. Here, we first provide a comprehensive overview of the molecular subtypes of PitNETs and therapeutics for these tumors from the past to the present. We then discuss examples of clinical trials and drug repositioning studies and how multi-omics studies can help in discovery and rational development of new therapeutics for PitNETs. Finally, this expert review offers new public health and personalized medicine approaches on cases that are refractory to conventional treatment or recur despite currently used surgical and/or drug therapy.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Esra Yildirim
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Onur Erdogan
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
- Department of Biochemistry and School of Medicine, Marmara University, Istanbul, Turkey
| | - Suheyla Uyar Bozkurt
- Department of Medical Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Fatih Bayrakli
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
23
|
Karlsson H, Fryknäs M, Senkowski W, Larsson R, Nygren P. Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells. Oncol Lett 2022; 23:123. [PMID: 35261637 PMCID: PMC8867181 DOI: 10.3892/ol.2022.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/31/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Henning Karlsson
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| |
Collapse
|
24
|
Barbieri F, Bosio AG, Pattarozzi A, Tonelli M, Bajetto A, Verduci I, Cianci F, Cannavale G, Palloni LMG, Francesconi V, Thellung S, Fiaschi P, Mazzetti S, Schenone S, Balboni B, Girotto S, Malatesta P, Daga A, Zona G, Mazzanti M, Florio T. Chloride intracellular channel 1 activity is not required for glioblastoma development but its inhibition dictates glioma stem cell responsivity to novel biguanide derivatives. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:53. [PMID: 35135603 PMCID: PMC8822754 DOI: 10.1186/s13046-021-02213-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings.
Methods
We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos).
Results
We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity.
Conclusions
These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.
Collapse
|
25
|
Dissecting the Mechanism of Action of Spiperone-A Candidate for Drug Repurposing for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030776. [PMID: 35159043 PMCID: PMC8834219 DOI: 10.3390/cancers14030776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite advances in primary and adjuvant treatments, approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease. Thus, alternative and more effective therapeutic approaches are expected to be developed. Drug repurposing is increasing interest in cancer therapy, as it represents a cheaper and faster alternative strategy to de novo drug synthesis. Psychiatric medications are promising as a new generation of antitumor drugs. Here, we demonstrate that spiperone—a licensed drug for the treatment of schizophrenia—induces apoptosis in CRC cells. Our data reveal that spiperone’s cytotoxicity in CRC cells is mediated by phospholipase C activation, intracellular calcium homeostasis dysregulation, and irreversible endoplasmic reticulum stress induction, resulting in lipid metabolism alteration and Golgi apparatus damage. By identifying new targetable pathways in CRC cells, our findings represent a promising starting point for the design of novel therapeutic strategies for CRC. Abstract Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.
Collapse
|
26
|
Hajjaji N, Aboulouard S, Cardon T, Bertin D, Robin YM, Fournier I, Salzet M. Path to Clonal Theranostics in Luminal Breast Cancers. Front Oncol 2022; 11:802177. [PMID: 35096604 PMCID: PMC8793283 DOI: 10.3389/fonc.2021.802177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Integrating tumor heterogeneity in the drug discovery process is a key challenge to tackle breast cancer resistance. Identifying protein targets for functionally distinct tumor clones is particularly important to tailor therapy to the heterogeneous tumor subpopulations and achieve clonal theranostics. For this purpose, we performed an unsupervised, label-free, spatially resolved shotgun proteomics guided by MALDI mass spectrometry imaging (MSI) on 124 selected tumor clonal areas from early luminal breast cancers, tumor stroma, and breast cancer metastases. 2868 proteins were identified. The main protein classes found in the clonal proteome dataset were enzymes, cytoskeletal proteins, membrane-traffic, translational or scaffold proteins, or transporters. As a comparison, gene-specific transcriptional regulators, chromatin related proteins or transmembrane signal receptor were more abundant in the TCGA dataset. Moreover, 26 mutated proteins have been identified. Similarly, expanding the search to alternative proteins databases retrieved 126 alternative proteins in the clonal proteome dataset. Most of these alternative proteins were coded mainly from non-coding RNA. To fully understand the molecular information brought by our approach and its relevance to drug target discovery, the clonal proteomic dataset was further compared to the TCGA breast cancer database and two transcriptomic panels, BC360 (nanoString®) and CDx (Foundation One®). We retrieved 139 pathways in the clonal proteome dataset. Only 55% of these pathways were also present in the TCGA dataset, 68% in BC360 and 50% in CDx. Seven of these pathways have been suggested as candidate for drug targeting, 22 have been associated with breast cancer in experimental or clinical reports, the remaining 19 pathways have been understudied in breast cancer. Among the anticancer drugs, 35 drugs matched uniquely with the clonal proteome dataset, with only 7 of them already approved in breast cancer. The number of target and drug interactions with non-anticancer drugs (such as agents targeting the cardiovascular system, metabolism, the musculoskeletal or the nervous systems) was higher in the clonal proteome dataset (540 interactions) compared to TCGA (83 interactions), BC360 (419 interactions), or CDx (172 interactions). Many of the protein targets identified and drugs screened were clinically relevant to breast cancer and are in clinical trials. Thus, we described the non-redundant knowledge brought by this clone-tailored approach compared to TCGA or transcriptomic panels, the targetable proteins identified in the clonal proteome dataset, and the potential of this approach for drug discovery and repurposing through drug interactions with antineoplastic agents and non-anticancer drugs.
Collapse
Affiliation(s)
- Nawale Hajjaji
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Delphine Bertin
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Yves-Marie Robin
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut universitaire de France, Paris, France
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut universitaire de France, Paris, France
| |
Collapse
|
27
|
Kabil MF, Nasr M, Ibrahim IT, Hassan YA, El-Sherbiny IM. New repurposed rolapitant in nanovesicular systems for lung cancer treatment: Development, in-vitro assessment and in-vivo biodistribution study. Eur J Pharm Sci 2022; 171:106119. [PMID: 34998905 DOI: 10.1016/j.ejps.2022.106119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022]
Abstract
Lung cancer is characterized by poor prognosis, and is considered a serious disease that causes a significant mortality. The available conventional chemotherapeutic agents suffer from several limitations; hence, new drug molecules are constantly being sought. In the current study, lipid nanovesicles (LNVs) were selected as a colloidal vehicle for encapsulation of the FDA-approved drug; rolapitant (RP), which is used particularly for the treatment of nausea and vomiting, but is repurposed for the treatment of lung cancer in the current work. RP was loaded into various LNVs (liposomes, ethosomes and transethosomes) using the thin film hydration method, and the LNVs were evaluated for particle size, zeta potential, entrapment efficiency (EE%), storage stability and surface morphology. Besides, the in-vitro drug release, in-vitro cytotoxicity on A549 lung cancer cells, nebulization performance using next generation impactor (NGI), and the in-vivo biodistribution behaviour were evaluated. The selected ethosomal and transethosomal vesicles displayed a particle size less than 400 nm, a positive charge, and EE% exceeding 90% for RP, with a sustained release pattern over 15 days. The in-vivo biodistribution results proved the high lung deposition potential of RP-LNVs with a considerable safety. Besides, the developed RP-LNVs were able to reach the metastatic organs of lung cancer, hence they were proven promising as a possible treatment modality for lung cancer.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled compound department, Hot lab. Center, Atomic energy authority, Inshas, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, 12578, Giza, Egypt.
| |
Collapse
|
28
|
Schuler J, Falls Z, Mangione W, Hudson ML, Bruggemann L, Samudrala R. Evaluating the performance of drug-repurposing technologies. Drug Discov Today 2022; 27:49-64. [PMID: 34400352 PMCID: PMC10014214 DOI: 10.1016/j.drudis.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/20/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
Drug-repurposing technologies are growing in number and maturing. However, comparisons to each other and to reality are hindered because of a lack of consensus with respect to performance evaluation. Such comparability is necessary to determine scientific merit and to ensure that only meaningful predictions from repurposing technologies carry through to further validation and eventual patient use. Here, we review and compare performance evaluation measures for these technologies using version 2 of our shotgun repurposing Computational Analysis of Novel Drug Opportunities (CANDO) platform to illustrate their benefits, drawbacks, and limitations. Understanding and using different performance evaluation metrics ensures robust cross-platform comparability, enabling us to continue to strive toward optimal repurposing by decreasing the time and cost of drug discovery and development.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
29
|
Li Y, Chen S, Zhu J, Zheng C, Wu M, Xue L, He G, Fu S, Deng X. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochem Biophys Res Commun 2021; 589:85-91. [PMID: 34896780 DOI: 10.1016/j.bbrc.2021.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
Chemotherapy is the mainstay of treatment for prostate cancer, with paclitaxel being commonly used for hormone-resistant prostate cancer. However, drug resistance often develops and leads to treatment failure in a variety of prostate cancer patients. Therefore, it is necessary to enhance the sensitivity of prostate cancer to chemotherapy. Lovastatin (LV) is a natural compound extracted from Monascus-fermented foods and is an inhibitor of HMG-CoA reductase (HMGCR), which has been approved by the FDA for hyperlipidemia treatment. We have previously found that LV could inhibit the proliferation of refractory cancer cells. Up to now, the effect of LV on chemosensitization and the mechanisms involved have not been evaluated in drug-resistant prostate cancer. In this study, we used prostate cancer cell line PC3 and its paclitaxel-resistant counterpart PC3-TxR as the cell model. Alamar Blue cell viability assay showed that LV and paclitaxel each conferred concentration-dependent inhibition of PC3-TxR cells. When paclitaxel was combined with LV, the proliferation of PC3-TxR cells was synergistically inhibited, as demonstrated by combination index <1. Moreover, colony formation decreased while apoptosis increased in paclitaxel plus LV group compared with paclitaxel alone group. Quantitative RT-PCR showed that the combination of paclitaxel and LV could significantly reduce the expression of CYP2C8, an important drug-metabolizing enzyme. Bioinformatics analysis from the TCGA database showed that CYP2C8 expression was negatively correlated with progression-free survival (PFS) in prostate cancer patients. Our results suggest that LV might increase the sensitivity of resistant prostate cancer cells to paclitaxel through inhibition of CYP2C8 and could be utilized as a chemosensitizer for paclitaxel-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Jianyu Zhu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Jishou University School of Medicine, Jishou, 416000, China
| | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Muyao Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Lian Xue
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China.
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China; Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, 410013, China.
| |
Collapse
|
30
|
Biswal J, Jayaprakash P, Rayala SK, Venkatraman G, Rangaswamy R, Jeyaraman J. WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches. ACS OMEGA 2021; 6:26829-26845. [PMID: 34693105 PMCID: PMC8529594 DOI: 10.1021/acsomega.1c02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 06/13/2023]
Abstract
p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 molecules out of ∼2162 drug molecules, based on their docking energies and molecular interaction patterns. From the molecules that were considered for WaterMap analysis, seven molecules, namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water molecules, only Acalabrutinib, Flubendazole, and Trazodone molecules highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and molecular dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug molecules Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug molecule Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The molecular orbital and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug molecules in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro analysis.
Collapse
Affiliation(s)
- Jayashree Biswal
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Prajisha Jayaprakash
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department
of Biotechnology, Indian Institute of Technology
Madras, Room No. BT 306, Chennai 600 036, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department
of Human Genetics, College of Biomedical Sciences, Sri Ramachandra University, Porur, Chennai 600 116, Tamil Nadu, India
| | - Raghu Rangaswamy
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| |
Collapse
|
31
|
Beklen H, Arslan S, Gulfidan G, Turanli B, Ozbek P, Karademir Yilmaz B, Arga KY. Differential Interactome Based Drug Repositioning Unraveled Abacavir, Exemestane, Nortriptyline Hydrochloride, and Tolcapone as Potential Therapeutics for Colorectal Cancers. FRONTIERS IN BIOINFORMATICS 2021; 1:710591. [PMID: 36303724 PMCID: PMC9581026 DOI: 10.3389/fbinf.2021.710591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
There is a critical requirement for alternative strategies to provide the better treatment in colorectal cancer (CRC). Hence, our goal was to propose novel biomarkers as well as drug candidates for its treatment through differential interactome based drug repositioning. Differentially interacting proteins and their modules were identified, and their prognostic power were estimated through survival analyses. Drug repositioning was carried out for significant target proteins, and candidate drugs were analyzed via in silico molecular docking prior to in vitro cell viability assays in CRC cell lines. Six modules (mAPEX1, mCCT7, mHSD17B10, mMYC, mPSMB5, mRAN) were highlighted considering their prognostic performance. Drug repositioning resulted in eight drugs (abacavir, ribociclib, exemestane, voriconazole, nortriptyline hydrochloride, theophylline, bromocriptine mesylate, and tolcapone). Moreover, significant in vitro inhibition profiles were obtained in abacavir, nortriptyline hydrochloride, exemestane, tolcapone, and theophylline (positive control). Our findings may provide new and complementary strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Sema Arslan
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- *Correspondence: Kazim Yalcin Arga,
| |
Collapse
|
32
|
Chauhan PS, Kumarasamy M, Carcaboso AM, Sosnik A, Danino D. Multifunctional silica-coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient-derived glioblastoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112261. [PMID: 34474820 DOI: 10.1016/j.msec.2021.112261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM) remains a major cause of mortality because treatments are precluded by to the limited transport and penetration of chemotherapeutics across the blood-brain barrier. Pitavastatin (PTV) is a hydrophobic Food and Drug Administration (FDA)-approved anticholesterolemic agent with reported anti-GBM activity. In the present study, we encapsulate PTV in silica-coated polymeric micelles (SiO2 PMs) surface-modified with the cyclic peptide Arg-Gly-Asp-Phe-Val (cRGDfV) that actively targets the αvβ3 integrin overexpressed in the BBB endothelium and GBM. A central composite design is utilized to optimize the preparation process and improve the drug encapsulation ratio from 131 to 780 μg/mL. The silica shell provides full colloidal stability upon extreme dilution and enables a better control of the release kinetics in vitro with 28% of the cargo released after 12 h. Furthermore, SiO2 PMs show excellent compatibility and are internalized by human BBB endothelial cells, astrocytes and pericytes, as shown by confocal laser scanning fluorescence microscopy and flow cytometry. Finally, the anticancer efficacy is assessed in a pediatric patient-derived glioma cell line expressing high levels of the integrin subunits αv, β3 and β5. This PTV-loaded nanocarrier triggers apoptosis by reducing the mRNA level of anti-apoptotic genes NF-kβ, IL-6, BIRC1 and BIRC5 by 89%, 33%, 81% and 63%, respectively, and the cell viability by >60%. Overall, our results suggest the potential of these hybrid nanocarriers for the targeted therapy of GBM and other tumors overexpressing integrin receptors.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Department of Pediatric Oncology, Hospital Sant Joan de Deu, 08950 Barcelona, Spain.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
33
|
Nishimura K, Takata K. Combination of Drugs and Cell Transplantation: More Beneficial Stem Cell-Based Regenerative Therapies Targeting Neurological Disorders. Int J Mol Sci 2021; 22:ijms22169047. [PMID: 34445753 PMCID: PMC8396512 DOI: 10.3390/ijms22169047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Cell transplantation therapy using pluripotent/multipotent stem cells has gained attention as a novel therapeutic strategy for treating neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, ischemic stroke, and spinal cord injury. To fully realize the potential of cell transplantation therapy, new therapeutic options that increase cell engraftments must be developed, either through modifications to the grafted cells themselves or through changes in the microenvironment surrounding the grafted region. Together these developments could potentially restore lost neuronal function by better supporting grafted cells. In addition, drug administration can improve the outcome of cell transplantation therapy through better accessibility and delivery to the target region following cell transplantation. Here we introduce examples of drug repurposing approaches for more successful transplantation therapies based on preclinical experiments with clinically approved drugs. Drug repurposing is an advantageous drug development strategy because drugs that have already been clinically approved can be repurposed to treat other diseases faster and at lower cost. Therefore, drug repurposing is a reasonable approach to enhance the outcomes of cell transplantation therapies for neurological diseases. Ideal repurposing candidates would result in more efficient cell transplantation therapies and provide a new and beneficial therapeutic combination.
Collapse
|
34
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
35
|
Badkas A, De Landtsheer S, Sauter T. Topological network measures for drug repositioning. Brief Bioinform 2021; 22:bbaa357. [PMID: 33348366 PMCID: PMC8294518 DOI: 10.1093/bib/bbaa357] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Drug repositioning has received increased attention since the past decade as several blockbuster drugs have come out of repositioning. Computational approaches are significantly contributing to these efforts, of which, network-based methods play a key role. Various structural (topological) network measures have thereby contributed to uncovering unintuitive functional relationships and repositioning candidates in drug-disease and other networks. This review gives a broad overview of the topic, and offers perspectives on the application of topological measures for network analysis. It also discusses unexplored measures, and draws attention to a wider scope of application efforts, especially in drug repositioning.
Collapse
|
36
|
Islam S, Wang S, Bowden N, Martin J, Head R. Repurposing existing therapeutics, its importance in oncology drug development: Kinases as a potential target. Br J Clin Pharmacol 2021; 88:64-74. [PMID: 34192364 PMCID: PMC9292808 DOI: 10.1111/bcp.14964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Repurposing the large arsenal of existing non‐cancer drugs is an attractive proposition to expand the clinical pipelines for cancer therapeutics. The earlier successes in repurposing resulted primarily from serendipitous findings, but more recently, drug or target‐centric systematic identification of repurposing opportunities continues to rise. Kinases are one of the most sought‐after anti‐cancer drug targets over the last three decades. There are many non‐cancer approved drugs that can inhibit kinases as “off‐targets” as well as many existing kinase inhibitors that can target new additional kinases in cancer. Identifying cancer‐associated kinase inhibitors through mining commercial drug databases or new kinase targets for existing inhibitors through comprehensive kinome profiling can offer more effective trial‐ready options to rapidly advance drugs for clinical validation. In this review, we argue that drug repurposing is an important approach in modern drug development for cancer therapeutics. We have summarized the advantages of repurposing, the rationale behind this approach together with key barriers and opportunities in cancer drug development. We have also included examples of non‐cancer drugs that inhibit kinases or are associated with kinase signalling as a basis for their anti‐cancer action.
Collapse
Affiliation(s)
- Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| | - Nikola Bowden
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Jennifer Martin
- Centre for Human Drug Repurposing and Medicines Research, University of Newcastle, NSW, 2305, Australia
| | - Richard Head
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 500, Australia
| |
Collapse
|
37
|
Efficacy of a Three Drug-Based Therapy for Neuroblastoma in Mice. Int J Mol Sci 2021; 22:ijms22136753. [PMID: 34201814 PMCID: PMC8268736 DOI: 10.3390/ijms22136753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
High-risk neuroblastoma (HR-NB) still remains the most dangerous tumor in early childhood. For this reason, the identification of new therapeutic approaches is of fundamental importance. Recently, we combined the conventional pharmacological approach to NB, represented by cisplatin, with fendiline hydrochloride, an inhibitor of several transporters involved in multidrug resistance of cancer cells, which demonstrated an enhancement of the ability of cisplatin to induce apoptosis. In this work, we co-administrated acetazolamide, a carbonic anhydrase isoform IX (CAIX) inhibitor which was reported to increase chemotherapy efficacy in various cancer types, to the cisplatin/fendiline approach in SKNBE2 xenografts in NOD-SCID mice with the aim of identifying a novel and more effective treatment. We observed that the combination of the three drugs increases more than twelvefold the differences in the cytotoxic activity of cisplatin alone, leading to a remarkable decrease of the expression of malignancy markers. Our conclusion is that this approach, based on three FDA-approved drugs, may constitute an appropriate improvement of the pharmacological approach to HR-NB.
Collapse
|
38
|
Chaaban I, Hafez H, AlZaim I, Tannous C, Ragab H, Hazzaa A, Ketat S, Ghoneim A, Katary M, Abd-Alhaseeb MM, Zouein FA, Albohy A, Amer AN, El-Yazbi AF, Belal ASF. Transforming iodoquinol into broad spectrum anti-tumor leads: Repurposing to modulate redox homeostasis. Bioorg Chem 2021; 113:105035. [PMID: 34091287 DOI: 10.1016/j.bioorg.2021.105035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
We managed to repurpose the old drug iodoquinol to a series of novel anticancer 7-iodo-quinoline-5,8-diones. Twelve compounds were identified as inhibitors of moderate to high potency on an inhouse MCF-7 cell line, of which 2 compounds (5 and 6) were capable of reducing NAD level in MCF-7 cells in concentrations equivalent to half of their IC50s, potentially due to NAD(P)H quinone oxidoreductase (NQO1) inhibition. The same 2 compounds (5 and 6) were capable of reducing p53 expression and increasing reactive oxygen species levels, which further supports the NQO-1 inhibitory activity. Furthermore, 4 compounds (compounds 5-7 and 10) were qualified by the Development Therapeutic Program (DTP) division of the National Cancer Institute (NCI) for full panel five-dose in vitro assay to determine their GI50 on the 60 cell lines. All five compounds showed broad spectrum sub-micromolar to single digit micromolar GI50 against a wide range of cell lines. Cell cycle analysis and dual staining assays with annexin V-FITC/propidium iodide on MCF-7 cells confirmed the capability of the most active compound (compound 5) to induce cell cycle arrest at Pre-G1 and G2/M phases as well as apoptosis. Both cell cycle arrest and apoptosis were affirmed at the molecular level by the ability of compound 5 to enhance the expression levels of caspase-3 and Bax together with suppressing that of CDK1 and Bcl-2. Additionally, an anti-angiogenic effect was evident with compound 5 as supported by the decreased expression of VEGF. Interesting binding modes within NQO-1 active site had been identified and confirmed by both molecular docking and dymanic experiments.
Collapse
Affiliation(s)
- Ibrahim Chaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Haidy Hafez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Hanan Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Aly Hazzaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Salma Ketat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Asser Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Mohamed Katary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22516, Egypt
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Ahmed Noby Amer
- Microbiology Department, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
39
|
Zhang Q, Yi H, Yao H, Lu L, He G, Wu M, Zheng C, Li Y, Chen S, Li L, Yu H, Li G, Tao X, Fu S, Deng X. Artemisinin Derivatives Inhibit Non-small Cell Lung Cancer Cells Through Induction of ROS-dependent Apoptosis/Ferroptosis. J Cancer 2021; 12:4075-4085. [PMID: 34093811 PMCID: PMC8176242 DOI: 10.7150/jca.57054] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the major cancer-related causes of morbidity and mortality worldwide. Despite the progress in lung cancer treatment, there is still an urgent need to discover novel therapeutic agents for NSCLC. Natural products represent a rich source of bioactive compounds. Through a natural compound library screening assay, we found that a group of anti-insect drugs had significant inhibitory effect on the proliferation of NSCLC cells. Among the anti-insect drugs, two derivatives of artemisinin, i.e., artesunate (ART) and dihydroartemisinin (DHA), a group of well-known anti-malarial drugs, have been shown to possess selective anti-cancer properties. Mechanistically, we found that ART and DHA induced apoptosis of A549 cells as evidenced by decreased protein level of VDAC and increased caspase 3 cleavage. Furthermore, cystine/glutamate transporter (xCT), a core negative regulator of ferroptosis, was downregulated by ART and DHA. The mRNA level of transferrin receptor (TFRC), a positive regulator of ferroptosis, was upregulated by ART and DHA. ART/DHA-induced apoptosis and ferroptosis in NSCLC cells were partly reversed by N-Acetyl-L-cysteine (NAC), a ROS scavenger, and ferrostatin-1, a ferroptosis inhibitor, respectively. These results suggest that artemisinin derivatives have anti-NSCLC activity through induction of ROS-dependent apoptosis/ferroptosis. Our findings provide the experimental basis for the potential application of artemisinin derivatives as a class of novel therapeutic drugs for NSCLC.
Collapse
Affiliation(s)
- Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Huimei Yi
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Hui Yao
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Lewei Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Hongyuan Yu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Guifei Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.,Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
40
|
Repositioning Azelnidipine as a Dual Inhibitor Targeting CD47/SIRPα and TIGIT/PVR Pathways for Cancer Immuno-Therapy. Biomolecules 2021; 11:biom11050706. [PMID: 34068552 PMCID: PMC8150775 DOI: 10.3390/biom11050706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Strategies boosting both innate and adaptive immunity have great application prospects in cancer immunotherapy. Antibodies dual blocking the innate checkpoint CD47 and adaptive checkpoint PD-L1 or TIGIT could achieve durable anti-tumor effects. However, a small molecule dual blockade of CD47/SIRPα and TIGIT/PVR pathways has not been investigated. Here, an elevated expression of CD47 and PVR was observed in tumor tissues and cell lines analyzed with the GEO datasets and by flow cytometry, respectively. Compounds approved by the FDA were screened with the software MOE by docking to the potential binding pockets of SIRPα and PVR identified with the corresponding structural analysis. The candidate compounds were screened by blocking and MST binding assays. Azelnidipine was found to dual block CD47/SIRPα and TIGIT/PVR pathways by co-targeting SIRPα and PVR. In vitro, azelnidipine could enhance the macrophage phagocytosis when co-cultured with tumor cells. In vivo, azelnidipine alone or combined with irradiation could significantly inhibit the growth of MC38 tumors. Azelnidipine also significantly inhibits the growth of CT26 tumors, by enhancing the infiltration and function of CD8+ T cell in tumor and systematic immune response in the tumor-draining lymph node and spleen in a CD8+ T cell dependent manner. Our research suggests that the anti-hypertensive drug azelnidipine could be repositioned for cancer immunotherapy.
Collapse
|
41
|
Peng Y, Yuan M, Xin J, Liu X, Wang J. Screening novel drug candidates for Alzheimer's disease by an integrated network and transcriptome analysis. Bioinformatics 2021; 36:4626-4632. [PMID: 32516365 DOI: 10.1093/bioinformatics/btaa563] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Alzheimer's disease (AD) is a serious degenerative brain disease and the most common cause of dementia. The current available drugs for AD provide symptomatic benefit, but there is no effective drug to cure the disease. The emergence of large-scale genomic, pharmacological data provides new opportunities for drug discovery and drug repositioning as a promising strategy in searching novel drug for AD. RESULTS In this study, we took advantage of our increasing understanding based on systems biology approaches on the pathway and network levels and perturbation datasets from the Library of Integrated Network-Based Cellular Signatures to introduce a systematic computational process to discover new drugs implicated in AD. First, we collected 561 genes that have reported to be risk genes of AD, and applied functional enrichment analysis on these genes. Then, by quantifying proximity between 5595 molecule drugs and AD based on human interactome, we filtered out 1092 drugs that were proximal to the disease. We further performed an Inverted Gene Set Enrichment analysis on these drug candidates, which allowed us to estimate effect of perturbations on gene expression and identify 24 potential drug candidates for AD treatment. Results from this study also provided insights for understanding the molecular mechanisms underlying AD. As a useful systematic method, our approach can also be used to identify efficacious therapies for other complex diseases. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/zer0o0/drug-repo.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yonglin Peng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Meng Yuan
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Juncai Xin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Xinhua Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| | - Ju Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070 China
| |
Collapse
|
42
|
Tang M, Hu X, Wang Y, Yao X, Zhang W, Yu C, Cheng F, Li J, Fang Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res 2021; 163:105207. [PMID: 32971268 PMCID: PMC7505114 DOI: 10.1016/j.phrs.2020.105207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022]
Abstract
Ivermectin is a macrolide antiparasitic drug with a 16-membered ring that is widely used for the treatment of many parasitic diseases such as river blindness, elephantiasis and scabies. Satoshi ōmura and William C. Campbell won the 2015 Nobel Prize in Physiology or Medicine for the discovery of the excellent efficacy of ivermectin against parasitic diseases. Recently, ivermectin has been reported to inhibit the proliferation of several tumor cells by regulating multiple signaling pathways. This suggests that ivermectin may be an anticancer drug with great potential. Here, we reviewed the related mechanisms by which ivermectin inhibited the development of different cancers and promoted programmed cell death and discussed the prospects for the clinical application of ivermectin as an anticancer drug for neoplasm therapy.
Collapse
Affiliation(s)
- Mingyang Tang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Xiaodong Hu
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Yi Wang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Xin Yao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Wei Zhang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Chenying Yu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Fuying Cheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Jiangyan Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Qiang Fang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China; School of Fundamental Sciences, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| |
Collapse
|
43
|
Brizzolara A, Garbati P, Vella S, Calderoni M, Quattrone A, Tonini GP, Capasso M, Longo L, Barbieri R, Florio T, Pagano A. Co-Administration of Fendiline Hydrochloride Enhances Chemotherapeutic Efficacy of Cisplatin in Neuroblastoma Treatment. Molecules 2020; 25:molecules25225234. [PMID: 33182713 PMCID: PMC7698186 DOI: 10.3390/molecules25225234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant improvement of neuroblastoma (NB) patients’ survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB’s susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride as an enhancer of cisplatin antitumor activity. To assess the modulation of fendiline treatment on cisplatin responses, we used in vitro (evaluating NB cell proliferation by XCELLigence technology and colony formation, and gene expression by RT-PCR) and in vivo (NB cell grafts in NOD-SCID mice) models of NB. NB cell treatment with fendiline induced the expression of the ncRNA NDM29, leading to cell differentiation and to the reduction of the expression of MDRs/ABC transporters linked to multidrug resistance. These events were correlated to higher NB cell susceptibility to cisplatin and, consequently, increased its cytotoxic potency. In vivo, this drug interaction causes an enhanced ability of cisplatin to induce apoptosis in NB masses, resulting in tumor growth reduction and prolonged animal survival rate. Thus, the administration of fendiline might be a possible novel therapeutic approach to increase cisplatin efficacy in aggressive and poorly responsive NB cases.
Collapse
Affiliation(s)
| | - Patrizia Garbati
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, Institute of Hospitalization and Care of a Scientific Nature—Mediterranean Institute for Transplantation and Highly Specialized Therapies (IRCCS- ISMETT), 90127 Palermo, Italy;
- Anemocyte S.r.l., 21040 Gerenzano, Italy
| | - Matilde Calderoni
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, The “Città della Speranza” Foundation, 35128 Padua, Italy;
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80145 Naples, Italy;
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
- SDN Research Institute Diagnostics and Nuclear, 80133 Naples, Italy
| | - Luca Longo
- Lung Cancer Unit, Division of Medical Oncology II, IRCCS San Martino Polyclinic Hospital, 16132 Genova, Italy;
| | - Raffaella Barbieri
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Tullio Florio
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy
| | - Aldo Pagano
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
44
|
Ren L, Feng W, Shao J, Ma J, Xu M, Zhu BZ, Zheng N, Liu S. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Am J Cancer Res 2020; 10:6384-6398. [PMID: 32483459 PMCID: PMC7255023 DOI: 10.7150/thno.45558] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
To circumvent the huge cost, long R&D time and the difficulty to identify the targets of new drugs, repurposing the ones that have been clinically approved has been considered as a viable strategy to treat different diseases. In the current study, we outlined the rationale for repurposing disulfiram (DSF, an old alcohol-aversion drug) to treat primary breast cancer and its metastases. Methods: To overcome a few shortcomings of the individual administration of DSF, such as the dependence on copper ions (Cu2+) and limited capability in selective targeting, we here artificially synthesized the active form of DSF, diethyldithiocarbamate (DTC)-Cu complex (CuET) for cancer therapeutics. To achieve a greater efficacy in vivo, smart nanomedicines were devised through a one-step self-assembly of three functional components including a chemically stable and biocompatible phase-change material (PCM), the robust anticancer drug (CuET) and a near-infrared (NIR) dye (DIR), namely CuET/DIR NPs. A number of in vitro assays were performed including the photothermal efficacy, light-triggered drug release behavior, nuclear localization, DNA damage and induction of apoptosis of CuET/DIR NPs and molecular mechanisms underlying CuET-induced repression on cancer metastatic behaviors. Meanwhile, the mice bearing 4T1-LG12-drived orthotopic tumors were employed to evaluate in vivo biodistribution and anti-tumor effect of CuET/DIR NPs. The intravenous injection model was employed to reflect the changes of the intrinsic metastatic propensity of 4T1-LG12 cells responding to CuET/DIR NPs. Results: The rationally designed nanomedicines have self-traceability for bioimaging, long blood circulation time for enhanced drug accumulation in the tumor site and photo-responsive release of the anticancer drugs. Moreover, our data unearthed that CuET/DIR nanomedicines behave like “Trojan horse” to transport CuET into the cytoplasm, realizing substantial intracellular accumulation. Upon NIR laser irradiation, massive CuET would be triggered to release from the nanomedicines and reach a high local concentration towards the nucleus, where the pro-apoptotic effects were conducted. Importantly, our CuET/DIR nanomedicines revealed a pronounced capability to leash breast cancer metastases through inhibition on EMT. Additionally, these nanomedicines showed great biocompatibility in animals. Conclusion: These combined data unearthed a remarkably enhanced tumor-killing efficacy of our CuET nanomedicines through nuclear targeting. This work may open a new research area of repurposing DSF as innovative therapeutic agents to treat breast cancer and its metastases.
Collapse
|
45
|
Lee N, Tilija Pun N, Jang WJ, Bae JW, Jeong CH. Pitavastatin induces apoptosis in oral squamous cell carcinoma through activation of FOXO3a. J Cell Mol Med 2020; 24:7055-7066. [PMID: 32406610 PMCID: PMC7299721 DOI: 10.1111/jcmm.15389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Statins are a class of lipid‐lowering drugs that have recently been used in drug repositioning in the treatment of human cancer. However, the underlying mechanism of statin‐induced cancer cell death has not been clearly defined. In the present study, we evaluated the anticancer effect of pitavastatin on oral squamous cell carcinoma (OSCC), SCC15 and SCC4 cells and found that FOXO3a might be a direct target in pitavastatin‐induced cancer cell death. Our data revealed that pitavastatin selectively suppressed cell viability and induced intrinsic apoptosis in a FOXO3a‐dependent manner in SCC15 cells while no effect was observed in SCC4 cells. Notably, treatment with pitavastatin in SCC15 cells induced the nuclear translocation of FOXO3a via dual regulation of two upstream kinases, AMPK and Akt, resulting in the up‐regulation of PUMA, a transcriptional target gene of FOXO3a. Furthermore, our data revealed that FOXO3a‐mediated PUMA induction plays a role in pitavastatin‐induced intrinsic apoptosis in SCC15 cells. Taken together, our findings suggest that pitavastatin activates the FOXO3a/PUMA apoptotic axis by regulation of nuclear translocation of FOXO3a via Akt/FOXO3a or AMPK/FOXO3a signalling. Therefore, these findings might help to elucidate the underlying mechanism of the anticancer effects of pitavastatin on OSCC.
Collapse
Affiliation(s)
- Naeun Lee
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | | | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Jung Woo Bae
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
46
|
Velázquez-Quesada I, Ruiz-Moreno AJ, Casique-Aguirre D, Aguirre-Alvarado C, Cortés-Mendoza F, de la Fuente-Granada M, García-Pérez C, Pérez-Tapia SM, González-Arenas A, Segura-Cabrera A, Velasco-Velázquez MA. Pranlukast Antagonizes CD49f and Reduces Stemness in Triple-Negative Breast Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1799-1811. [PMID: 32494122 PMCID: PMC7229803 DOI: 10.2147/dddt.s247730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 01/16/2023]
Abstract
Introduction Cancer stem cells (CSCs) drive the initiation, maintenance, and therapy response of breast tumors. CD49f is expressed in breast CSCs and functions in the maintenance of stemness. Thus, blockade of CD49f is a potential therapeutic approach for targeting breast CSCs. In the present study, we aimed to repurpose drugs as CD49f antagonists. Materials and Methods We performed consensus molecular docking using a subdomain of CD49f that is critical for heterodimerization and a collection of pharmochemicals clinically tested. Molecular dynamics simulations were employed to further characterize drug-target binding. Using MDA-MB-231 cells, we evaluated the effects of potential CD49f antagonists on 1) cell adhesion to laminin; 2) mammosphere formation; and 3) cell viability. We analyzed the effects of the drug with better CSC-selectivity on the activation of CD49f-downstream signaling by Western blot (WB) and co-immunoprecipitation. Expressions of the stem cell markers CD44 and SOX2 were analyzed by flow cytometry and WB, respectively. Transactivation of SOX2 promoter was evaluated by luciferase reporter assays. Changes in the number of CSCs were assessed by limiting-dilution xenotransplantation. Results Pranlukast, a drug used to treat asthma, bound to CD49f in silico and inhibited the adhesion of CD49f+ MDA-MB-231 cells to laminin, indicating that it antagonizes CD49f-containing integrins. Molecular dynamics analysis showed that pranlukast binding induces conformational changes in CD49f that affect its interaction with β1-integrin subunit and constrained the conformational dynamics of the heterodimer. Pranlukast decreased the clonogenicity of breast cancer cells on mammosphere formation assay but had no impact on the viability of bulk tumor cells. Brief exposure of MDA-MB-231 cells to pranlukast altered CD49f-dependent signaling, reducing focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) activation. Further, pranlukast-treated cells showed decreased CD44 and SOX2 expression, SOX2 promoter transactivation, and in vivo tumorigenicity, supporting that this drug reduces the frequency of CSC. Conclusion Our results support the function of pranlukast as a CD49f antagonist that reduces the CSC population in triple-negative breast cancer cells. The pharmacokinetics and toxicology of this drug have already been established, rendering a potential adjuvant therapy for breast cancer patients.
Collapse
Affiliation(s)
- Inés Velázquez-Quesada
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Research and Development in Bioprocess Unit, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Angel J Ruiz-Moreno
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Graduate Program in Biomedical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Drug Design, Graduate School of Science and Engineering, University of Groningen (RUG), Groningen, The Netherlands
| | - Diana Casique-Aguirre
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Charmina Aguirre-Alvarado
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fabiola Cortés-Mendoza
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Graduate Program in Biochemical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol de la Fuente-Granada
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos García-Pérez
- Center for Genomic Biotechnology, Instituto Politécnico Nacional, Reynosa, Tamaulipas, Mexico
| | - Sonia M Pérez-Tapia
- Research and Development in Bioprocess Unit, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City, Mexico.,National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products, LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
| | - Aliesha González-Arenas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aldo Segura-Cabrera
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Marco A Velasco-Velázquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Peripherical Unit for Research in Translational Biomedicine, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
47
|
Kaushik I, Ramachandran S, Prasad S, Srivastava SK. Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2020; 68:279-290. [PMID: 32437876 DOI: 10.1016/j.semcancer.2020.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
48
|
Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Front Endocrinol (Lausanne) 2020; 11:54. [PMID: 32153500 PMCID: PMC7044184 DOI: 10.3389/fendo.2020.00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas, accounting for 15% of diagnosed intracranial neoplasms, are usually benign and pharmacologically and surgically treatable; however, the critical location, mass effects and hormone hypersecretion sustain their significant morbidity. Approximately 35% of pituitary tumors show a less benign course since they are highly proliferative and invasive, poorly resectable, and likely recurring. The latest WHO classification of pituitary tumors includes pituitary transcription factor assessment to determine adenohypophysis cell lineages and accurate designation of adenomas, nevertheless little is known about molecular and cellular pathways which contribute to pituitary tumorigenesis. In malignant tumors the identification of cancer stem cells radically changed the concepts of both tumorigenesis and pharmacological approaches. Cancer stem cells are defined as a subset of undifferentiated transformed cells from which the bulk of cancer cells populating a tumor mass is generated. These cells are able to self-renew, promoting tumor progression and recurrence of malignant tumors, also conferring cytotoxic drug resistance. On the other hand, the existence of stem cells within benign tumors is still debated. The presence of adult stem cells in human and murine pituitaries where they sustain the high plasticity of hormone-producing cells, allowed the hypothesis that putative tumor stem cells might exist in pituitary adenomas, reinforcing the concept that the cancer stem cell model could also be applied to pituitary tumorigenesis. In the last few years, the isolation and phenotypic characterization of putative pituitary adenoma stem-like cells was performed using a wide and heterogeneous variety of experimental models and techniques, although the role of these cells in adenoma initiation and progression is still not completely definite. The assessment of possible pituitary adenoma-initiating cell population would be of extreme relevance to better understand pituitary tumor biology and to identify novel potential diagnostic markers and pharmacological targets. In this review, we summarize the most updated studies focused on the definition of pituitary adenoma stem cell phenotype and functional features, highlighting the biological processes and intracellular pathways potentially involved in driving tumor growth, relapse, and therapy resistance.
Collapse
Affiliation(s)
- Roberto Würth
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Stefano Thellung
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Federica Barbieri
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
| | - Tullio Florio
- Section of Pharmacology, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
49
|
Carlisle BG, Doussau A, Kimmelman J. Patient burden and clinical advances associated with postapproval monotherapy cancer drug trials: a retrospective cohort study. BMJ Open 2020; 10:e034306. [PMID: 32071183 PMCID: PMC7044865 DOI: 10.1136/bmjopen-2019-034306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES After regulatory approval, drug companies, public funding agencies and academic researchers often pursue trials aimed at extending the uses of a new drug by testing it in new non-approved indications. Patient burden and clinical impact of such research are not well understood. DESIGN AND SETTING We conducted a retrospective cohort study of postapproval clinical trials launched within 5 years after the drug's first approval, testing anticancer drugs in monotherapy in indications that were first pursued after a drug's first Food and Drug Administration (FDA) license, for all 12 anticancer drugs approved between 2005 and 2007. FDA, Medline and Embase search date 2019 February 12. PRIMARY AND SECONDARY OUTCOME MEASURES Our primary objective was to measure burden and clinical impact for patients enrolling in these trials. Each trial was sorted into a 'trajectory' defined by the drug and cancer indication. The risk was operationalised by proportions of grade 3-4 severe adverse events and deaths. The clinical impact was measured by estimating the proportion of patients participating in trajectories that resulted in FDA approval, uptake into National Comprehensive Cancer Network (NCCN) clinical practice guidelines or advancement to randomised controlled trials within 8 years. RESULTS Our search captured 104 published trials exploring monotherapy, including 69 unique trajectories. In total, trials in our sample enrolled 4699 patients. Grade 3-4 adverse events were experienced by 19.6% of patients; grade 5 events were experienced by 2.8% of patients. None of the trajectories launched after initial drug approval received FDA approval. Five trajectories were recommended by the NCCN within 8 years of the first trial within that trajectory. Eleven trajectories were advanced to randomised controlled testing. CONCLUSIONS The challenges associated with unlocking new applications for drugs that first received approval from 2005 to 2007 were similar to those for developing new drugs altogether. Our findings can help inform priority setting in research and provide a basis for calibrating expectations when considering enrolment in label-extending trials.
Collapse
Affiliation(s)
| | | | - Jonathan Kimmelman
- Biomedical Ethics Unit / SSOM, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Veschi S, Ronci M, Lanuti P, De Lellis L, Florio R, Bologna G, Scotti L, Carletti E, Brugnoli F, Di Bella MC, Bertagnolo V, Marchisio M, Cama A. Integrative proteomic and functional analyses provide novel insights into the action of the repurposed drug candidate nitroxoline in AsPC-1 cells. Sci Rep 2020; 10:2574. [PMID: 32054977 PMCID: PMC7018951 DOI: 10.1038/s41598-020-59492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
We recently identified nitroxoline as a repurposed drug candidate in pancreatic cancer (PC) showing a dose-dependent antiproliferative activity in different PC cell lines. This antibiotic is effective in several in vitro and animal cancer models. To date, the mechanisms of nitroxoline anticancer action are largely unknown. Using shotgun proteomics we identified 363 proteins affected by nitroxoline treatment in AsPC-1 pancreatic cancer cells, including 81 consistently deregulated at both 24- and 48-hour treatment. These proteins previously unknown to be affected by nitroxoline were mostly downregulated and interconnected in a single highly-enriched network of protein-protein interactions. Integrative proteomic and functional analyses revealed nitroxoline-induced downregulation of Na/K-ATPase pump and β-catenin, which associated with drastic impairment in cell growth, migration, invasion, increased ROS production and induction of DNA damage response. Remarkably, nitroxoline induced a previously unknown deregulation of molecules with a critical role in cell bioenergetics, which resulted in mitochondrial depolarization. Our study also suggests that deregulation of cytosolic iron homeostasis and of co-translational targeting to membrane contribute to nitroxoline anticancer action. This study broadens our understanding of the mechanisms of nitroxoline action, showing that the drug modulates multiple proteins crucial in cancer biology and previously unknown to be affected by nitroxoline.
Collapse
Affiliation(s)
- Serena Veschi
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Federica Brugnoli
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - Valeria Bertagnolo
- Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Marchisio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy. .,Centre on Aging Sciences and Translational Medicine (Ce.S.I-Me.T), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|