1
|
Liu H, Wang C, Wang R, Zhang Y, Jian B, Zhou Z, Wu Z, Liang M. HnRNPA1 Prevents Endothelial-to-mesenchymal Transition-induced VSMC Activation and Neointimal Hyperplasia in Vein Grafts. J Cardiovasc Transl Res 2024; 17:1400-1414. [PMID: 39046653 DOI: 10.1007/s12265-024-10545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is associated with neointimal hyperplasia and vein graft failure, and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has emerged as a major modulator of EMT. We aimed to investigate the functional consequence of EndoMT in neointimal hyperplasia and the precise role of hnRNPA1 in the regulation of EndoMT and neointimal hyperplasia. We investigated the spatial and temporal distribution characteristics of EndoMT cells in a mouse model of vein graft transplantation. In vitro, we studied the interaction between EndoMT cells and VSMCs, and the underlying mechanism was investigated by cytokine antibody assays. In cultured HUVECs, we studied the effect of hnRNPA1 on EndoMT and the cellular interactions by using siRNA-mediated knockdown and adenovirus-mediated overexpression. We further investigated the role of hnRNPA1 in EndoMT and neointimal hyperplasia in vivo with an AAV-mediated EC-specific hnRNPA1 overexpression murine model. We demonstrated the presence of EndoMT cells during the initial stage of neointimal formation, and that EndoMT cells promoted the proliferation and migration of VSMCs in vitro. Mechanistic studies revealed that EndoMT cells express and secrete a higher level of PDGF-B. Furthermore, we found a regulatory role for hnRNPA1 in EndoMT in vitro and in vivo. Similarly, we found that hnRNPA1 overexpression in ECs reduced the expression and secretion of PDGF-B during EndoMT, effectively inhibiting EndoMT cell-mediated activation of VSMCs in vitro and neointimal formation in vivo. Taken together, these findings indicate that EndoMT cells can activate VSMCs through a paracrine mechanism mediated by hnRNPA1 and lead to neointimal hyperplasia.
Collapse
Affiliation(s)
- Haoliang Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chaoqun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Rui Wang
- Department of Cardiology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, 510080, Guangdong, China
| | - Yi Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Bohao Jian
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhuoming Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Mengya Liang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Aherrahrou R, Reinberger T, Hashmi S, Erdmann J. GWAS breakthroughs: mapping the journey from one locus to 393 significant coronary artery disease associations. Cardiovasc Res 2024; 120:1508-1530. [PMID: 39073758 DOI: 10.1093/cvr/cvae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, 74800 Karachi, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
3
|
Zhang L, Feng Q, Kong W. ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38984789 DOI: 10.1152/physiol.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024] Open
Abstract
Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
4
|
Li M, Wei P, Li K, Liu H, Alam N, Hou H, Deng J, Xu B, Liu E, Zhao S, Li Y. The incidence rate and histological characteristics of intimal hyperplasia in elastase-induced experimental abdominal aortic aneurysms in mice. Animal Model Exp Med 2024; 7:388-395. [PMID: 38017222 PMCID: PMC11228087 DOI: 10.1002/ame2.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Intimal hyperplasia (IH) is a negative vascular remodeling after arterial injury. IH occasionally occurs in elastase-induced abdominal aortic aneurysm (AAA) mouse models. This study aims to clarify the incidence and histological characteristics of IH in aneurysmal mice. A retrospective study was conducted by including 42 male elastase-induced mouse AAA models. The IH incidence, aortic diameters with or without IH, and hyperplasia lesional features of mice were analyzed. Among 42 elastase-induced AAA mouse models, 10 mice developed mild IH (24%) and severe IH was found in only 2 mice (5%). The outer diameters of the AAA segments in mice with and without IH did not show significant difference. Both mild and severe IH lesions show strong smooth muscle cell positive staining, but endothelial cells were occasionally observed in severe IH lesions. There was obvious macrophage infiltration in the IH lesions of the AAA mouse models, especially in mice with severe IH. However, only a lower numbers of T cells and B cells were found in the IH lesion. Local cell-secreted matrix metalloproteinases (MMP) 2 was highly expressed in all IH lesions, but MMP9 was only overexpressed in severe lesions. In conclusion, this study is the first to demonstrate the occurrence of aneurysmal IH and its histological characteristics in an elastase-induced mouse AAA model. This will help researchers better understand this model, and optimize it for use in AAA-related research.
Collapse
Affiliation(s)
- Meng Li
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
- Department of Vascular SurgeryThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Panpan Wei
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Kexin Li
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Haole Liu
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Naqash Alam
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Haiwen Hou
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Jie Deng
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Baohui Xu
- Department of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Enqi Liu
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Sihai Zhao
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yankui Li
- Department of Vascular SurgeryThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
5
|
León-Mengíbar J, Sánchez E, Herrerías F, De La Fuente MC, Santamaría M, Valdivielso JM, Bermúdez-López M, Castro E, Pallarés J, Matias-Guiu X, Vilardell F, Caixàs A, Bueno M, Martí R, Lecube A. Influence of nonalcoholic fatty liver disease severity on carotid adventitial vasa vasorum. Front Endocrinol (Lausanne) 2024; 15:1366015. [PMID: 38774226 PMCID: PMC11106423 DOI: 10.3389/fendo.2024.1366015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD) affects a quarter of the world's population and encompasses a spectrum of liver conditions, from non-alcoholic steatohepatitis (NASH) to inflammation and fibrosis. In addition, NAFLD also links to extrahepatic conditions like diabetes or obesity. However, it remains unclear if NAFLD independently correlates with the onset and progression of atherosclerosis. Material and methods This cross-sectional study aimed to explore the relationship between NAFLD severity, assessed via liver biopsy, and early atherosclerosis using adventitial vasa vasorum (VV) density. It included 44 patients with obesity (33 with steatosis, 11 with NASH) undergoing bariatric surgery. Results Results revealed no significant differences in adventitial VV density between steatosis and NASH groups, neither in the mean values [0.759 ± 0.104 vs. 0.780 ± 0.043, P=0.702] nor left-right sides. Similarly, carotid intima-media thickness (cIMT) did not vary between these groups. Additionally, no linear correlation existed between VV density and cIMT. Only gender showed an association with VV density. Conclusion These findings suggest that NASH severity doesn't independently drive early atherosclerosis or affects cIMT. Gender might play a role in early atherosclerotic disease in NAFLD, impacting VV density and cIMT. This highlights the need to consider other risk factors when evaluating cardiovascular risk in NAFLD patients.
Collapse
Affiliation(s)
- Josep León-Mengíbar
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Enric Sánchez
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
- Medicine and Surgery Department, University of Lleida, Lleida, Spain
| | - Ferrán Herrerías
- Gastrointestinal Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
- Surgery Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Mari Cruz De La Fuente
- Gastrointestinal Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
- Surgery Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Maite Santamaría
- Gastrointestinal Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
- Surgery Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - José Manuel Valdivielso
- Medicine and Surgery Department, University of Lleida, Lleida, Spain
- Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (RBLleida), Lleida, Spain
| | - Marcelino Bermúdez-López
- Medicine and Surgery Department, University of Lleida, Lleida, Spain
- Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (RBLleida), Lleida, Spain
| | - Eva Castro
- Medicine and Surgery Department, University of Lleida, Lleida, Spain
- Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (RBLleida), Lleida, Spain
| | - Judit Pallarés
- Department of Pathology and Molecular Genetics, Arnau de Vilanova University Hospital, Institut de Recerca Biomèdica (IRB) and University of Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Arnau de Vilanova University Hospital, Institut de Recerca Biomèdica (IRB) and University of Lleida, Lleida, Spain
| | - Felip Vilardell
- Department of Pathology and Molecular Genetics, Arnau de Vilanova University Hospital, Institut de Recerca Biomèdica (IRB) and University of Lleida, Lleida, Spain
| | - Assumpta Caixàs
- Endocrinology and Nutrition Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (IPT-CERCA), Medicine Department, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Marta Bueno
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Raquel Martí
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Albert Lecube
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Lleida, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
- Medicine and Surgery Department, University of Lleida, Lleida, Spain
| |
Collapse
|
6
|
Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, Jin W, Gong Q, Liu L, Guo J. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:331-344. [PMID: 38327187 PMCID: PMC10984869 DOI: 10.3724/abbs.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Chengyi Li
- School of MedicineYangtze UniversityJingzhou434020China
| | - Ran Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Zhenyu Xiong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Xue Bao
- School of MedicineYangtze UniversityJingzhou434020China
| | - Sijia Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat-Sen UniversityGuangzhou510120China
| | - Haotian Zeng
- Department of GastroenterologyShenzhen People’s HospitalThe Second Clinical Medical CollegeJinan UniversityShenzhen518000China
| | - Wei Jin
- Department of Second Ward of General PediatricsSuizhou Central HospitalHubei University of MedicineSuizhou441300China
| | - Quan Gong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Lian Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Jiawei Guo
- School of MedicineYangtze UniversityJingzhou434020China
| |
Collapse
|
7
|
Drysdale A, Unsworth AJ, White SJ, Jones S. The Contribution of Vascular Proteoglycans to Atherothrombosis: Clinical Implications. Int J Mol Sci 2023; 24:11854. [PMID: 37511615 PMCID: PMC10380219 DOI: 10.3390/ijms241411854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The vascular extracellular matrix (ECM) produced by endothelial and smooth muscle cells is composed of collagens and glycoproteins and plays an integral role in regulating the structure and function of the vascular wall. Alteration in the expression of these proteins is associated with endothelial dysfunction and has been implicated in the development and progression of atherosclerosis. The ECM composition of atherosclerotic plaques varies depending on plaque phenotype and vulnerability, with distinct differences observed between ruptured and erodes plaques. Moreover, the thrombi on the exposed ECM are diverse in structure and composition, suggesting that the best antithrombotic approach may differ depending on plaque phenotype. This review provides a comprehensive overview of the role of proteoglycans in atherogenesis and thrombosis. It discusses the differential expression of the proteoglycans in different plaque phenotypes and the potential impact on platelet function and thrombosis. Finally, the review highlights the importance of this concept in developing a targeted approach to antithrombotic treatments to improve clinical outcomes in cardiovascular disease.
Collapse
Affiliation(s)
- Amelia Drysdale
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| | - Amanda J. Unsworth
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| | - Stephen J. White
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;
| | - Sarah Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.D.); (A.J.U.)
| |
Collapse
|
8
|
Soleimani M, Dashtbozorg B, Mirkhalaf M, Mirkhalaf S. A multiphysics-based artificial neural networks model for atherosclerosis. Heliyon 2023; 9:e17902. [PMID: 37483801 PMCID: PMC10362161 DOI: 10.1016/j.heliyon.2023.e17902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Atherosclerosis is a medical condition involving the hardening and/or thickening of arteries' walls. Mathematical multi-physics models have been developed to predict the development of atherosclerosis under different conditions. However, these models are typically computationally expensive. In this study, we used machine learning techniques, particularly artificial neural networks (ANN), to enhance the computational efficiency of these models. A database of multi-physics Finite Element Method (FEM) simulations was created and used for training and validating an ANN model. The model is capable of quick and accurate prediction of atherosclerosis development. A remarkable computational gain is obtained using the ANN model compared to the original FEM simulations.
Collapse
Affiliation(s)
- M. Soleimani
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Hannover, Germany
| | - B. Dashtbozorg
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M. Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - S.M. Mirkhalaf
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Intimal Hyperplasia of Arteriovenous Fistula. Ann Vasc Surg 2022; 85:444-453. [PMID: 35472499 DOI: 10.1016/j.avsg.2022.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Intimal hyperplasia (IH), a crucial histopathological injury, forms the basis of vascular stenosis and thrombogenesis. In addition, it is common in maladies such as stenosis at the anastomosis of arteriovenous fistula and restenosis after angioplasty. Various cellular and noncellular components play critical parts in the advancement of IH. This article reviews the distinctive components of IH, such as endothelial dysfunction, multiplication, and movement of vascular smooth muscle cells. Finally, in addition to synthesis of large amounts of extracellular matrix and inflammatory responses, which have frequently been studied in recent years, we offer a premise for clinical treatment with vascular smooth muscle cells.
Collapse
|
10
|
Li Z, Tang Z, Wang Y, Liu Z, Wang G, Zhang L, Wu Y, Guo J. Assessment of radial artery atherosclerosis in acute coronary syndrome patients: an in vivo study using optical coherence tomography. BMC Cardiovasc Disord 2022; 22:120. [PMID: 35313827 PMCID: PMC8939080 DOI: 10.1186/s12872-022-02561-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Radial artery (RA) atherosclerosis in acute coronary syndrome (ACS) patients has not been systematically observed in vivo. The study aims to characterize plaque morphology and intimal hyperplasia of the RA in patients with ACS, using optical coherence tomography (OCT). Methods In this retrospective study involving 239 ACS patients underwent RA OCT without guidewire shadow, 3 groups were divided according to the following criteria: radial artery plaque (RAP) group included patients with fibrous, lipid or calcified plaque; patients without RAP were further classified into radial intimal hyperplasia (RIH) group (intima media thickness ratio [IMR] ≥ 1) or normal group (IMR < 1). The presence and characteristics of RAP and its related risk factors were identified. Results The RAP, RIH and normal groups included 76 (31.8%), 69 (28.9%) and 94 (39.3%) patients, respectively. Patients in RAP group were the oldest, compared with those in the RIH and normal groups (p < 0.001), and more frequently had triple vessel disease (p = 0.004). The percentage of plaque rupture (72.4% vs. 56.4%, p = 0.018) and calcification (42.1% vs. 27.6%, p = 0.026) at culprit lesion were significantly higher in patients with RAP than those without RAP. A total of 148 RAP were revealed by OCT, including fibrous (72, 48.6%), lipid (50, 33.8%) and calcified plaques (26, 17.6%). The microvessels were also frequently observed in the RAP group than that in RIH and normal groups (59.2% vs. 8.7% vs. 9.6%, p < 0.001). Multivariate logistic regression analysis showed that age, diabetes, and smoking history (all p < 0.05) were independent risk factors for RAP. Conclusions In terms of insights gained from OCT, RA atherosclerosis is not uncommon in ACS patients by OCT, sharing several morphological characters with early coronary atherosclerosis. Aging, diabetes, and smoking are risk factors for RAP. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02561-5.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhe Tang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yujie Wang
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zijing Liu
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Guozhong Wang
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Libin Zhang
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yongxia Wu
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jincheng Guo
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Altabas V, Biloš LSK. The Role of Endothelial Progenitor Cells in Atherosclerosis and Impact of Anti-Lipemic Treatments on Endothelial Repair. Int J Mol Sci 2022; 23:ijms23052663. [PMID: 35269807 PMCID: PMC8910333 DOI: 10.3390/ijms23052663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular complications are associated with advanced atherosclerosis. Although atherosclerosis is still regarded as an incurable disease, at least in its more advanced stages, the discovery of endothelial progenitor cells (EPCs), with their ability to replace old and injured cells and differentiate into healthy and functional mature endothelial cells, has shifted our view of atherosclerosis as an incurable disease, and merged traditional theories of atherosclerosis pathogenesis with evolving concepts of vascular biology. EPC alterations are involved in the pathogenesis of vascular abnormalities in atherosclerosis, but many questions remain unanswered. Many currently available drugs that impact cardiovascular morbidity and mortality have shown a positive effect on EPC biology. This review examines the role of endothelial progenitor cells in atherosclerosis development, and the impact standard antilipemic drugs, including statins, fibrates, and ezetimibe, as well as more novel treatments such as proprotein convertase subtilisin/kexin type 9 (PCSK9) modulating agents and angiopoietin-like proteins (Angtpl3) inhibitors have on EPC biology.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-3787-692
| | | |
Collapse
|
12
|
Sánchez E, Santos MD, Nuñez-Garcia M, Bueno M, Sajoux I, Yeramian A, Lecube A. Randomized Clinical Trial to Evaluate the Morphological Changes in the Adventitial Vasa Vasorum Density and Biological Markers of Endothelial Dysfunction in Subjects with Moderate Obesity Undergoing a Very Low-Calorie Ketogenic Diet. Nutrients 2021; 14:33. [PMID: 35010908 PMCID: PMC8746664 DOI: 10.3390/nu14010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Weight loss after bariatric surgery decreases the earlier expansion of the adventitial vasa vasorum (VV), a biomarker of early atheromatous disease. However, no data are available regarding weight loss achieved by very low calorie ketogenic diets (VLCKD) on VV and lipid-based atherogenic indices. A randomized clinical trial was performed to examine changes in adventitial VV density in 20 patients with moderate obesity who underwent a 6-month very low calorie ketogenic diet (VLCKD, 600-800 kcal/day), and 10 participants with hypocaloric diet based on the Mediterranean Diet (MedDiet, estimated reduction of 500 kcal on the usual intake). Contrast-enhanced carotid ultrasound was used to assess the VV. Body composition analysis was also used. The atherogenic index of plasma (log (triglycerides to high-density lipoprotein cholesterol ratio)) and the triglyceride-glucose index were calculated. Serum concentrations of soluble intercellular adhesion molecule 1 (sICAM-1), and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured. The impact of weight on quality of life-lite (IWQOL-Lite) questionnaire was administered. Participants of intervention groups displayed a similar VV values. Significant improvements of BMI (-5.3 [-6.9 to -3.6] kg/m2, p < 0.001), total body fat (-7.0 [-10.7 to -3.3] %, p = 0.003), and IWQOL-Lite score (-41.4 [-75.2 to -7.6], p = 0.027) were observed in VLCKD group in comparison with MedDiet group. Although after a 6-months follow-up period VV density (mean, right and left sides) did not change significantly in any group, participants in the VLCKD exhibited a significantly decrease both in their atherogenic index of plasma and serum concentration of sICAM-1. A 6-month intervention with VLCKD do not impact in the density of the adventitial VV in subjects with moderate obesity, but induces significant changes in markers of endothelial dysfunction and CV risk.
Collapse
Affiliation(s)
- Enric Sánchez
- Obesity, Diabetes and Metabolism (ODIM) Research Group, IRBLleida, University of Lleida, 25198 Lleida, Spain; (E.S.); (M.-D.S.); (M.B.)
| | - Maria-Dolores Santos
- Obesity, Diabetes and Metabolism (ODIM) Research Group, IRBLleida, University of Lleida, 25198 Lleida, Spain; (E.S.); (M.-D.S.); (M.B.)
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, 25198 Lleida, Spain;
| | | | - Marta Bueno
- Obesity, Diabetes and Metabolism (ODIM) Research Group, IRBLleida, University of Lleida, 25198 Lleida, Spain; (E.S.); (M.-D.S.); (M.B.)
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, 25198 Lleida, Spain;
| | - Ignacio Sajoux
- Pronokal Group, 08009 Barcelona, Spain; (M.N.-G.); (I.S.)
| | - Andree Yeramian
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, 25198 Lleida, Spain;
| | - Albert Lecube
- Obesity, Diabetes and Metabolism (ODIM) Research Group, IRBLleida, University of Lleida, 25198 Lleida, Spain; (E.S.); (M.-D.S.); (M.B.)
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, 25198 Lleida, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
13
|
Pitz Jacobsen D, Fjeldstad HE, Johnsen GM, Fosheim IK, Moe K, Alnæs-Katjavivi P, Dechend R, Sugulle M, Staff AC. Acute Atherosis Lesions at the Fetal-Maternal Border: Current Knowledge and Implications for Maternal Cardiovascular Health. Front Immunol 2021; 12:791606. [PMID: 34970270 PMCID: PMC8712939 DOI: 10.3389/fimmu.2021.791606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Decidua basalis, the endometrium of pregnancy, is an important interface between maternal and fetal tissues, made up of both maternal and fetal cells. Acute atherosis is a uteroplacental spiral artery lesion. These patchy arterial wall lesions containing foam cells are predominantly found in the decidua basalis, at the tips of the maternal arteries, where they feed into the placental intervillous space. Acute atherosis is prevalent in preeclampsia and other obstetric syndromes such as fetal growth restriction. Causal factors and effects of acute atherosis remain uncertain. This is in part because decidua basalis is challenging to sample systematically and in large amounts following delivery. We summarize our decidua basalis vacuum suction method, which facilitates tissue-based studies of acute atherosis. We also describe our evidence-based research definition of acute atherosis. Here, we comprehensively review the existing literature on acute atherosis, its underlying mechanisms and possible short- and long-term effects. We propose that multiple pathways leading to decidual vascular inflammation may promote acute atherosis formation, with or without poor spiral artery remodeling and/or preeclampsia. These include maternal alloreactivity, ischemia-reperfusion injury, preexisting systemic inflammation, and microbial infection. The concept of acute atherosis as an inflammatory lesion is not novel. The lesions themselves have an inflammatory phenotype and resemble other arterial lesions of more extensively studied etiology. We discuss findings of concurrently dysregulated proteins involved in immune regulation and cardiovascular function in women with acute atherosis. We also propose a novel hypothesis linking cellular fetal microchimerism, which is prevalent in women with preeclampsia, with acute atherosis in pregnancy and future cardiovascular and neurovascular disease. Finally, women with a history of preeclampsia have an increased risk of premature cardiovascular disease. We review whether presence of acute atherosis may identify women at especially high risk for premature cardiovascular disease.
Collapse
Affiliation(s)
| | - Heidi Elisabeth Fjeldstad
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guro Mørk Johnsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Ingrid Knutsdotter Fosheim
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kjartan Moe
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Obstetrics and Gynaecology, Bærum Hospital, Vestre Viken HF, Bærum, Norway
| | | | - Ralf Dechend
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbruck Center for Molecular Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany
| | - Meryam Sugulle
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Cathrine Staff
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Xiao ST, Kuang CY. Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions. World J Clin Cases 2021; 9:8953-8966. [PMID: 34786379 PMCID: PMC8567528 DOI: 10.12998/wjcc.v9.i30.8953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular injury is a frequent pathology in coronary artery disease. To repair the vasculature, scientists have found that endothelial progenitor cells (EPCs) have excellent properties associated with angiogenesis. Over time, research on EPCs has made encouraging progress regardless of pathology or clinical technology. This review focuses on the origins and cell markers of EPCs, and the connection between EPCs and coronary artery disease. In addition, we summarized various studies of EPC-capturing stents and EPC infusion therapy, and aim to learn from past technology to predict the future.
Collapse
Affiliation(s)
- Sen-Tong Xiao
- Department of Cardiovascular Diseases, People’s Hospital Affiliated to Guizhou Medical University, Guiyang 550003, Guizhou Province, China
| | - Chun-Yan Kuang
- Department of Cardiovascular Diseases, Guizhou Provincial People's Hospital, Guiyang 550003, Guizhou Province, China
| |
Collapse
|
15
|
Takeshige R, Otake H, Kawamori H, Toba T, Nagano Y, Tsukiyama Y, Yanaka KI, Yamamoto H, Nagasawa A, Onishi H, Sugizaki Y, Nakano S, Matsuoka Y, Tanimura K, Hirata KI. Progression from normal vessel wall to atherosclerotic plaque: lessons from an optical coherence tomography study with follow-up of over 5 years. Heart Vessels 2021; 37:1-11. [PMID: 34338851 DOI: 10.1007/s00380-021-01889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
The initial process of atherosclerotic development has not been systematically evaluated. This study aimed to observe atherosclerotic progression from normal vessel wall (NVW) to atherosclerotic plaque and examine local factors associated with such progression using > 5-year long-term follow-up data obtained by serial optical coherence tomography (OCT). A total of 49 patients who underwent serial OCT for lesions with NVW over 5 years (average: 6.9 years) were enrolled. NVW was defined as a vessel wall with an OCT-detectable three-layer structure and intimal thickness ≤ 300 μm. Baseline and follow-up OCT images were matched, and OCT cross sections with NVW > 30° were enrolled. Cross sections were diagnosed as "progression" when the NVW in these cross sections was reduced by > 30° at > 5-year follow-up. Atherogenic progression from NVW to atherosclerotic plaque was observed in 40.8% of enrolled cross sections. The incidence of microchannels in an adjacent atherosclerotic plaque within the same cross section (6.7 vs. 3.3%; p = 0.046) and eccentric distribution of atherosclerotic plaque (25.0 vs. 12.6%; p < 0.001) at baseline was significantly higher in cross sections with progression than in those without. Cross sections with progression exhibited significantly higher NVW intimal thickness at baseline than cross sections without progression (200.1 ± 53.7 vs. 180.2 ± 59.6 μm; p < 0.001). Multivariate analysis revealed that the presence of microchannels in an adjacent atherosclerotic plaque, eccentric distribution of atherosclerotic plaque, and greater NVW intimal thickness at baseline were independently associated with progression at follow-up. The presence of microchannels in an adjacent atherosclerotic plaque, eccentric distribution of atherosclerotic plaque, and greater NVW intimal thickness were potentially associated with initial atherosclerotic development from NVW to atherosclerotic plaque.
Collapse
Affiliation(s)
- Ryo Takeshige
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Hiroyuki Kawamori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takayoshi Toba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichiro Nagano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshiro Tsukiyama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ken-Ichi Yanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hiroyuki Yamamoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Akira Nagasawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hiroyuki Onishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoichiro Sugizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinsuke Nakano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoichiro Matsuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kosuke Tanimura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
16
|
Orban M, Ulrich S, Dischl D, von Samson-Himmelstjerna P, Schramm R, Tippmann K, Hein-Rothweiler R, Strüven A, Lehner A, Braun D, Hausleiter J, Jakob A, Fischer M, Hagl C, Haas N, Massberg S, Mehilli J, Robert DP. Cardiac allograft vasculopathy: Differences of absolute and relative intimal hyperplasia in children versus adults in optical coherence tomography. Int J Cardiol 2020; 328:227-234. [PMID: 33316256 DOI: 10.1016/j.ijcard.2020.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Intracoronary imaging enables an early detection of intimal changes. To what extend the development of absolute and relative intimal hyperplasia in intracoronary imaging differs depending on age and post-transplant time is not known. METHODS Aim of our retrospective study was to compare findings between 24 pediatric (cohort P) and 21 adult HTx patients (cohort A) using optical coherence tomography (OCT) at corresponding post-transplant intervals (≤5 years: P1 (n = 11) and A1 (n = 10); >5 and ≤ 10 years: P2 (n = 13) and A2 (n = 11),. Coronary intima thickness (IT), media thickness (MT) and intima to media ratio (I/M) were assessed per quadrant. Maximal IT >0.3 mm was considered absolute, I/M > 1 relative intimal hyperplasia. RESULTS Compared to A1, I/M was significantly higher in P1 (maximal I/M: P1: 5.41 [2.81-13.39] vs. A1: 2.30 [1.55-3.62], p = 0.005), whereas absolute IT values were comparable. In contrast, I/M was comparable between P2 and A2, but absolute IT were significantly higher in A2 (maximal IT: P2: 0.16 mm [0.11-0.25] vs. A2: 0.40 mm [0.30-0.71], p < 0.001). A2 presented with higher absolute IT (maximal: A1: 0.16 mm [0.12-0.44] vs. A2: 0.40 mm [0.30-0.71], p = 0.02) and I/M (maximal I/M A1: 2.30 [1.55-3.62] vs. A2: 3.79 [3.01-5.62], p = 0.04). CONCLUSION Our results suggest an age- and time-dependent difference in the prevalence of absolute and relative intimal hyperplasia in OCT, with an early peak in children and a progressive increase in adults.
Collapse
Affiliation(s)
- Madeleine Orban
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany; Partner Site Munich Heart Alliance, German Centre for Cardiovascular Research (DZHK), Germany.
| | - Sarah Ulrich
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Dominic Dischl
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | | | - René Schramm
- Department of Heart Surgery, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Katharina Tippmann
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Ralph Hein-Rothweiler
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Anna Strüven
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Anja Lehner
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Daniel Braun
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Jörg Hausleiter
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany; Partner Site Munich Heart Alliance, German Centre for Cardiovascular Research (DZHK), Germany
| | - Andre Jakob
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Marcus Fischer
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Christian Hagl
- Department of Heart Surgery, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany; Partner Site Munich Heart Alliance, German Centre for Cardiovascular Research (DZHK), Germany
| | - Nikolaus Haas
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| | - Steffen Massberg
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany; Partner Site Munich Heart Alliance, German Centre for Cardiovascular Research (DZHK), Germany
| | - Julinda Mehilli
- Department of Cardiology, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany; Partner Site Munich Heart Alliance, German Centre for Cardiovascular Research (DZHK), Germany
| | - Dalla Pozza Robert
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Klinikum Großhadern, Munich, Germany
| |
Collapse
|
17
|
Carmona-Maurici J, Cuello E, Ricart-Jané D, Miñarro A, Baena-Fustegueras JA, Peinado-Onsurbe J, Pardina E. Effect of bariatric surgery on inflammation and endothelial dysfunction as processes underlying subclinical atherosclerosis in morbid obesity. Surg Obes Relat Dis 2020; 16:1961-1970. [DOI: 10.1016/j.soard.2020.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
|
18
|
Subbotin VM. Pattern of organ remodeling in chronic non-communicable diseases is due to endogenous regulations and falls under the category of Kauffman's self-organization: A case of arterial neointimal pathology. Med Hypotheses 2020; 143:110106. [PMID: 32759005 DOI: 10.1016/j.mehy.2020.110106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 07/11/2020] [Indexed: 01/10/2023]
Abstract
Clinical diagnosis is based on analysis of pathologic findings that may result in perceived patterns. The same is true for diagnostic pathology: Pattern analysis is a foundation of the histopathology-based diagnostic system and, in conjunction with clinical and laboratory findings, forms a basis for the classification of diseases. Any histopathology diagnosis is based on the explicit assumption that the same diseased condition should result in formation of the same (or highly similar) morphologic patterns in different individuals; it is a standard approach in microscopic pathology, including that of non-communicable chronic diseases with organ remodeling. During fifty years of examining diseased tissues under microscopy, I keep asking the same question: Why is a similarity of patterns expected for chronic organ remodeling? For infection diseases, xenobiotic toxicity and deficiencies forming an identical pathologic pattern in different individuals is understandable and logical: The same infection, xenobiotic, or deficiency strikes the same target, which results in identical pathology. The same is true for Mendelian diseases: The same mutations lead to the same altered gene expressions and the same pathologic pattern. But why does this regularity hold true for chronic diseases with organ remodeling? Presumable causes (or risk factors) for a particular chronic disease differ in magnitude and duration between individuals, which should result in various series of transformations. Yet, mysteriously enough, pathological remodeling in a particular chronic disease always falls into a main dominating pattern, perpetuating and progressing in a similar fashion in different patients. Furthermore, some chronic diseases of different etiologies and dissimilar causes/risk factors manifest as identical or highly similar patterns of pathologic remodeling. HYPOTHESIS: I hypothesize that regulations governing a particular organ's chronic remodeling were selected in evolution as the safest response to various insults and physiologic stress conditions. This hypothesis implies that regulations directing diseased chronic remodeling always preexist but normally are controlled; this control can be disrupted by a diverse range of non-specific signals, liberating the pathway for identical pathologic remodeling. This hypothesis was tested in an analysis of arterial neointimal formation, the identical pathology occurring in different diseases and pathological conditions: graft vascular disease in organ transplantation, in-stent restenosis, peripheral arterial diseases, idiopathic intimal hyperplasia, Kawasaki disease, coronary atherosclerosis and as reaction to drugs. The hypothesis suggests that arterial intimal cells are poised between only two alternative pathways: the pathway with controlled intimal cell proliferation or the pathway where such control is disrupted, ultimately leading to the progressive neointimal pathology. By this property the arterial neointimal formation constitutes a special case of Kauffman's self-organization. This new hypothesis gives a parsimonious explanation for identical pathological patterns of arterial remodeling (neointimal formation), which occurs in diseases of different etiologies and due to dissimilar causes/risk factors, or without any etiology and causes/risk factors at all. This new hypothesis also suggests that regulation facilitating intimal cell proliferation cannot be overwritten or annulled because this feature is vital for arterial differentiation, cell renewal, and integrity. This hypothesis suggests that studying numerous, and likely interchangeable, non-specific signals that disrupt regulation controlling intimal cell proliferation is unproductive; instead, a study of the controlling regulation(s) itself should be a priority of our research.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- University of Pittsburgh, Pittsburgh, PA 15260, USA; University of Wisconsin, Madison, WI 53705, USA; Arrowhead Parmaceuticals, Madison, WI 53719, USA.
| |
Collapse
|
19
|
Markin AM, Sobenin IA, Grechko AV, Zhang D, Orekhov AN. Cellular Mechanisms of Human Atherogenesis: Focus on Chronification of Inflammation and Mitochondrial Mutations. Front Pharmacol 2020; 11:642. [PMID: 32528276 PMCID: PMC7247837 DOI: 10.3389/fphar.2020.00642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is one of the most common diseases of the cardiovascular system that leads to the development of life-threatening conditions, such as heart attack and stroke. Arthrosclerosis affects various arteries in the human body, but is especially dangerous in the arteries alimenting heart and brain, aorta, and arteries of the lower limbs. By its pathophysiology, atherosclerosis is an inflammatory disease. During the pathological process, lesions of arterial intima in the form of focal thickening are observed, which form atherosclerotic plaques as the disease progresses further. Given the significance of atherosclerosis for the global health, the search for novel effective therapies is highly prioritized. However, despite the constant progress, our understanding of the mechanisms of atherogenesis is still incomplete. One of the remaining puzzles in atherosclerosis development is the focal distribution of atherosclerotic lesions in the arterial wall. It implies the existence of certain mosaicism within the tissue, with some areas more susceptible to disease development than others, which may prove to be important for novel therapy development. There are many hypotheses explaining this phenomenon, for example, the influence of viruses, and the spread in the endothelium of the vessel multinucleated giant endothelial cells. We suggest the local variations of the mitochondrial genome as a possible explanation of this mosaicism. In this review, we discuss the role of genetic variations in the nuclear and mitochondrial genomes that influence the development of atherosclerosis. Changes in the mitochondrial and nuclear genome have been identified as independent factors for the development of the disease, as well as potential diagnostic markers.
Collapse
Affiliation(s)
- Alexander M Markin
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, Moscow, Russia
| | - Igor A Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Alexander N Orekhov
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
20
|
Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci 2020; 20:21-30. [PMID: 31465719 PMCID: PMC7029210 DOI: 10.17305/bjbms.2019.4320] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of arteries and it affects the structure and function of all three layers of the coronary artery wall. Current theories suggest that the dysfunction of endothelial cells is one of the initial steps in the development of atherosclerosis. The view that the tunica intima normally consists of a single layer of endothelial cells attached to the subendothelial layer and internal elastic membrane has been questioned in recent years. The structure of intima changes with age and it becomes multilayered due to migration of smooth muscle cells from the media to intima. At this stage, the migration and proliferation of smooth muscle cells do not cause pathological changes in the intima. The multilayering of intima is classically considered to be an important stage in the development of atherosclerosis, but in fact atherosclerotic plaques develop only focally due to the interplay of various processes that involve the resident and invading inflammatory cells. The tunica media consists of multiple layers of smooth muscle cells that produce the extracellular matrix, and this layer normally does not contain microvessels. During the development of atherosclerosis, the microvessels from the tunica adventitia or from the lumen may penetrate thickened media to provide nutrition and oxygenation. According to some theories, the endothelial dysfunction of these nutritive vessels may significantly contribute to the atherosclerosis of coronary arteries. The adventitia contains fibroblasts, progenitor cells, immune cells, microvessels, and adrenergic nerves. The degree of inflammatory cell infiltration into the adventitia, which can lead to the formation of tertiary lymphoid organs, correlates with the severity of atherosclerotic plaques. Coronary arteries are surrounded by perivascular adipose tissue that also participates in the atherosclerotic process.
Collapse
Affiliation(s)
- Aleksandra Milutinović
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Dušan Šuput
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Ruda Zorc-Pleskovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; International Center for Cardiovascular Diseases MC Medicor d.d., Izola, Slovenia.
| |
Collapse
|
21
|
Ye B, Wu ZH, Tsui TY, Zhang BF, Su X, Qiu YH, Zheng XT. lncRNA KCNQ1OT1 Suppresses the Inflammation and Proliferation of Vascular Smooth Muscle Cells through IκBa in Intimal Hyperplasia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:62-72. [PMID: 32146419 PMCID: PMC7058709 DOI: 10.1016/j.omtn.2020.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/31/2022]
Abstract
Inflammation and proliferation of vascular smooth muscle cells (VSMCs) are the key events in intimal hyperplasia. This study aimed to explore the mechanism by which long non-coding RNA (lncRNA) KCNQ1OT1 affects VSMC inflammation and proliferation in this context. A vein graft (VG) model was established in mice to introduce intimal hyperplasia. Isolated normal VSMCs were induced with platelet-derived growth factor type BB (PDGF-BB), and the cell proliferation, migration, and secretion of inflammatory factors were determined. The results showed that KCNQ1OT1 was downregulated in the VSMCs from mice with intimal hyperplasia and in the PDGF-BB-treated VSMCs, and such downregulation of KCNQ1OT1 resulted from the increased methylation level in the KCNQ1OT1 promoter. Overexpressing KCNQ1OT1 suppressed PDFG-BB-induced VSMC proliferation, migration, and secretion of inflammatory factors. In VSMCs, KCNQ1OT1 bound to the nuclear transcription factor kappa Ba (IκBa) protein and increased the cellular IκBa level by reducing phosphorylation and promoting ubiquitination of the IκBa protein. Meanwhile, KCNQ1OT1 promoted the expression of IκBa by sponging miR-221. The effects of KCNQ1OT1 knockdown on promoting VSMC proliferation, migration, and secretion of inflammatory factors were abolished by IκBa overexpression. The roles of KCNQ1OT1 in reducing the intimal area and inhibiting IκBa expression were proved in the VG mouse model after KCNQ1OT1 overexpression. In conclusion, KCNQ1OT1 attenuated intimal hyperplasia by suppressing the inflammation and proliferation of VSMCs, in which the mechanism upregulated IκBa expression by binding to the IκBa protein and sponging miR-221.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Cardiology, the Key Lab of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Zi-Heng Wu
- Department of Vascular Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tung Yu Tsui
- Division of Oncology, Hepatobiliary and Transplant Surgery, University Medical Center Rostock, Rostock 18055, Germany
| | - Bao-Fu Zhang
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiang Su
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Yi-Hui Qiu
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiang-Tao Zheng
- Department of Vascular Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
22
|
Prolonged Hyperoxygenation Treatment Improves Vein Graft Patency and Decreases Macrophage Content in Atherosclerotic Lesions in ApoE3*Leiden Mice. Cells 2020; 9:cells9020336. [PMID: 32024075 PMCID: PMC7072413 DOI: 10.3390/cells9020336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable atherosclerotic plaques frequently show plaque angiogenesis which increases the chance of rupture and thrombus formation leading to infarctions. Hypoxia plays a role in angiogenesis and inflammation, two processes involved in the pathogenesis of atherosclerosis. We aim to study the effect of resolution of hypoxia using carbogen gas (95% O2, 5% CO2) on the remodeling of vein graft accelerated atherosclerotic lesions in ApoE3*Leiden mice which harbor plaque angiogenesis. Single treatment resulted in a drastic decrease of intraplaque hypoxia, without affecting plaque composition. Daily treatment for three weeks resulted in 34.5% increase in vein graft patency and increased lumen size. However, after three weeks intraplaque hypoxia was comparable to the controls, as were the number of neovessels and the degree of intraplaque hemorrhage. To our surprise we found that three weeks of treatment triggered ROS accumulation and subsequent Hif1a induction, paralleled with a reduction in the macrophage content, pointing to an increase in lesion stability. Similar to what we observed in vivo, in vitro induction of ROS in bone marrow derived macrophages lead to increased Hif1a expression and extensive DNA damage and apoptosis. Our study demonstrates that carbogen treatment did improve vein graft patency and plaque stability and reduced intraplaque macrophage accumulation via ROS mediated DNA damage and apoptosis but failed to have long term effects on hypoxia and intraplaque angiogenesis.
Collapse
|
23
|
Luo Z, Deng H, Fang Z, Zeng A, Chen Y, Zhang W, Lu Q. Ligustilide Inhibited Rat Vascular Smooth Muscle Cells Migration via c-Myc/MMP2 and ROCK/JNK Signaling Pathway. J Food Sci 2019; 84:3573-3583. [PMID: 31762036 DOI: 10.1111/1750-3841.14936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMCs) excessive migration, a basic change of pathological intimal thickening, can lead to serious cardiovascular diseases such as atherosclerosis, myocardial infarction, and stroke. Ligustilide (LIG), the main active ingredient of angelica volatile oil, has been demonstrated to exert protective effects on the cardiovascular and cerebrovascular, circulatory system, and immune function. However, whether it protects against intimal thickening and VSMCs excessive migration and its underlying mechanism remains largely unknown. The aim of this study is to investigate the effect of LIG on VSMCs migration and its underlying mechanism. The protective effect of LIG on VSMCs excessive migration was assessed using an atherosclerotic spontaneously hypertensive rat model and an angiotensin II (AngII)-induced VSMCs migration model. The results showed that LIG exerted a protective effect against pathological intimal thickening as demonstrated by decreasing VSMCs migration in vivo and in vitro. In vivo, intimal thickening and VSMCs migration were inhibited and LIG performed a suppressive effect on the expression of c-Myc protein while enhanced phenotypic transformation related proteins α-SMA expression. Meanwhile, the administration of LIG significantly lowered the blood pressure and blood lipids level in atherosclerotic spontaneously hypertensive rats. In vitro, LIG suppressed AngII-induced VSMCs migration and downregulated the expression of migration related protein c-Myc, MMP2, ROCK1, ROCK2, p-JNK, and JNK. These findings suggested the protective effect of LIG on VSMCs migration was associated with the decrement of c-Myc/MMP2 signaling pathway and ROCK-JNK signaling pathway. Thus, LIG may serve as a novel therapeutic agent for preventing cardiovascular disease.
Collapse
Affiliation(s)
- Zhenhui Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Huijian Deng
- The First Affiliated Hospital, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China.,Panyu Central Hospital, Guangzhou, 510006, China
| | - Zicen Fang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China.,The Third Affiliated Hospital of Zhongshan Univ., Guangzhou, 510006, China
| | - Ao Zeng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Yuankun Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Wei Zhang
- The First Affiliated Hospital, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Qun Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| |
Collapse
|
24
|
Influence of Morbid Obesity and Bariatric Surgery Impact on the Carotid Adventitial Vasa Vasorum Signal. Obes Surg 2019; 28:3935-3942. [PMID: 30030728 DOI: 10.1007/s11695-018-3410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION/PURPOSE Adventitial vasa vasorum (VV) expansion to the avascular intima precedes an increase in carotid intima-media thickness. However, factors involved in the development of the atherosclerotic process and its reversibility remain unclear. We aimed to evaluate the VV signal in both morbid obesity and after bariatric surgery (BS). MATERIALS/METHODS We conducted a case-control study to examine the VV signal in the carotid of 40 morbidly obese patients and 40 non-obese controls. The effect of BS was evaluated in 33 patients. Contrast-enhanced carotid ultrasound was used to assess the VV signal. RESULTS The mean VV density was higher in obese than in non-obese subjects (0.739 ± 0.117 vs. 0.570 ± 0.111, p < 0.001). The VV signal positively correlated with BMI (p < 0.001) and waist circumference (p = 0.001) but was not related to cIMT. The stepwise multivariate regression analysis revealed that waist circumference (beta = 0.507, p < 0.001) together with fasting plasma glucose (beta = 0.229, p = 0.024) were independently associated with the VV signal (R2 = 0.382). Before BS, the median VV signal correlated with soluble intercellular adhesion molecule 1 (p = 0.022). After a 12-month follow-up, a 12.0% decrease in VV (0.731 ± 0.126 vs. 0.643 ± 0.115, p = 0.003) was observed. In the univariate analysis, the decrease in VV was associated with the baseline VV density (p < 0.001), baseline systolic blood pressure (p = 0.019) and a decrease in sICAM (p = 0.005). However, only baseline systolic pressure (beta = 0.417, p = 0.024) independently predicted the absolute change in VV signal (R2 = 0.174). CONCLUSIONS Morbidly obesity is associated with increased VV density. In addition, BS appears to reduce the earlier expansion of the adventitial vasa vasorum.
Collapse
|
25
|
Pahk K, Noh H, Joung C, Jang M, Song HY, Kim KW, Han K, Hwang JI, Kim S, Kim WK. A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. J Transl Med 2019; 17:274. [PMID: 31429778 PMCID: PMC6700999 DOI: 10.1186/s12967-019-2024-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Background Neointimal hyperplasia and its related arterial stiffness are the crucial pathophysiological features in atherosclerosis and in-stent restenosis. Cluster of differentiation 147 (CD147), a member of the immunoglobulin super family that induces the expression of matrix metalloproteinase-9 (MMP-9) by dimerization, may play important roles in neointimal hyperplasia and may therefore be an effective target for the treatment of this condition. Here, we investigated whether a novel CD147 inhibitor SP-8356 ((1S,5R)-4-(3,4-dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one) reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. Methods Neointimal hyperplasia was induced in Sprague–Dawley rats by partial ligation of the right carotid artery combined with a high fat diet and vitamin D injection. Rats were subdivided into vehicle, SP-8356 (50 mg/kg), and rosuvastatin (10 mg/kg) groups. The drugs were administrated via intraperitoneal injections for 4 weeks. The elasticity of blood vessels was assessed by measuring pulse wave velocity using Doppler ultrasonography before sacrifice. Histomolecular analysis was carried out on harvested carotid arteries. Results SP-8356 significantly reduced MMP activity by inhibiting CD147 dimerization. SP-8356 reduced neointimal hyperplasia and prevented the deterioration of vascular elasticity. SP-8356 had a greater inhibitory effect on neointimal hyperplasia than did rosuvastatin. Furthermore, rosuvastatin did not improve vascular elasticity. SP-8356 increased the expression of smooth muscle myosin heavy chain (SM-MHC), but decreased the expression of collagen type III and MMP-9 in the neointimal region. In contrast to SP-8356, rosuvastatin did not alter the expression of SM-MHC or MMP-9. Conclusions The ability of SP-8356 to reduce neointimal hyperplasia and improve arterial stiffness in affected carotid artery suggests that SP-8356 could be a promising therapeutic drug for vascular remodeling disorders involving neointimal hyperplasia and arterial stiffness.
Collapse
Affiliation(s)
- Kisoo Pahk
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea.,Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Hyojin Noh
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Chanmin Joung
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Mi Jang
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Hwa Young Song
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kihoon Han
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Won-Ki Kim
- Institute for Inflammation Control, Korea University, Seoul, South Korea. .,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea.
| |
Collapse
|
26
|
López-Cano C, Rius F, Sánchez E, Gaeta AM, Betriu À, Fernández E, Yeramian A, Hernández M, Bueno M, Gutiérrez-Carrasquilla L, Dalmases M, Lecube A. The influence of sleep apnea syndrome and intermittent hypoxia in carotid adventitial vasa vasorum. PLoS One 2019; 14:e0211742. [PMID: 30721271 PMCID: PMC6363284 DOI: 10.1371/journal.pone.0211742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Subjects with sleep apnea-hypopnea syndrome (SAHS) show an increased carotid intima-media thickness. However, no data exist about earlier markers of atheromatous disease, such as the proliferation and expansion of the adventitial vasa vasorum (VV) to the avascular intima in this setting. Our aim was to assess carotid VV density and its relationship with sleep parameters in a cohort of obese patients without prior vascular events. A total of 55 subjects evaluated for bariatric surgery were prospectively recruited. A non-attended respiratory polygraphy was performed. The apnea-hypopnea index (AHI) and the cumulative percentage of time spent with oxygen saturation below 90% (CT90) were assessed. Serum concentrations of soluble intercellular adhesion molecule 1, P-selectin, lipocalin-2 and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured. Contrast-enhanced carotid ultrasound was used to assess the VV density. Patients with SAHS (80%) showed a higher adventitial VV density (0.801±0.125 vs. 0.697±0.082, p = 0.005) and higher levels of sVCAM-1 (745.2±137.8 vs. 643.3±122.7 ng/ml, p = 0.035) than subjects with an AHI lower than 10 events/hour. In addition, a positive association exist between mean VV density and AHI (r = 0.445, p = 0.001) and CT90 (r = 0.399, p = 0.005). Finally, in the multiple linear regression analysis, female sex, fasting plasma glucose and AHI (but not CT90) were the only variables independently associated with the mean adventitial VV density (R2 = 0.327). In conclusion, a high VV density is present in obese subjects with SAHS, and chronic intermittent hypoxia is pointed as an independent risk factor for the development of this early step of atheromatous disease.
Collapse
Affiliation(s)
- Carolina López-Cano
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Ferran Rius
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Enric Sánchez
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Anna Michela Gaeta
- Respiratory Department, University Hospital Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Àngels Betriu
- Unit for the Detection and Treatment of Atherothrombotic Diseases (UDETMA V&R), University Hospital Arnau de Vilanova, Vascular and Renal Translational Research Group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Elvira Fernández
- Unit for the Detection and Treatment of Atherothrombotic Diseases (UDETMA V&R), University Hospital Arnau de Vilanova, Vascular and Renal Translational Research Group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Andree Yeramian
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Marta Hernández
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Marta Bueno
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Liliana Gutiérrez-Carrasquilla
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
| | - Mireia Dalmases
- Respiratory Department, University Hospital Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Albert Lecube
- Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) research group, IRBLleida, University of Lleida, Lleida, Catalonia, Spain
- Centro de Investigación en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- * E-mail:
| |
Collapse
|
27
|
Murashov IS, Volkov AM, Kazanskaya GM, Kliver EE, Chernyavsky AM, Nikityuk DB, Lushnikova EL. Immunohistochemical Features of Different Types of Unstable Atherosclerotic Plaques of Coronary Arteries. Bull Exp Biol Med 2018; 166:102-106. [PMID: 30417299 DOI: 10.1007/s10517-018-4297-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/30/2022]
Abstract
We performed a complex morphological study of samples of different types of unstable atherosclerotic plaques obtained from 33 men with occlusive coronary atherosclerosis, who underwent coronary artery endarterectomy during coronary artery bypass surgery. In the samples, expression of MMP-2 and MMP-9, collagen IV, CD31, CD34, factor VIII, and actin of smooth muscle cells was evaluated by morphometric and immunohistochemical methods. The maximum expression of MMP-9 was found in unstable plaques of the lipid type, where it 1.4- and 1.24-fold surpassed the corresponding levels in plaques of the inflammatory-erosive and degenerative-necrotic types. Unstable plaques of the degenerative-necrotic type are characterized by the most intensive expression of collagen IV in comparison with plaques of the inflammatory-erosive and lipid types (by 2.8 and 2.2 times, respectively). The maximum neovascularization was detected in inflammatory-erosive plaques, which was confirmed by enhanced expression of CD31 and CD34 markers in comparison with plaques of the lipid (by 7.6 and 18.95 times, respectively) and degenerative-necrotic (by 31.1 and 39.8 times) types.
Collapse
Affiliation(s)
- I S Murashov
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia. .,E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia.
| | - A M Volkov
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - G M Kazanskaya
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - E E Kliver
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A M Chernyavsky
- E. N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - D B Nikityuk
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
28
|
Immunohistochemical Phenotypes of Stable and Unstable Occlusive Atherosclerotic Plaques in Coronary Arteries. Bull Exp Biol Med 2018; 165:798-802. [PMID: 30353330 DOI: 10.1007/s10517-018-4268-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 10/28/2022]
Abstract
We performed a complex morphological analysis of atherosclerotic plaques obtained from 68 men with coronary atherosclerosis during coronary bypass surgery with endarterectomy. The expression of MMP-2 and MMP-9, collagen IV, CD31, CD34, factor VIII, and of smooth muscle cell actin was measured in the samples by morphometric and immunohistochemical methods. The expression of MMP-2 and MMP-9 as well as the intensity of neoangiogenesis estimated by the expression of CD31, CD34, and factor VIII in unstable plaques was significantly higher than in stable ones. Immunohistochemical analysis showed more intensive collagen IV expression in stable plaques. The observed differences in immunohistochemical phenotypes of stable and unstable atherosclerotic plaques reflect peculiarities of morphogenesis of atherosclerotic foci in the coronary arteries determining their further development.
Collapse
|
29
|
Molony C, McIntyre J, Maguire A, Hakimjavadi R, Burtenshaw D, Casey G, Di Luca M, Hennelly B, Byrne HJ, Cahill PA. Label-free discrimination analysis of de-differentiated vascular smooth muscle cells, mesenchymal stem cells and their vascular and osteogenic progeny using vibrational spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:343-353. [DOI: 10.1016/j.bbamcr.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 01/09/2023]
|