1
|
Zhao X, Ren T, Li S, Wang X, Hou R, Guan Z, Liu D, Zheng J, Shi M. A new perspective on the therapeutic potential of tumor metastasis: targeting the metabolic interactions between TAMs and tumor cells. Int J Biol Sci 2024; 20:5109-5126. [PMID: 39430253 PMCID: PMC11489172 DOI: 10.7150/ijbs.99680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Tumor-associated macrophages (TAMs) undergo metabolic reprogramming, encompassing glucose, amino acid, fatty acid metabolism, tricarboxylic acid (TCA) cycle, purine metabolism, and autophagy, within the tumor microenvironment (TME). The metabolic interdependencies between TAMs and tumor cells critically influence macrophage recruitment, differentiation, M2 polarization, and secretion of epithelial-mesenchymal transition (EMT)-related factors, thereby activating intratumoral EMT pathways and enhancing tumor cell invasion and metastasis. Tumor cell metabolic alterations, including hypoxia, metabolite secretion, aerobic metabolism, and autophagy, affect the TME's metabolic landscape, driving macrophage recruitment, differentiation, M2 polarization, and metabolic reprogramming, ultimately facilitating EMT, invasion, and metastasis. Additionally, macrophages can induce tumor cell EMT by reprogramming their aerobic glycolysis. Recent experimental and clinical studies have focused on the metabolic interactions between macrophages and tumor cells to control metastasis and inhibit tumor progression. This review highlights the regulatory role of TAM-tumor cell metabolic codependencies in EMT, offering valuable insights for TAM-targeted therapies in highly metastatic tumors. Modulating the metabolic interplay between tumors and TAMs represents a promising therapeutic strategy for treating patients with metastatic cancers.
Collapse
Affiliation(s)
- Xuan Zhao
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| |
Collapse
|
2
|
Zhuang K, Shu X, Meng W, Zhang D. Blended-protein changes body weight gain and intestinal tissue morphology in rats by regulating arachidonic acid metabolism and secondary bile acid biosynthesis induced by gut microbiota. Eur J Nutr 2024; 63:1605-1621. [PMID: 38512357 DOI: 10.1007/s00394-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The impact of dietary nutrients on body growth performance and the composition of gut microbes and metabolites is well-established. In this study, we aimed to determine whether dietary protein can regulate the physiological indexes and changes the intestinal tissue morphology in rats, and if dietary protein was a crucial regulatory factor for the composition, function, and metabolic pathways of the gut microbiota. METHOD A total of thirty male Sprague Dawley (SD) rats (inbred strain, weighted 110 ± 10 g) were randomly assigned to receive diets containing animal-based protein (whey protein, WP), plant-based protein (soybean protein, SP), or a blended protein (soybean-whey proteins, S-WP) for a duration of 8 weeks. To investigate the effects of various protein supplement sources on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing association study and fecal metabolomics profiling on the SD rats. Additionally, we performed analyses of growth indexes, serum biochemical indexes, and intestinal morphology. RESULTS The rats in S-WP and WP group exhibited a significantly higher body weight and digestibility of dietary protein compared to the SP group (P < 0.05). The serum total protein content of rats in the WP and S-WP groups was significantly higher (P < 0.05) than that in SP group, and the SP group exhibited significantly lower (P < 0.05) serum blood glucose levels compared to the other two groups. The morphological data showed the rats in the S-WP group exhibited significantly longer villus height and shallower crypt depth (P < 0.05) than the SP group. The gut microbial diversity of the SP and S-WP groups exhibited a higher level than that of the WP group, and the microbiomes of the WP and S-WP groups are more similar compared to those of the SP group. The Arachidonic acid metabolism pathway is the most significant KEGG pathway when comparing the WP group and the SP group, as well as when comparing the SP group and the S-WP group. CONCLUSION The type of dietary proteins exerted a significant impact on the physiological indices of SD rats. Intake of S-WP diet can enhance energy provision, improve the body's digestion and absorption of nutrients, as well as promote intestinal tissue morphology. In addition, dietary protein plays a crucial role in modulating fecal metabolites by regulating the composition of the gut microbiota. Metabolomics analysis revealed that the changes in the levels of arachidonic acid metabolites and secondary bile acid metabolite induced by Clostridium_sensu_stricto_1 and [Eubacterium]_coprostanoligenes_group maybe the primarily causes of intestinal morphological differences.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weihong Meng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
- National Coarse Cereals Engineering Research Center, Daqing, China.
| |
Collapse
|
3
|
Ruan X, Zhang X, Liu L, Zhang J. Mechanism of Xiaoyao San in treating non-alcoholic fatty liver disease with liver depression and spleen deficiency: based on bioinformatics, metabolomics and in vivo experiments. J Biomol Struct Dyn 2024; 42:5128-5146. [PMID: 37440274 DOI: 10.1080/07391102.2023.2231544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Xiaoyao san (XYS) plays an important role in treatment of non-alcoholic fatty liver disease (NAFLD) with liver stagnation and spleen deficiency, but its specific mechanism is still unclear. This study aimed to investigate the material basis and mechanism by means of network pharmacology, metabolomics, systems biology and molecular docking methods. On this basis, NAFLD rat model with liver stagnation and spleen deficiency was constructed and XYS was used to intervene, and liver histopathology, biochemical detection, enzyme-linked immunosorbent assay, quantitative PCR assay and western blotting were used to further verify the mechanism. Through the above research methods, network pharmacology study showed that there were 94 targets in total for XYS in the treatment of NAFLD. Metabolomics study showed that NAFLD with liver depression and spleen deficiency had a total of 73 differential metabolites. Systems biology found that PTGS2 and PPARG were the core targets; Quercetin, kaempferol, naringenin, beta-sitosterol and stigmasterol were the core active components; AA, cAMP were the core metabolites. And molecular docking showed that the core active components can act well on the key targets. Animal experiments showed that XYS could improve liver histopathology, increase 5HT and NA, decrease INS and FBG, improve blood lipids and liver function, decrease AA, increase cAMP, down-regulate PTGS2, up-regulate PPARG, and decrease PGE2 and 15d-PGJ2. In conclusion, XYS might treat NAFLD with liver depression and spleen deficiency by down-regulating PTGS2, up-regulating PPARG, reducing AA content, increasing cAMP, improving insulin resistance, affecting glucose and lipid metabolism, inhibiting oxidative stress and inflammatory response.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaofeng Ruan
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoming Zhang
- School of Acupuncture - Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Liming Liu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Liver Medicine, Hubei No.3 People's Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
4
|
Gaiaschi L, De Luca F, Roda E, Ferrari B, Casali C, Inguscio CR, Gola F, Pelloni E, Savino E, Ravera M, Rossi P, Bottone MG. A Phyto-mycotherapeutic Supplement, Namely Ganostile, as Effective Adjuvant in Brain Cancer Management: An In Vitro Study Using U251 Human Glioblastoma Cell Line. Int J Mol Sci 2024; 25:6204. [PMID: 38892392 PMCID: PMC11172483 DOI: 10.3390/ijms25116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The current standard oncotherapy for glioblastoma is limited by several adverse side effects, leading to a short-term patient survival rate paralleled by a worsening quality of life (QoL). Recently, Complementary and Integrative Medicine's (CIM) innovative approaches have shown positive impacts in terms of better response to treatment, side effect reduction, and QoL improvement. In particular, promising potential in cancer therapy has been found in compounds coming from phyto- and mycotherapy. The objective of this study was to demonstrate the beneficial effects of a new phyto-mycotherapy supplement, named Ganostile, in the human glioblastoma cell line U251, in combination with chemotherapeutic agents, i.e., Cisplatin and a new platinum-based prodrug. Choosing a supplement dosage that mimicked oral supplementation in humans (about 1 g/day), through in vitro assays, microscopy, and cytometric analysis, it has emerged that the cells, after 48hr continuous exposure to Ganostile in combination with the chemical compounds, showed a higher mortality and a lower proliferation rate than the samples subjected to the different treatments administered individually. In conclusion, our data support the use of Ganostile in integrative oncology protocols as a promising adjuvant able to amplify conventional and new drug effects and also reducing resistance mechanisms often observed in brain tumors.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Claudio Casali
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Chiara Rita Inguscio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Federica Gola
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Enrico Pelloni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Savino
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103:e38245. [PMID: 38788009 PMCID: PMC11124608 DOI: 10.1097/md.0000000000038245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Collapse
Affiliation(s)
- Nasser M. Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan S. Alharbi
- Pharmacy Practice Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S. Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Kosianova А, Pak O, Bryukhovetskiy I. Regulation of cancer stem cells and immunotherapy of glioblastoma (Review). Biomed Rep 2024; 20:24. [PMID: 38170016 PMCID: PMC10758921 DOI: 10.3892/br.2023.1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Glioblastoma (GB) is one of the most adverse diagnoses in oncology. Complex current treatment results in a median survival of 15 months. Resistance to treatment is associated with the presence of cancer stem cells (CSCs). The present review aimed to analyze the mechanisms of CSC plasticity, showing the particular role of β-catenin in regulating vital functions of CSCs, and to describe the molecular mechanisms of Wnt-independent increase of β-catenin levels, which is influenced by the local microenvironment of CSCs. The present review also analyzed the reasons for the low effectiveness of using medication in the regulation of CSCs, and proposed the development of immunotherapy scenarios with tumor cell vaccines, containing heterogenous cancer cells able of producing a multidirectional antineoplastic immune response. Additionally, the possibility of managing lymphopenia by transplanting hematopoietic stem cells from a healthy sibling and using clofazimine or other repurposed drugs that reduce β-catenin concentration in CSCs was discussed in the present study.
Collapse
Affiliation(s)
- Аleksandra Kosianova
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Oleg Pak
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Igor Bryukhovetskiy
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| |
Collapse
|
7
|
Ohmura K, Tomita H, Hara A. Peritumoral Edema in Gliomas: A Review of Mechanisms and Management. Biomedicines 2023; 11:2731. [PMID: 37893105 PMCID: PMC10604286 DOI: 10.3390/biomedicines11102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Treating malignant glioma is challenging owing to its highly invasive potential in healthy brain tissue and the formation of intense surrounding edema. Peritumoral edema in gliomas can lead to severe symptoms including neurological dysfunction and brain herniation. For the past 50 years, the standard treatment for peritumoral edema has been steroid therapy. However, the discovery of cerebral lymphatic vessels a decade ago prompted a re-evaluation of the mechanisms involved in brain fluid regulation and the formation of cerebral edema. This review aimed to describe the clinical features of peritumoral edema in gliomas. The mechanisms currently known to cause glioma-related edema are summarized, the limitations in current cerebral edema therapies are discussed, and the prospects for future cerebral edema therapies are presented. Further research concerning edema surrounding gliomas is needed to enhance patient prognosis and improve treatment efficacy.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Department of Neurosurgery, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| | - Akira Hara
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (K.O.)
| |
Collapse
|
8
|
Qiu J, Li Q, Li J, Zhou F, Sang P, Xia Z, Wang W, Wang L, Yu Y, Jiang J. Complementary roles of EP2 and EP4 receptors in malignant glioma. Br J Pharmacol 2023; 180:2623-2640. [PMID: 37232020 PMCID: PMC10524591 DOI: 10.1111/bph.16148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM) is the most aggressive brain tumour in the central nervous system, but the current treatment is very limited and unsatisfactory. PGE2 -initiated cAMP signalling via EP2 and EP4 receptors is involved in the tumourigenesis of multiple cancer types. However, whether or how EP2 and EP4 receptors contribute to GBM growth largely remains elusive. EXPERIMENTAL APPROACH We performed comprehensive data analysis of gene expression in human GBM samples and determined their expression correlations through multiple bioinformatics approaches. A time-resolved fluorescence energy transfer (TR-FRET) assay was utilized to characterize PGE2 -mediated cAMP signalling via EP2 and EP4 receptors in human glioblastoma cells. Using recently reported potent and selective small-molecule antagonists, we determined the effects of inhibition of EP2 and EP4 receptors on GBM growth in subcutaneous and intracranial tumour models. KEY RESULTS The expression of both EP2 and EP4 receptors was upregulated and highly correlated with a variety of tumour-promoting cytokines, chemokines, and growth factors in human gliomas. Further, they were heterogeneously expressed in human GBM cells, where they compensated for each other to mediate PGE2 -initiated cAMP signalling and to promote colony formation, cell invasion and migration. Inhibition of EP2 and EP4 receptors revealed that these receptors might mediate GBM growth, angiogenesis, and immune evasion in a compensatory manner. CONCLUSION AND IMPLICATIONS The compensatory roles of EP2 and EP4 receptors in GBM development and growth suggest that concurrently targeting these two PGE2 receptors might represent a more effective strategy than inhibiting either alone for GBM treatment.
Collapse
Affiliation(s)
- Jiange Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Junqi Li
- Medical Research Center, Institute of Neuroscience, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Fengmei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Peng Sang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zhongkun Xia
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
9
|
Chen HC, Chang WC, Chuang JY, Chang KY, Liou JP, Hsu TI. The complex role of eicosanoids in the brain: Implications for brain tumor development and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188957. [PMID: 37488051 DOI: 10.1016/j.bbcan.2023.188957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Eicosanoids are a family of bioactive lipids that play diverse roles in the normal physiology of the brain, including neuronal signaling, synaptic plasticity, and regulation of cerebral blood flow. In the brain, eicosanoids are primarily derived from arachidonic acid, which is released from membrane phospholipids in response to various stimuli. Prostaglandins (PGs) and leukotrienes (LTs) are the major classes of eicosanoids produced in the brain, and they act through specific receptors to modulate various physiological and pathological processes. Dysregulation of eicosanoids has been implicated in the development and progression of brain tumors, including glioblastoma (GBM), meningioma, and medulloblastoma. Eicosanoids have been shown to promote tumor cell proliferation, migration, invasion, angiogenesis, and resistance to therapy. Particularly, PGE2 promotes GBM cell survival and resistance to chemotherapy. Understanding the role of eicosanoids in brain tumors can inform the development of diagnostic and prognostic biomarkers, as well as therapeutic strategies that target eicosanoid pathways. Cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) inhibitors have been shown to reduce the growth and invasiveness of GBM cells. Moreover, eicosanoids have immunomodulatory effects that can impact the immune response to brain tumors. Understanding the role of eicosanoids in the immune response to brain tumors can inform the development of immunotherapy approaches for these tumors. Overall, the complex role of eicosanoids in the brain underscores the importance of further research to elucidate their functions in normal physiology and disease, and highlights the potential for developing novel therapeutic approaches that target eicosanoid pathways in brain tumors.
Collapse
Affiliation(s)
- Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chang Chang
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jian-Ying Chuang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Jing-Ping Liou
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
10
|
De Martino M, Daviaud C, Minns HE, Lazarian A, Wacker A, Costa AP, Attarwala N, Chen Q, Choi SW, Rabadàn R, McIntire LBJ, Gartrell RD, Kelly JM, Laiakis EC, Vanpouille-Box C. Radiation therapy promotes unsaturated fatty acids to maintain survival of glioblastoma. Cancer Lett 2023; 570:216329. [PMID: 37499741 DOI: 10.1016/j.canlet.2023.216329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Radiation therapy (RT) is essential for the management of glioblastoma (GBM). However, GBM frequently relapses within the irradiated margins, thus suggesting that RT might stimulate mechanisms of resistance that limits its efficacy. GBM is recognized for its metabolic plasticity, but whether RT-induced resistance relies on metabolic adaptation remains unclear. Here, we show in vitro and in vivo that irradiated GBM tumors switch their metabolic program to accumulate lipids, especially unsaturated fatty acids. This resulted in an increased formation of lipid droplets to prevent endoplasmic reticulum (ER) stress. The reduction of lipid accumulation with genetic suppression and pharmacological inhibition of the fatty acid synthase (FASN), one of the main lipogenic enzymes, leads to mitochondrial dysfunction and increased apoptosis of irradiated GBM cells. Combination of FASN inhibition with focal RT improved the median survival of GBM-bearing mice. Supporting the translational value of these findings, retrospective analysis of the GLASS consortium dataset of matched GBM patients revealed an enrichment in lipid metabolism signature in recurrent GBM compared to primary. Overall, these results demonstrate that RT drives GBM resistance by generating a lipogenic environment permissive to GBM survival. Targeting lipid metabolism might be required to develop more effective anti-GBM strategies.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Hanna E Minns
- Department of Pediatrics, Pediatrics Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - Artur Lazarian
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Anja Wacker
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ana Paula Costa
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Seung-Won Choi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raùl Rabadàn
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Robyn D Gartrell
- Department of Pediatrics, Pediatrics Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Evagelia C Laiakis
- Department of Oncology, Georgetown University, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Coluccia M. Cyclooxygenase and Cancer: Fundamental Molecular Investigations. Int J Mol Sci 2023; 24:12342. [PMID: 37569718 PMCID: PMC10418830 DOI: 10.3390/ijms241512342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The involvement of prostaglandins in cancer was first observed in human esophageal carcinoma cells, whose invasive and metastatic potential in nude mice was found to be related to PGE2 and PGF2a production [...].
Collapse
Affiliation(s)
- Mauro Coluccia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
12
|
Hu G, Fang Y, Xu H, Wang G, Yang R, Gao F, Wei Q, Gu Y, Zhang C, Qiu J, Gao N, Wen Q, Qiao H. Identification of Cytochrome P450 2E1 as a Novel Target in Glioma and Development of Its Inhibitor as an Anti-Tumor Agent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301096. [PMID: 37283464 PMCID: PMC10427391 DOI: 10.1002/advs.202301096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Indexed: 06/08/2023]
Abstract
Glioblastoma (GBM) is a devastating inflammation-related cancer for which novel therapeutic targets are urgently required. Previous studies of the authors indicate Cytochrome P450 2E1 (CYP2E1) as a novel inflammatory target and develop a specific inhibitor Q11. Here it is demonstrated that CYP2E1 overexpression is closely related to higher malignancy in GBM patients. CYP2E1 activity is positively correlated with tumor weight in GBM rats. Significantly higher CYP2E1 expression accompanied by increased inflammation is detected in a mouse GBM model. Q11, 1-(4-methyl-5-thialzolyl) ethenone, a newly developed specific inhibitor of CYP2E1 here remarkably attenuates tumor growth and prolongs survival in vivo. Q11 does not directly affect tumor cells but blocks the tumor-promoting effect of microglia/macrophage (M/Mφ) in the tumor microenvironment through PPARγ-mediated activation of the STAT-1 and NF-κB pathways and inhibition of the STAT-3 and STAT-6 pathways. The effectiveness and safety of targeting CYP2E1 in GBM are further supported by studies with Cyp2e1 knockout rodents. In conclusion, a pro-GBM mechanism in which CYP2E1-PPARγ-STAT-1/NF-κB/STAT-3/STAT-6 axis fueled tumorigenesis by reprogramming M/Mφ and Q11 as a promising anti-inflammatory agent for GBM treatment is uncovered.
Collapse
Affiliation(s)
- Guiming Hu
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
- Department of PathologyThe Second Affiliated Hospital of Zhengzhou UniversityJingba RoadZhengzhou450014China
| | - Yan Fang
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
- Department of PathologyThe Second Affiliated Hospital of Zhengzhou UniversityJingba RoadZhengzhou450014China
| | - Haiwei Xu
- School of Pharmaceutical SciencesZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Guanzhe Wang
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Rui Yang
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Fei Gao
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Qingda Wei
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Yuhan Gu
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Cunzhen Zhang
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Jinhuan Qiu
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Na Gao
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Qiang Wen
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| | - Hailing Qiao
- Institute of Clinical PharmacologyZhengzhou UniversityKexue RoadZhengzhou450001China
| |
Collapse
|
13
|
Boylan J, Byers E, Kelly DF. The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3994. [PMID: 38107346 PMCID: PMC10723753 DOI: 10.18103/mra.v11i6.3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Malignant brain tumors are aggressive and difficult to treat. Glioblastoma is the most common and lethal form of primary brain tumor, often found in patients with no genetic predisposition. The median life expectancy for individuals diagnosed with this condition is 6 months to 2 years and there is no known cure. New paradigms in cancer biology implicate a small subset of tumor cells in initiating and sustaining these incurable brain tumors. Here, we discuss the heterogenous nature of glioblastoma and theories behind its capacity for therapy resistance and recurrence. Within the cancer landscape, cancer stem cells are thought to be both tumor initiators and major contributors to tumor heterogeneity and therapy evasion and such cells have been identified in glioblastoma. At the cellular level, disruptions in the delicate balance between differentiation and self-renewal spur transformation and support tumor growth. While rapidly dividing cells are more sensitive to elimination by traditional treatments, glioblastoma stem cells evade these measures through slow division and reversible exit from the cell cycle. At the molecular level, glioblastoma tumor cells exploit several signaling pathways to evade conventional therapies through improved DNA repair mechanisms and a flexible state of senescence. We examine these common evasion techniques while discussing potential molecular approaches to better target these deadly tumors. Equally important, the presented information encourages the idea of augmenting conventional treatments with novel glioblastoma stem cell-directed therapies, as eliminating these harmful progenitors holds great potential to modulate tumor recurrence.
Collapse
Affiliation(s)
- Jack Boylan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Zhang H, Ma B, Li N, Zhang L, Xu J, Zhang S, Guo Z, Han C, Xu S, Li X, Zhang B. SNHG1, a KLF4-upregulated gene, promotes glioma cell survival and tumorigenesis under endoplasmic reticulum stress by upregulating BIRC3 expression. J Cell Mol Med 2023. [PMID: 37243389 DOI: 10.1111/jcmm.17779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the resistance to endoplasmic reticulum (ER) stress in many cancers. However, ER stress-regulated lncRNAs are still unknown in glioma. In the present study, we investigated the altered lncRNAs upon ER stress in glioma and found that small nucleolar RNA host gene 1 (SNHG1) was markedly increased in response to ER stress. Increased SNHG1 suppressed ER stress-induced apoptosis and promoted tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that SNHG1 elevated BIRC3 mRNA stability and enhanced BIRC3 expression. We also found that KLF4 transcriptionally upregulated SNHG1 expression and contributed to the ER stress-induced SNHG1 increase. Collectively, the present findings indicated that SNHG1 is a KLF4-regulated lncRNA that suppresses ER stress-induced apoptosis and facilitates gliomagenesis by elevating BIRC3 expression.
Collapse
Affiliation(s)
- Hongqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Binbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Na Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Li Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jialu Xu
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shuqi Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziming Guo
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shasha Xu
- Department of Gastroendoscopy, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Neurosurgery Department of School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Gillette JS, Wang EJ, Dowd RS, Toms SA. Barriers to overcoming immunotherapy resistance in glioblastoma. Front Med (Lausanne) 2023; 10:1175507. [PMID: 37275361 PMCID: PMC10232794 DOI: 10.3389/fmed.2023.1175507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, known for its poor prognosis and high recurrence rate. Current standard of care includes surgical resection followed by combined radiotherapy and chemotherapy. Although immunotherapies have yielded promising results in hematological malignancies, their successful application in GBM remains limited due to a host of immunosuppressive factors unique to GBM. As a result of these roadblocks, research efforts have focused on utilizing combinatorial immunotherapies that target networks of immune processes in GBM with promising results in both preclinical and clinical trials, although limitations in overcoming the immunosuppressive factors within GBM remain. In this review, we aim to discuss the intrinsic and adaptive immune resistance unique to GBM and to summarize the current evidence and outcomes of engineered and non-engineered treatments targeted at overcoming GBM resistance to immunotherapy. Additionally, we aim to highlight the most promising strategies of targeted GBM immunotherapy combinatorial treatments and the insights that may directly improve the current patient prognosis and clinical care.
Collapse
|
16
|
Sluter MN, Li Q, Yasmen N, Chen Y, Li L, Hou R, Yu Y, Yang CY, Meibohm B, Jiang J. The inducible prostaglandin E synthase (mPGES-1) in neuroinflammatory disorders. Exp Biol Med (Maywood) 2023; 248:811-819. [PMID: 37515545 PMCID: PMC10468642 DOI: 10.1177/15353702231179926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
17
|
Chen Y, Nagib MM, Yasmen N, Sluter MN, Littlejohn TL, Yu Y, Jiang J. Neuroinflammatory mediators in acquired epilepsy: an update. Inflamm Res 2023; 72:683-701. [PMID: 36745211 DOI: 10.1007/s00011-023-01700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood-brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marwa M Nagib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor L Littlejohn
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
18
|
Dean PT, Hooks SB. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front Oncol 2023; 12:1116014. [PMID: 36776369 PMCID: PMC9909545 DOI: 10.3389/fonc.2022.1116014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of malignant glioma. The GBM tumor microenvironment (TME) is a complex ecosystem of heterogeneous cells and signaling factors. Glioma associated macrophages and microglia (GAMs) constitute a significant portion of the TME, suggesting that their functional attributes play a crucial role in cancer homeostasis. In GBM, an elevated GAM population is associated with poor prognosis and therapeutic resistance. Neoplastic cells recruit these myeloid populations through release of chemoattractant factors and dysregulate their induction of inflammatory programs. GAMs become protumoral advocates through production a variety of cytokines, inflammatory mediators, and growth factors that can drive cancer proliferation, invasion, immune evasion, and angiogenesis. Among these inflammatory factors, cyclooxygenase-2 (COX-2) and its downstream product, prostaglandin E2 (PGE2), are highly enriched in GBM and their overexpression is positively correlated with poor prognosis in patients. Both tumor cells and GAMs have the ability to signal through the COX-2 PGE2 axis and respond in an autocrine/paracrine manner. In the GBM TME, enhanced signaling through the COX-2/PGE2 axis leads to pleotropic effects that impact GAM dynamics and drive tumor progression.
Collapse
|
19
|
Babaeenezhad E, Moradi Sarabi M, Rajabibazl M, Oraee-Yazdani S, Karima S. Global and Regional DNA methylation silencing of PPARγ Associated with Glioblastoma Multiforme Pathogenesis. Mol Biol Rep 2023; 50:589-597. [PMID: 36355265 DOI: 10.1007/s11033-022-08051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The relationship between peroxisome proliferator-activated receptor gamma (PPARγ) expression level and epigenetic modifications occurring in glioblastoma multiforme (GBM) pathogenesis is largely unknown. Herein, we examine the association of PPARγ expression with its promoter and genomic global DNA methylation status, as well as DNA methyltransferases (DNMTs) gene expression in GBM patients. METHODS We examined the patterns of promoter methylation and PPARγ expression in 26 GBM tissues and 13 adjacent non-tumor tissues by methylation-specific PCR (MSP), real-time PCR, and ELISA, respectively. Also, we examined the genomic global 5-methyl cytosine levels and DNMTs gene expression using ELISA and real-time PCR methods, respectively. RESULTS We found that hypermethylation on a specific region of the PPARγ promoter is significantly associated with the downregulation of the PPARγ gene and protein level in GBM patients. Interestingly, the amount of 5-methyl cytosine level was significantly reduced in GBM patients and positively correlated with PPARγ protein expression. Furthermore, the expression level of DNMT1, DNMT3A, and 3B were upregulated in GBM patients and the average expression level of all three DNMTs was positively correlated with tumor area. Also, we found that tumors from cortical regions exhibited a higher global DNA hypomethylation and PPARγ hypermethylation was related to the increase in GBM risk. CONCLUSION Our study demonstrated that global DNA methylation and PPARγ epigenetic silencing is associated with the GBM risk. Our data provide a novel molecular mechanistic insight into epigenetic silencing of PPARγ in GBM patients that may be relevant as a key tumor marker for GBM pathogenesis.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran. .,Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Ren F, Zhu K, Wang Y, Zhou F, Pang S, Chen L. Proliferation, apoptosis and invasion of human lung cancer cells are associated with NFATc1. Exp Ther Med 2022; 25:49. [PMID: 36588811 PMCID: PMC9780516 DOI: 10.3892/etm.2022.11748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of nuclear factor of activated T cells c1 (NFATc1) is closely associated with the progression of numerous types of cancer. When NFATc1 expression becomes dysregulated in some types of cancer, this alteration can promote malignant transformation and thereby progression of cancer. NFATc1 expression has been demonstrated to be upregulated in lung cancer cells. This suggests that knockdown of NFATc1 in lung cancer cells may be a therapeutic marker for the treatment of cancer. In the present study, the effects of NFATc1 on the proliferation, apoptosis, invasion and migration of NCI-H1299 and A549 lung cancer cell lines were explored. Lentivirus infection was used to establish a cell model of NFATc1 knockdown in A549 and NCI-H1299 lung cancer cells. Reverse transcription-quantitative PCR was subsequently performed to detect NFATc1 expression in these human lung cancer cells. MTT, wound healing, colony formation and Transwell invasion assays, and flow cytometry were then performed to measure the proliferation, invasion, apoptosis and cell cycle of the cells. Finally, western blot analysis was performed to investigate the mechanism underlying the involvement of NFATc1 in these processes. NFATc1 knockdown was found to significantly inhibit the proliferation, clone formation, migration and invasion of the cells. Furthermore, the cell cycle was arrested at the G1 phase and the expression levels of the target proteins located downstream in the signaling pathway, namely CDK4, c-Myc, ERK, p38 and N-cadherin, were decreased. Following NFATc1 knockdown, the percentages of apoptotic cells were increased, and the expression levels of Bax, cleaved caspase-3 and E-cadherin were also increased. Taken together, the results of the present study suggested that NFATc1 serves an oncogenic role in lung cancer. In terms of the underlying mechanism, NFATc1 promoted the proliferation of lung cancer cells by inhibiting the MAPK and epithelial-to-mesenchymal transition signaling pathways, suggesting that NFATc1 may be a novel target for therapeutic intervention for the treatment of lung cancer.
Collapse
Affiliation(s)
- Fenghai Ren
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Kaibin Zhu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yanbo Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Fucheng Zhou
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Sainan Pang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Lantao Chen
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China,Correspondence to: Dr Lantao Chen, Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
21
|
Hou R, Yu Y, Jiang J. Prostaglandin E2 in neuroblastoma: Targeting synthesis or signaling? Biomed Pharmacother 2022; 156:113966. [DOI: 10.1016/j.biopha.2022.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
22
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
23
|
Rahimifard M, Bagheri Z, Hadjighassem M, Jaktaji RP, Behroodi E, Haghi-Aminjan H, Movahed MA, Latifi H, Hosseindoost S, Zarghi A, Pourahmad J. Investigation of anti-cancer effects of new pyrazino[1,2-a]benzimidazole derivatives on human glioblastoma cells through 2D in vitro model and 3D-printed microfluidic device. Life Sci 2022; 302:120505. [PMID: 35358594 DOI: 10.1016/j.lfs.2022.120505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
AIMS Recent studies show targeted therapy of new pyrazino[1,2-a]benzimidazole derivatives with COX-II inhibitory effects on different cancer cells. This study aimed to investigate 2D cell culture and 3D spheroid formation of glioblastoma multiforme (GBM) cells using a microfluidic device after exposure to these compounds. MAIN METHODS After isolating astrocytes from human GBM samples, IC50 of 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) were determined as 13 μM and 85 μM, respectively. Then, in all experiments, cells were exposed to subtoxic concentrations of L1 (6.5 μM) and L2 (42.5 μM), which were ½IC50. In the following, in two phases, cell cycle, migration, and gene expression through 2D cell culture and tumor spheroid formation ability using a 3D-printed microfluidic chip were assessed. KEY FINDINGS The obtained results showed that both compounds have positive effects in reducing G2/M cell population and GBM cell migration. Furthermore, real-time gene expression data showed that L1 and L2 significantly impact the upregulation of P21 and P53 and down-regulation of cyclin D1, MMP2, and MMP9. On the other hand, GBM spheroids exposed to L1 and L2 become smaller with fewer live cells. SIGNIFICANCE Our data on human isolated astrocyte cells in 2D and 3D cell culture conditions showed that L1 and L2 compounds could reduce GBM cells' invasion by controlling gene expressions associated with migration and proliferation. Moreover, designing microfluidic platform and related cell culture protocols facilitates the broad screening of 3D multicellular tumor spheroids derived from GBM tumor biopsies and provides effective drug development for brain gliomas.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Behroodi
- Laser and Plasma Research Institute, Shahid Beheshti University G.C., Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahsa Azami Movahed
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University G.C., Tehran, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Hsu SY, Wen ZH, Shih PC, Kuo HM, Lin SC, Liu HT, Lee YH, Wang YJ, Chen WF, Chen NF. Sinularin Induces Oxidative Stress-Mediated Apoptosis and Mitochondrial Dysfunction, and Inhibits Angiogenesis in Glioblastoma Cells. Antioxidants (Basel) 2022; 11:1433. [PMID: 35892635 PMCID: PMC9394238 DOI: 10.3390/antiox11081433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a cancer of largely unknown cause that leads to a 5-year survival rate of approximately 7% in the United States. Current treatment strategies are not effective, indicating a strong need for the development of novel therapies. In this study, the outcomes of sinularin, a marine-derived product, were evaluated against GBM. Our cellular studies using GBM cells revealed that sinularin induces cell death. The measured half maximal inhibitory concentrations (IC50) values ranged from 30 to 6 μM at 24-72 h. Cell death was induced via the generation of ROS leading to mitochondria-mediated apoptosis. This was evidenced by annexin V/propidium iodine staining and an upregulation of cleaved forms of the pro-apoptotic proteins caspase 9, 3, and PARP, and supported by CellROXTM Green, MitoSOXTM Red, and CM-H2DCFDA staining methods. In addition, we observed a downregulation of the antioxidant enzymes SOD1/2 and thioredoxin. Upon treatment with sinularin at the ~IC50 concentration, mitochondrial respiration capacities were significantly reduced, as shown by measuring the oxygen consumption rates and enzymatic complexes of oxidative phosphorylation. Intriguingly, sinularin significantly inhibited indicators of angiogenesis such as vessel tube formation, cell migration, and cell mobility in human umbilical vein endothelial cells or the fusion cell line EA.Hy926. Lastly, in a transgenic zebrafish model, intersegmental vessel formation was also significantly inhibited by sinularin treatment. These findings indicate that sinularin exerts anti-brain cancer properties that include apoptosis induction but also antiangiogenesis.
Collapse
Affiliation(s)
- Shih-Yuan Hsu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-Y.H.); (Z.-H.W.); (P.-C.S.); (H.-M.K.); (Y.-H.L.); (Y.-J.W.); (W.-F.C.)
- Department of Neurosurgery, Pingtung Christian Hospital, Pingtung 90059, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-Y.H.); (Z.-H.W.); (P.-C.S.); (H.-M.K.); (Y.-H.L.); (Y.-J.W.); (W.-F.C.)
| | - Po-Chang Shih
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-Y.H.); (Z.-H.W.); (P.-C.S.); (H.-M.K.); (Y.-H.L.); (Y.-J.W.); (W.-F.C.)
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-Y.H.); (Z.-H.W.); (P.-C.S.); (H.-M.K.); (Y.-H.L.); (Y.-J.W.); (W.-F.C.)
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung 90059, Taiwan;
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
| | - Yi-Hsin Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-Y.H.); (Z.-H.W.); (P.-C.S.); (H.-M.K.); (Y.-H.L.); (Y.-J.W.); (W.-F.C.)
| | - Yi-Jen Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-Y.H.); (Z.-H.W.); (P.-C.S.); (H.-M.K.); (Y.-H.L.); (Y.-J.W.); (W.-F.C.)
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-Y.H.); (Z.-H.W.); (P.-C.S.); (H.-M.K.); (Y.-H.L.); (Y.-J.W.); (W.-F.C.)
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan
| |
Collapse
|
25
|
Lombardi F, Augello FR, Artone S, Ayroldi E, Giusti I, Dolo V, Cifone MG, Cinque B, Palumbo P. Cyclooxygenase-2 Upregulated by Temozolomide in Glioblastoma Cells Is Shuttled In Extracellular Vesicles Modifying Recipient Cell Phenotype. Front Oncol 2022; 12:933746. [PMID: 35936755 PMCID: PMC9355724 DOI: 10.3389/fonc.2022.933746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Temozolomide (TMZ) resistance is frequent in patients with glioblastoma (GBM), a tumor characterized by a marked inflammatory microenvironment. Recently, we reported that cyclooxygenase-2 (COX-2) is upregulated in TMZ-resistant GBM cells treated with high TMZ concentrations. Moreover, COX-2 activity inhibition significantly counteracted TMZ-resistance of GBM cells. Extracellular vesicles (EV) are considered crucial mediators in orchestrating GBM drug resistance by modulating the tumor microenvironment (TME) and affecting the surrounding recipient cell phenotype and behavior. This work aimed to verify whether TMZ, at low and clinically relevant doses (5-20 µM), could induce COX-2 overexpression in GBM cells (T98G and U87MG) and explore if secreted EV shuttled COX-2 to recipient cells. The effect of COX-2 inhibitors (COXIB), Celecoxib (CXB), or NS398, alone or TMZ-combined, was also investigated. Our results indicated that TMZ at clinically relevant doses upregulated COX-2 in GBM cells. COXIB treatment significantly counteracted TMZ-induced COX-2 expression, confirming the crucial role of the COX-2/PGE2 system in TMZ-resistance. The COXIB specificity was verified on U251MG, COX-2 null GBM cells. Western blotting of GBM-EV cells showed the COX-2 presence, with the same intracellular trend, increasing in EV derived from TMZ-treated cells and decreasing in those derived from COXIB+TMZ-treated cells. We then evaluated the effect of EV secreted by TMZ-treated cells on U937 and U251MG, used as recipient cells. In human macrophage cell line U937, the internalization of EV derived by TMZ-T98G cells led to a shift versus a pro-tumor M2-like phenotype. On the other hand, EV from TMZ-T98G induced a significant decrease in TMZ sensitivity in U251MG cells. Overall, our results, in confirming the crucial role played by COX-2 in TMZ-resistance, provide the first evidence of the presence and effective functional transfer of this enzyme through EV derived from GBM cells, with multiple potential consequences at the level of TME.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Serena Artone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Emira Ayroldi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Benedetta Cinque, ; Paola Palumbo,
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Benedetta Cinque, ; Paola Palumbo,
| |
Collapse
|
26
|
Palan F, Chatterjee B. Dendrimers in the context of targeting central nervous system disorders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Irshad K, Srivastava C, Malik N, Arora M, Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Upregulation of Atypical Cadherin FAT1 Promotes an Immunosuppressive Tumor Microenvironment via TGF-β. Front Immunol 2022; 13:813888. [PMID: 35720420 PMCID: PMC9205206 DOI: 10.3389/fimmu.2022.813888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-β cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-β1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-β1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-β1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-β1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-β1/2 secretion. Reduced TGF-β1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-β1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-β1/2.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
28
|
Hou R, Yu Y, Sluter MN, Li L, Hao J, Fang J, Yang J, Jiang J. Targeting EP2 receptor with multifaceted mechanisms for high-risk neuroblastoma. Cell Rep 2022; 39:111000. [PMID: 35732130 PMCID: PMC9282716 DOI: 10.1016/j.celrep.2022.111000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Prostaglandin E2 (PGE2) promotes tumor cell proliferation, migration, and invasion, fostering an inflammation-enriched microenvironment that facilitates angiogenesis and immune evasion. However, the PGE2 receptor subtype (EP1–EP4) involved in neuroblastoma (NB) growth remains elusive. Herein, we show that the EP2 receptor highly correlates with NB aggressiveness and acts as a predominant Gαs-coupled receptor mediating PGE2-initiated cyclic AMP (cAMP) signaling in NB cells with high-risk factors, including 11q deletion and MYCN amplification. Knockout of EP2 in NB cells blocks the development of xenografts, and its conditional knockdown prevents established tumors from progressing. Pharmacological inhibition of EP2 by our recently developed antagonist TG6-129 suppresses the growth of NB xenografts in nude mice and syngeneic allografts in immunocompetent hosts, accompanied by anti-inflammatory, antiangiogenic, and apoptotic effects. This proof-of-concept study suggests that the PGE2/EP2 signaling pathway contributes to NB malignancy and that EP2 inhibition by our drug-like compounds provides a promising strategy to treat this deadly pediatric cancer. Hou et al. discover that prostaglandin receptor EP2 highly correlates with the aggressiveness of neuroblastoma, where it acts as the primary PGE2 receptor mediating cAMP signaling. EP2 deficiency or inhibition suppresses neuroblastoma with high-risk factors including 11q deletion and MYCN amplification, demonstrating EP2 as a promising therapeutic target for neuroblastoma.
Collapse
Affiliation(s)
- Ruida Hou
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Jie Fang
- Department of Surgery, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
29
|
Kopecky J, Pérez JE, Eriksson H, Visse E, Siesjö P, Darabi A. Intratumoral administration of the antisecretory peptide AF16 cures murine gliomas and modulates macrophage functions. Sci Rep 2022; 12:4609. [PMID: 35301393 PMCID: PMC8930985 DOI: 10.1038/s41598-022-08618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma has remained the deadliest primary brain tumor while its current therapy offers only modest survival prolongation. Immunotherapy has failed to record notable benefits in routine glioblastoma treatment. Conventionally, immunotherapy relies on T cells as tumor-killing agents; however, T cells are outnumbered by macrophages in glioblastoma microenvironment. In this study, we explore the effect of AF16, a peptide from the endogenous antisecretory factor protein, on the survival of glioma-bearing mice, the tumor size, and characteristics of the tumor microenvironment with specific focus on macrophages. We elucidate the effect of AF16 on the inflammation-related secretome of human and murine macrophages, as well as human glioblastoma cells. In our results, AF16 alone and in combination with temozolomide leads to cure in immunocompetent mice with orthotopic GL261 gliomas, as well as prolonged survival in immunocompromised mice. We recorded decreased tumor size and changes in infiltration of macrophages and T cells in the murine glioma microenvironment. Human and murine macrophages increased expression of proinflammatory markers in response to AF16 treatment and the same effect was seen in human primary glioblastoma cells. In summary, we present AF16 as an immunomodulatory factor stimulating pro-inflammatory macrophages with a potential to be implemented in glioblastoma treatment protocols.
Collapse
Affiliation(s)
- Jan Kopecky
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden.
| | - Julio Enríquez Pérez
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Håkan Eriksson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden.,Section of Neurosurgery, Department of Clinical Sciences Lund, Skåne University Hospital, Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Barngatan 4, 221 85, Lund, Sweden
| |
Collapse
|
30
|
Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma. J Clin Med 2022; 11:jcm11041069. [PMID: 35207340 PMCID: PMC8880446 DOI: 10.3390/jcm11041069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches.
Collapse
|
31
|
Ljungblad L, Bergqvist F, Tümmler C, Madawala S, Olsen TK, Andonova T, Jakobsson PJ, Johnsen JI, Pickova J, Strandvik B, Kogner P, Gleissman H, Wickström M. Omega-3 fatty acids decrease CRYAB, production of oncogenic prostaglandin E 2 and suppress tumor growth in medulloblastoma. Life Sci 2022; 295:120394. [PMID: 35157910 DOI: 10.1016/j.lfs.2022.120394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/09/2022]
Abstract
AIMS Medulloblastoma (MB) is one of the most common malignant central nervous system tumors of childhood. Despite intensive treatments that often leads to severe neurological sequelae, the risk for resistant relapses remains significant. In this study we have evaluated the effects of the ω3-long chain polyunsaturated fatty acids (ω3-LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on MB cell lines and in a MB xenograft model. MAIN METHODS Effects of ω3-LCPUFA treatment of MB cells were assessed using the following: WST-1 assay, cell death probes, clonogenic assay, ELISA and western blot. MB cells were implanted into nude mice and the mice were randomized to DHA, or a combination of DHA and EPA treatment, or to control group. Treatment effects in tumor tissues were evaluated with: LC-MS/MS, RNA-sequencing and immunohistochemistry, and tumors, erythrocytes and brain tissues were analyzed with gas chromatography. KEY FINDINGS ω3-LCPUFA decreased prostaglandin E2 (PGE2) secretion from MB cells, and impaired MB cell viability and colony forming ability and increased apoptosis in a dose-dependent manner. DHA reduced tumor growth in vivo, and both PGE2 and prostacyclin were significantly decreased in tumor tissue from treated mice compared to control animals. All ω3-LCPUFA and dihomo-γ-linolenic acid increased in tumors from treated mice. RNA-sequencing revealed 10 downregulated genes in common among ω3-LCPUFA treated tumors. CRYAB was the most significantly altered gene and the downregulation was confirmed by immunohistochemistry. SIGNIFICANCE Our findings suggest that addition of DHA and EPA to the standard MB treatment regimen might be a novel approach to target inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Linda Ljungblad
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Filip Bergqvist
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Conny Tümmler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Samanthi Madawala
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Teodora Andonova
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jana Pickova
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition Karolinska Institutet, NEO, Flemingsberg, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Astrid Lindgrens Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Gleissman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Guha A, Waris S, Nabors LB, Filippova N, Gorospe M, Kwan T, King PH. The versatile role of HuR in Glioblastoma and its potential as a therapeutic target for a multi-pronged attack. Adv Drug Deliv Rev 2022; 181:114082. [PMID: 34923029 PMCID: PMC8916685 DOI: 10.1016/j.addr.2021.114082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 12/12/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a malignant and aggressive brain tumor with a median survival of ∼15 months. Resistance to treatment arises from the extensive cellular and molecular heterogeneity in the three major components: glioma tumor cells, glioma stem cells, and tumor-associated microglia and macrophages. Within this triad, there is a complex network of intrinsic and secreted factors that promote classic hallmarks of cancer, including angiogenesis, resistance to cell death, proliferation, and immune evasion. A regulatory node connecting these diverse pathways is at the posttranscriptional level as mRNAs encoding many of the key drivers contain adenine- and uridine rich elements (ARE) in the 3' untranslated region. Human antigen R (HuR) binds to ARE-bearing mRNAs and is a major positive regulator at this level. This review focuses on basic concepts of ARE-mediated RNA regulation and how targeting HuR with small molecule inhibitors represents a plausible strategy for a multi-pronged therapeutic attack on GBM.
Collapse
Affiliation(s)
- Abhishek Guha
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Saboora Waris
- Shaheed Zulfiqar Ali Bhutto Medical University, PIMS, G-8, Islamabad, Pakistan
| | - Louis B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Natalia Filippova
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, United States
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Peter H King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, United States.
| |
Collapse
|
33
|
Up-Regulation of Cyclooxygenase-2 (COX-2) Expression by Temozolomide (TMZ) in Human Glioblastoma (GBM) Cell Lines. Int J Mol Sci 2022; 23:ijms23031545. [PMID: 35163465 PMCID: PMC8835858 DOI: 10.3390/ijms23031545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
TMZ-resistance remains a main limitation in glioblastoma (GBM) treatment. TMZ is an alkylating agent whose cytotoxicity is modulated by O6-methylguanine-DNA methyltransferase (MGMT), whose expression is determined by MGMT gene promoter methylation status. The inflammatory marker COX-2 has been implicated in GBM tumorigenesis, progression, and stemness. COX-2 inhibitors are considered a GBM add-on treatment due to their ability to increase TMZ-sensitivity. We investigated the effect of TMZ on COX-2 expression in GBM cell lines showing different COX-2 levels and TMZ sensitivity (T98G and U251MG). β-catenin, MGMT, and SOX-2 expression was analyzed. The effects of NS398, COX-2 inhibitor, alone or TMZ-combined, were studied evaluating cell proliferation by the IncuCyte® system, cell cycle/apoptosis, and clonogenic potential. COX-2, β-catenin, MGMT, and SOX-2 expression was evaluated by RT-PCR, Western blotting, and immunofluorescence and PGE2 by ELISA. Our findings, sustaining the role of COX-2/PGE2 system in TMZ-resistance of GBM, show, for the first time, a relevant, dose-dependent up-regulation of COX-2 expression and activity in TMZ-treated T98G that, in turn, correlated with chemoresistance. Similarly, all the COX-2-dependent signaling pathways involved in TMZ-resistance also resulted in being up-modulated after treatment with TMZ. NS398+TMZ was able to reduce cell proliferation and induce cell cycle arrest and apoptosis. Moreover, NS398+TMZ counteracted the resistance in T98G preventing the TMZ-induced COX-2, β-catenin, MGMT, and SOX-2 up-regulation.
Collapse
|
34
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
35
|
Wang EJ, Chen JS, Jain S, Morshed RA, Haddad AF, Gill S, Beniwal AS, Aghi MK. Immunotherapy Resistance in Glioblastoma. Front Genet 2021; 12:750675. [PMID: 34976006 PMCID: PMC8718605 DOI: 10.3389/fgene.2021.750675] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. Despite treatment consisting of surgical resection followed by radiotherapy and adjuvant chemotherapy, survival remains poor at a rate of 26.5% at 2 years. Recent successes in using immunotherapies to treat a number of solid and hematologic cancers have led to a growing interest in harnessing the immune system to target glioblastoma. Several studies have examined the efficacy of various immunotherapies, including checkpoint inhibitors, vaccines, adoptive transfer of lymphocytes, and oncolytic virotherapy in both pre-clinical and clinical settings. However, these therapies have yielded mixed results at best when applied to glioblastoma. While the initial failures of immunotherapy were thought to reflect the immunoprivileged environment of the brain, more recent studies have revealed immune escape mechanisms created by the tumor itself and adaptive resistance acquired in response to therapy. Several of these resistance mechanisms hijack key signaling pathways within the immune system to create a protumoral microenvironment. In this review, we discuss immunotherapies that have been trialed in glioblastoma, mechanisms of tumor resistance, and strategies to sensitize these tumors to immunotherapies. Insights gained from the studies summarized here may help pave the way for novel therapies to overcome barriers that have thus far limited the success of immunotherapy in glioblastoma.
Collapse
Affiliation(s)
- Elaina J. Wang
- Department of Neurological Surgery, The Warren Alpert School of Medicine, Brown University, Providence, RI, United States
| | - Jia-Shu Chen
- Department of Neurological Surgery, The Warren Alpert School of Medicine, Brown University, Providence, RI, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Ramin A. Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alexander F. Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Sabraj Gill
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Angad S. Beniwal
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
36
|
Li J, Hu X, Luo T, Lu Y, Feng Y, Zhang H, Liu D, Fan X, Wang Y, Jiang L, Wang Y, Hao X, Shi T, Wang Z. N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation. Eur J Med Chem 2021; 226:113817. [PMID: 34537445 DOI: 10.1016/j.ejmech.2021.113817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma is one of the most lethal brain tumors. The crucial chemotherapy is mainly alkylating agents with modest clinical success. Given this desperate need and inspired by the encouraging results of a phase II trial via concomitant Topo I inhibitor plus COX-2 inhibitor, we designed a series of N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents based on structure modification on 1,5-naphthyridine derivatives (Topo I inhibitors). Notably, the target compounds I-1 (33.61 ± 1.15 μM) and I-8 (45.01 ± 2.37 μM) were confirmed to inhibit COX-2, while a previous reported compound (1,5-naphthyridine derivative) resulted nearly inactive towards COX-2 (IC50 > 150 μM). Besides, I-1 and I-8 exhibited higher anti-proliferation, anti-migration, anti-invasion effects than the parent compound 1,5-naphthyridine derivative, suggesting the success of modification based on the parent. Moreover, I-1 obviously repressed tumor growth in the C6 glioma orthotopic model (TGI = 66.7%) and U87MG xenograft model (TGI = 69.4%). Besides, I-1 downregulated PGE2, VEGF, MMP-9, and STAT3 activation, upregulated E-cadherin in the orthotopic model. More importantly, I-1 showed higher safety than temozolomide and different mechanism from temozolomide in the C6 glioma orthotopic model. All the evidence demonstrated that N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents could be promising for the glioma management.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Liming Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
37
|
Studzińska-Sroka E, Majchrzak-Celińska A, Zalewski P, Szwajgier D, Baranowska-Wójcik E, Kaproń B, Plech T, Żarowski M, Cielecka-Piontek J. Lichen-Derived Compounds and Extracts as Biologically Active Substances with Anticancer and Neuroprotective Properties. Pharmaceuticals (Basel) 2021; 14:ph14121293. [PMID: 34959693 PMCID: PMC8704315 DOI: 10.3390/ph14121293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
Lichens are a source of chemical compounds with valuable biological properties, structurally predisposed to penetration into the central nervous system (CNS). Hence, our research aimed to examine the biological potential of lipophilic extracts of Parmelia sulcata, Evernia prunastri, Cladonia uncialis, and their major secondary metabolites, in the context of searching for new therapies for CNS diseases, mainly glioblastoma multiforme (GBM). The extracts selected for the study were standardized for their content of salazinic acid, evernic acid, and (−)-usnic acid, respectively. The extracts and lichen metabolites were evaluated in terms of their anti-tumor activity, i.e., cytotoxicity against A-172 and T98G cell lines and anti-IDO1, IDO2, TDO activity, their anti-inflammatory properties exerted by anti-COX-2 and anti-hyaluronidase activity, antioxidant activity, and anti-acetylcholinesterase and anti-butyrylcholinesterase activity. The results of this study indicate that lichen-derived compounds and extracts exert significant cytotoxicity against GBM cells, inhibit the kynurenine pathway enzymes, and have anti-inflammatory properties and weak antioxidant and anti-cholinesterase properties. Moreover, evernic acid and (−)-usnic acid were shown to be able to cross the blood-brain barrier. These results demonstrate that lichen-derived extracts and compounds, especially (−)-usnic acid, can be regarded as prototypes of pharmacologically active compounds within the CNS, especially suitable for the treatment of GBM.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
- Correspondence:
| | - Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| |
Collapse
|
38
|
Rahimifard M, Haghi-Aminjan H, Hadjighassem M, Pourahmad Jaktaji R, Bagheri Z, Azami Movahed M, Zarghi A, Pourahmad J. Assessment of cytotoxic effects of new derivatives of pyrazino[1,2-a] benzimidazole on isolated human glioblastoma cells and mitochondria. Life Sci 2021; 286:120022. [PMID: 34626606 DOI: 10.1016/j.lfs.2021.120022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023]
Abstract
AIMS Glioblastoma multiforme (GBM) is a highly devastating malignant brain tumor with poor pharmacotherapy. Based on COX-2 inhibitory effects in preventing cancer progression, new pyrazino[1,2-a]benzimidazole derivatives were assessed on isolated human GBM cells. MAIN METHODS In this study, firstly, primary culture of astrocytes from human GBM samples was prepared and exposed to 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) for finding their half-maximal inhibitory concentration (IC50). In the following, in two phases, cell apoptosis pathway and mitochondrial markers were investigated on GBM and also HEK293 cells (as non-cancerous normal cells). KEY FINDINGS The MTT results represented a remarkable selective cytotoxic effect of both L1 and L2 on GBM cells, and interestingly not on normal cells. After 48 h, IC50 of L1 and L2 were calculated as 13 μM and 85 μM, respectively. Annexin/PI staining showed that L1 and L2 induce apoptosis in GBM cells, and caspase measurement showed that apoptosis occurs through mitochondrial signaling. In the clonogenic assay, GBM cells formed more paraclones and fewer holoclones after treating with L1 and L2. L1 and L2 also selectively enhanced mitochondrial damaged markers, including reactive oxygen species (ROS) formation, and mitochondrial swelling, decreased mitochondrial membrane potential (MMP) and cytochrome c release in isolated cancerous GBM mitochondria. SIGNIFICANCE Our findings on human primary astrocyte cells illustrated that L1 and L2 compounds, with COX-2 inhibitory effect, through the intrinsic pathway of apoptosis concerning mitochondrial damage enhancement have therapeutic potentials on GBM.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Faculty of Pharmacy, Department of Pharmacology/Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Cruz Flores VA, Menghani H, Mukherjee PK, Marrero L, Obenaus A, Dang Q, Khoutorova L, Reid MM, Belayev L, Bazan NG. Combined Therapy With Avastin, a PAF Receptor Antagonist and a Lipid Mediator Inhibited Glioblastoma Tumor Growth. Front Pharmacol 2021; 12:746470. [PMID: 34630114 PMCID: PMC8498947 DOI: 10.3389/fphar.2021.746470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive, highly proliferative, invasive brain tumor with a poor prognosis and low survival rate. The current standard of care for GBM is chemotherapy combined with radiation following surgical intervention, altogether with limited efficacy, since survival averages 18 months. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the dysregulation of numerous signaling pathways. Recently emerging therapies to precisely modulate tumor angiogenesis, inflammation, and oxidative stress are gaining attention as potential options to combat GBM. Using a mouse model of GBM, this study aims to investigate Avastin (suppressor of vascular endothelial growth factor and anti-angiogenetic treatment), LAU-0901 (a platelet-activating factor receptor antagonist that blocks pro-inflammatory signaling), Elovanoid; ELV, a novel pro-homeostatic lipid mediator that protects neural cell integrity and their combination as an alternative treatment for GBM. Female athymic nude mice were anesthetized with ketamine/xylazine, and luciferase-modified U87MG tumor cells were stereotactically injected into the right striatum. On post-implantation day 13, mice received one of the following: LAU-0901, ELV, Avastin, and all three compounds in combination. Bioluminescent imaging (BLI) was performed on days 13, 20, and 30 post-implantation. Mice were perfused for ex vivo MRI on day 30. Bioluminescent intracranial tumor growth percentage was reduced by treatments with LAU-0901 (43%), Avastin (77%), or ELV (86%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 72, 92, and 96%, respectively. Additionally, tumor reduction was confirmed by MRI on day 30, which shows a decrease in tumor volume by treatments with LAU-0901 (37%), Avastin (67%), or ELV (81.5%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 69, 78.7, and 88.6%, respectively. We concluded that LAU-0901 and ELV combined with Avastin exert a better inhibitive effect in GBM progression than monotherapy. To our knowledge, this is the first study that demonstrates the efficacy of these novel therapeutic regimens in a model of GBM and may provide the basis for future therapeutics in GBM patients.
Collapse
Affiliation(s)
- Valerie A Cruz Flores
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Pediatrics, Hematology-Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Hemant Menghani
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Pediatrics, Hematology-Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Luis Marrero
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvin, Irvine, CA, United States
| | - Quan Dang
- Department of Pediatrics, School of Medicine, University of California Irvin, Irvine, CA, United States
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Madigan M Reid
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ludmila Belayev
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
40
|
Yin D, Jin G, He H, Zhou W, Fan Z, Gong C, Zhao J, Xiong H. Celecoxib reverses the glioblastoma chemo-resistance to temozolomide through mitochondrial metabolism. Aging (Albany NY) 2021; 13:21268-21282. [PMID: 34497154 PMCID: PMC8457578 DOI: 10.18632/aging.203443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023]
Abstract
Temozolomide (TMZ) is used for the treatment of high-grade gliomas. Acquired chemoresistance is a serious limitation to the therapy with more than 90% of recurrent gliomas showing little response to a second line of chemotherapy. Therefore, it is necessary to explore an alternative strategy to enhance the sensitivity of glioblastoma (GBM) to TMZ in neuro-oncology. Celecoxib is well known and widely used in anti-inflammatory and analgesic. Cyclooxygenase-2 (COX-2) expression has been linked to the prognosis, angiogenesis, and radiation sensitivity of many malignancies such as primitive neuroectodermal tumor and advanced melanoma. The objective of this study was to explore the chemotherapy-sensitizing effect of celecoxib on TMZ in GBM cells and its potential mechanisms. From the study, we found that the combination therapy (TMZ 250uM+celecoxib 30uM) showed excellent inhibitory effect to the GBM, the LN229 and LN18, which were the TMZ resistant GBM cell lines. Our data suggest that the combination therapy may inhibits cell proliferation, increases apoptosis, and increases the autophagy on LN229 and LN18. The potential molecular mechanisms were related to mitochondrial metabolism and respiratory chain inhibition.
Collapse
Affiliation(s)
- Delong Yin
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Guoqing Jin
- Department of Intensive Care Unit, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Hong He
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wei Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhenbo Fan
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
41
|
Suryanti S, Agustina H, Aziz A, Yulianti H, Suryawathy B, Putri L. High Immunoexpression of COX-2 as a Metastatic Risk Factor in ccRCC without PD-L1 Involvement. Res Rep Urol 2021; 13:623-630. [PMID: 34466408 PMCID: PMC8403071 DOI: 10.2147/rru.s324510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Clear cell renal cell carcinoma (ccRCC) is the most lethal type of malignancy of the urinary tract system as it is resistant to chemotherapy and radiation and has a survival rate of less than 5% in cases of metastasis. Inflammation plays an essential role in the metastasis of ccRCC. Cyclooxygenase-2 (COX-2) is an inflammatory protein that affects the processes of carcinogenesis, invasion, migration, metastasis, and angiogenesis. COX-2 can modulate programmed death ligand-1 (PD-L1) expression and play a role in immune evasion, meaning that tumor cells are able to escape the body’s immune response and more easily metastasize. Purpose This study aims to determine the role of COX-2 and PD-L1 in the occurrence of ccRCC metastases. Materials and Methods This study is an observational analytical study, which employed a cross-sectional approach to examine the paraffin block samples of 40 ccRCC cases from Dr. Hasan Sadikin Hospital Bandung, Indonesia, between 2014 and 2021. Immunoexpression was measured using immunohistochemical staining for COX-2 in tumor cells and for PD-L1 in immune cells. PD-L1 calculation was measured using Qupath 0.2.3. digital software. Metastatic data were obtained using radiological imaging and pathological examinations. Meanwhile, the data were analyzed using the chi-square test for COX-2 and Fischer’s exact test for PD-L1. Results The research results revealed a significant association between COX-2 and the occurrence of metastases in ccRCC (p=0.001) with a prevalence odds ratio of 10.28. Positive PD-L1 immunoexpression of the immune cells (≥1%) was found in 14% (3/21) of the metastatic group and 5% (1/19) of the non-metastatic group (p=0.607). There was no association between COX-2 and PD-L1 immunoexpression (p=0.278). Conclusion This study shows that metastases in ccRCC patients are ten times as likely to be associated with high COX-2 immunoexpression than low COX-2 immunoexpression. COX-2 plays a role in the process of ccRCC metastasis without PD-L1 involvement.
Collapse
Affiliation(s)
- Sri Suryanti
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Hasrayati Agustina
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Afiati Aziz
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Herry Yulianti
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Bethy Suryawathy
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| | - Lestari Putri
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
42
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
43
|
Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, Synthesis and Biological Evaluation of New N-Acyl Hydrazones with a Methyl Sulfonyl Moiety as Selective COX-2 Inhibitors. Chem Biodivers 2021; 18:e2100521. [PMID: 34411436 DOI: 10.1002/cbdv.202100521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
The mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) is inhibition of specific prostaglandin (PG) synthesis by inhibition of cyclooxygenase (COX) enzymes. The two COX isoenzymes show 60 % similarity. It is known that the nonspecific side effects of conventional NSAIDs are physiologically caused by inhibition of the COX-1 enzyme. Therefore, the use of COX-2 selective inhibitors is seen to be a more beneficial approach in reducing these negative effects. However, some of the existing COX-2 selective inhibitors show cardiovascular side effects. Therefore, studies on the development of new selective COX-2 inhibitors remain necessary. It is important to develop new COX-2 inhibitors in the field of medicinal chemistry. Accordingly, novel N-acyl hydrazone derivatives were synthesized as new COX-2 inhibitors in this study. The hydrazone structure, also known for its COX activity, is important in terms of many biological activities and was preferred as the main structure in the design of these compounds. A methyl sulfonyl pharmacophore was added to the structure in order to increase the affinity for the polar side pocket present in the COX-2 enzyme. It is known that methyl sulfonyl groups are suitable for polar side pockets. The synthesis of the compounds (3a-3j) was characterized by spectroscopic methods. Evaluation of in vitro COX-1/COX-2 enzyme inhibition was performed by fluorometric method. According to the enzyme inhibition results, the obtained compounds displayed the predicted selectivity for COX-2 enzyme inhibition. Compound 3j showed important COX-2 inhibition with a value of IC50 =0.143 uM. Interaction modes between the COX-2 enzyme and compound 3j were investigated by docking studies.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.,Doping and Narcotic Compounds Analysis Research Laboratory, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| |
Collapse
|
44
|
Choi WS, Xu X, Goruk S, Wang Y, Patel S, Chow M, Field CJ, Godbout R. FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients 2021; 13:2664. [PMID: 34444824 PMCID: PMC8402214 DOI: 10.3390/nu13082664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Samir Patel
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Michael Chow
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| |
Collapse
|
45
|
Wang J, Huang TYT, Hou Y, Bartom E, Lu X, Shilatifard A, Yue F, Saratsis A. Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. SCIENCE ADVANCES 2021; 7:7/23/eabg4126. [PMID: 34078608 PMCID: PMC10166578 DOI: 10.1126/sciadv.abg4126] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 05/10/2023]
Abstract
Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are morbid brain tumors. Even with treatment survival is poor, making pHGG the number one cause of cancer death in children. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding histone H3. To investigate whether H3K27M is associated with distinct chromatin structure that alters transcription regulation, we generated the first high-resolution Hi-C maps of pHGG cell lines and tumor tissue. By integrating transcriptome (RNA-seq), enhancer landscape (ChIP-seq), genome structure (Hi-C), and chromatin accessibility (ATAC-seq) datasets from H3K27M and wild-type specimens, we identified tumor-specific enhancers and regulatory networks for known oncogenes. We identified genomic structural variations that lead to potential enhancer hijacking and gene coamplification, including A2M, JAG2, and FLRT1 Together, our results imply three-dimensional genome alterations may play a critical role in the pHGG epigenetic landscape and contribute to tumorigenesis.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tina Yi-Ting Huang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | - Amanda Saratsis
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
46
|
Fan X, Li J, Long L, Shi T, Liu D, Tan W, Zhang H, Wu X, Lei X, Wang Z. Design, synthesis and biological evaluation of N-anthraniloyl tryptamine derivatives as pleiotropic molecules for the therapy of malignant glioma. Eur J Med Chem 2021; 222:113564. [PMID: 34091208 DOI: 10.1016/j.ejmech.2021.113564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
COX-2 and STAT3 are two key culprits in the glioma microenvironment. Herein, to inhibit COX-2 and block STAT3 signaling, we disclosed 27 N-anthraniloyl tryptamine compounds based on the combination of melatonin derivatives and N-substituted anthranilic acid derivatives. Among them, NP16 showed the best antiproliferative activity and moderate COX-2 inhibition. Of note, NP16 decreased the level of p-JAK2 and p-STAT3, and blocked the nuclear translocation of STAT3 in GBM cell lines. Moreover, NP16 downregulated the MMP-9 expression of BV2 cells in a co-culture system of BV2 and C6 glioma cells, abrogated the proliferative/invasive/migratory abilities of GBM cells, induced apoptosis by ROS and the Bcl-2-regulated apoptotic pathway, and induced obvious G2/M arrest in glioma cells in vitro. Furthermore, NP16 displayed favorable pharmacokinetic profiles covering long half-life (11.43 ± 0.43 h) and high blood-brain barrier permeability. Finally, NP16 effectively inhibited tumor growth, promoted the survival rate, increased the expression of E-cadherin and reduced overproduction of PGE2, MMP-9, VEGF-A and the level of p-STAT3 in tumor tissue, and improved the anxiety-like behavior in C6 glioma model. All these evidences demonstrated N-anthraniloyl tryptamine derivatives as multifunctional anti-glioma agents with high potency could drain the swamp to beat glioma.
Collapse
Affiliation(s)
- Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Lin Long
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
47
|
Revision of Commonly Accepted Warburg Mechanism of Cancer Development: Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers by Raman Imaging. Cancers (Basel) 2021; 13:cancers13112599. [PMID: 34073216 PMCID: PMC8198470 DOI: 10.3390/cancers13112599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
We used Raman imaging to monitor changes in the redox state of the mitochondrial cytochromes in ex vivo human brain and breast tissues, surgically resected specimens of human tissues and in vitro human brain cells of normal astrocytes (NHA), astrocytoma (CRL-1718), glioblastoma (U87-MG) and medulloblastoma (Daoy), and human breast cells of normal cells (MCF 10A), slightly malignant cells (MCF7) and highly aggressive cells (MDA-MB-231) by means of Raman microspectroscopy at 532 nm. We visualized localization of cytochromes by Raman imaging in the major organelles in cancer cells. We demonstrated that the "redox state Raman marker" of the ferric low-spin heme in cytochrome c at 1584 cm-1 can serve as a sensitive indicator of cancer aggressiveness. We compared concentration of reduced cytochrome c and the grade of cancer aggressiveness in cancer tissues and single cells and specific organelles in cells: nucleous, mitochondrium, lipid droplets, cytoplasm and membrane. We found that the concentration of reduced cytochrome c becomes abnormally high in human brain tumors and breast cancers in human tissues. Our results reveal the universality of Raman vibrational characteristics of mitochondrial cytochromes in metabolic regulation in cancers that arise from epithelial breast cells and brain glial cells.
Collapse
|
48
|
Li J, Lv H, Che Y, Fan J. Inhibition of U87 Glioblastoma in BALB/c Nude Mice by Serenoa Repens Extract. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.271.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
COXIBs and 2,5-dimethylcelecoxib counteract the hyperactivated Wnt/β-catenin pathway and COX-2/PGE2/EP4 signaling in glioblastoma cells. BMC Cancer 2021; 21:493. [PMID: 33941107 PMCID: PMC8091781 DOI: 10.1186/s12885-021-08164-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the deadliest and the most common primary brain tumor in adults. The invasiveness and proliferation of GBM cells can be decreased through the inhibition of Wnt/β-catenin pathway. In this regard, celecoxib is a promising agent, but other COXIBs and 2,5-dimethylcelecoxib (2,5-DMC) await elucidation. Thus, the aim of this study was to analyze the impact of celecoxib, 2,5-DMC, etori-, rofe-, and valdecoxib on GBM cell viability and the activity of Wnt/β-catenin pathway. In addition, the combination of the compounds with temozolomide (TMZ) was also evaluated. Cell cycle distribution and apoptosis, MGMT methylation level, COX-2 and PGE2 EP4 protein levels were also determined in order to better understand the molecular mechanisms exerted by these compounds and to find out which of them can serve best in GBM therapy. METHODS Celecoxib, 2,5-DMC, etori-, rofe- and valdecoxib were evaluated using three commercially available and two patient-derived GBM cell lines. Cell viability was analyzed using MTT assay, whereas alterations in MGMT methylation level were determined using MS-HRM method. The impact of COXIBs, in the presence and absence of TMZ, on Wnt pathway was measured on the basis of the expression of β-catenin target genes. Cell cycle distribution and apoptosis analysis were performed using flow cytometry. COX-2 and PGE2 EP4 receptor expression were evaluated using Western blot analysis. RESULTS Wnt/β-catenin pathway was attenuated by COXIBs and 2,5-DMC irrespective of the COX-2 expression profile of the treated cells, their MGMT methylation status, or radio/chemoresistance. Celecoxib and 2,5-DMC were the most cytotoxic. Cell cycle distribution was altered, and apoptosis was induced after the treatment with celecoxib, 2,5-DMC, etori- and valdecoxib in T98G cell line. COXIBs and 2,5-DMC did not influence MGMT methylation status, but inhibited COX-2/PGE2/EP4 pathway. CONCLUSIONS Not only celecoxib, but also 2,5-DMC, etori-, rofe- and valdecoxib should be further investigated as potential good anti-GBM therapeutics.
Collapse
|
50
|
Lan YL, Zhang J. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomed Pharmacother 2021; 137:111416. [DOI: 10.1016/j.biopha.2021.111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
|