1
|
Liu Q, Gele J, Zhao K, Zhang S, Gu W, Zhao Z, Li X. TCCA/RSeSeR-Mediated Selenoalkoxy of Allenamides via a Radical Process: Synthesis of Selanyl-allylic N,O-Aminals. J Org Chem 2024; 89:15529-15541. [PMID: 39422135 DOI: 10.1021/acs.joc.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
An efficient TCCA (trichloroisocyanuric acid)/RSeSeR-mediated selenoalkoxy of allenamides for the construction of selanyl-allylic N,OA-aminal derivatives was developed. The reaction exhibits good functional group tolerance and high efficiency, affording the products in good to excellent yields. Mechanistic investigations indicated that a selanyl-allylic radical intermediate was first formed via the RSe radical added to the central carbon of allenamides, which subsequently furnished highly stable selanyl-allylic carbocation intermediate by abstraction of an electron by the chlorine radical. Moreover, this is the first report of using selenium reagent (RSeCl) to activate allenamides via a radical process.
Collapse
Affiliation(s)
- Qingsong Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jiri Gele
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Shuting Zhang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Wen Gu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Robello M, Nikolayevskiy H, Scerba MT, Nahui Palomino RA, Mercurio V, Appella DH. Prodrug Strategy Extends the Use of Anti-HIV Sulfanylbenzamides for Application In Vivo. ACS Pharmacol Transl Sci 2024; 7:259-273. [PMID: 38250006 PMCID: PMC10795369 DOI: 10.1021/acsptsci.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Sulfanylbenzamide thioesters are molecules with anti-HIV activity that disrupt zinc coordination in the viral protein NCp7. These molecules are useful as topical microbicides; however, they are too unstable to be used systemically. In this article, a nitroimidazole prodrug was used to protect the sulfanylbenzamide to convey blood stability and oral bioavailability to the molecule. Studies on the molecule called nipamovir were performed to assess the rate of prodrug cleavage, antiviral activity, mechanism of metabolism, and in vivo pharmacokinetics in several different species. An efficient and inexpensive synthesis of nipamovir is also described. The results indicate that nipamovir could be further developed as a new type of drug to treat HIV infection.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Herman Nikolayevskiy
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Michael T. Scerba
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Rogers Alberto Nahui Palomino
- Section on Intercellular Interactions, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United
States
| | - Vincenzo Mercurio
- Section on Intercellular Interactions, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United
States
| | - Daniel H. Appella
- Synthetic Bioactive Molecules Section, Laboratory of
Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center
Drive, Room 404, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Musalov MV, Amosova SV, Potapov VA. Selenium Dibromide Click Chemistry: The Efficient Synthesis of Novel Selenabicyclo[3.3.1]nonene-2 and -nonane Derivatives. Int J Mol Sci 2023; 24:17485. [PMID: 38139313 PMCID: PMC10744190 DOI: 10.3390/ijms242417485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Highly efficient and convenient methods for the preparation of 35 novel derivatives of 9-selenabicyclo[3.3.1]nonane and 9-selenabicyclo[3.3.1]nonene-2 in high yields based on the adduct of the transannular addition of SeBr2 to 1,5-cyclooctadiene were developed. The methods for the amination of the adduct made it possible to obtain both diamino selenabicyclo[3.3.1]nonane derivatives and their dihydrobromide salts in one step in 88-98% yields. The methods meet the criteria of click chemistry. Compounds with high glutathione peroxidase mimetic activity were found among water-soluble dihydrobromide salts. The selective reaction of 2,6-dibromo-9-selenabicyclo[3.3.1]nonane with acetonitrile to form 6-bromo-9-selenabicyclo[3.3.1]nonene-2 was discovered. The latter compound served as a promising starting material to give rise to the new class of selenabicyclo[3.3.1]nonene-2 derivatives, e.g., 6-alkoxy-9-selenabicyclo[3.3.1]nonenes were obtained in 94-99% yields.
Collapse
Affiliation(s)
- Maxim V. Musalov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (S.V.A.); (V.A.P.)
| | | | | |
Collapse
|
4
|
Zgheib S, Taha N, Zeiger M, Glushonkov O, Lequeu T, Anton H, Didier P, Boutant E, Mély Y, Réal E. The human cellular protein NoL12 is a specific partner of the HIV-1 nucleocapsid protein NCp7. J Virol 2023; 97:e0004023. [PMID: 37695057 PMCID: PMC10537728 DOI: 10.1128/jvi.00040-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) nucleocapsid protein (NCp7) is a nucleic acid chaperone protein with two highly conserved zinc fingers. To exert its key roles in the viral cycle, NCp7 interacts with several host proteins. Among them, the human NoL12 protein (hNoL12) was previously identified in genome wide screens as a potential partner of NCp7. hNoL12 is a highly conserved 25 kDa nucleolar RNA-binding protein implicated in the 5'end processing of ribosomal RNA in the nucleolus and thus in the assembly and maturation of ribosomes. In this work, we confirmed the NCp7/hNoL12 interaction in cells by Förster resonance energy transfer visualized by Fluorescence Lifetime Imaging Microscopy and co-immunoprecipitation. The interaction between NCp7 and hNoL12 was found to strongly depend on their both binding to RNA, as shown by the loss of interaction when the cell lysates were pretreated with RNase. Deletion mutants of hNoL12 were tested for their co-immunoprecipitation with NCp7, leading to the identification of the exonuclease domain of hNoL12 as the binding domain for NCp7. Finally, the interaction with hNoL12 was found to be specific of the mature NCp7 and to require NCp7 basic residues. IMPORTANCE HIV-1 mature nucleocapsid (NCp7) results from the maturation of the Gag precursor in the viral particle and is thus mostly abundant in the first phase of the infection which ends with the genomic viral DNA integration in the cell genome. Most if not all the nucleocapsid partners identified so far are not specific of the mature form. We described here the specific interaction in the nucleolus between NCp7 and the human nucleolar protein 12, a protein implicated in ribosomal RNA maturation and DNA damage response. This interaction takes place in the cell nucleolus, a subcellular compartment where NCp7 accumulates. The absence of binding between hNoL12 and Gag makes hNoL12 one of the few known specific cellular partners of NCp7.
Collapse
Affiliation(s)
- Sarwat Zgheib
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Nedal Taha
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Manon Zeiger
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Oleksandr Glushonkov
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Thiebault Lequeu
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Halina Anton
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Emmanuel Boutant
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Eléonore Réal
- CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
5
|
Cardia R, Cappellini G, Valentini M, Pieroni E. A combined molecular dynamics simulation and DFT study on mercapto-benzamide inhibitors for the HIV NCp7 protein. Phys Chem Chem Phys 2022; 24:25547-25554. [PMID: 36254678 DOI: 10.1039/d2cp03481f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Molecular dynamics and quantum simulations are performed to elucidate some aspects of the action mechanism of mercapto-benzamides, a proposed class of antivirals against HIV-1. These molecules act as prodrugs that, after modifications in the biological environment, are able to denature the HIV nucleocapsid protein 7, a metal binder protein, with two zinc finger motifs, vital for RNA maturation and viral replication. Despite their attractive features, these molecules and their biological target are not well understood. Simulations were performed to support a proposed action mechanism, based on the activation of mercapto-benzamides by acetylation, targeting a relatively rare protein hydrolyzed state, followed by trans-molecular acetylation from the molecule to the protein and finally the direct interaction of the molecular sulphur atom of mercapto-benzamides with the zinc atom coordinated by the protein. Our simulation results are in agreement with the NMR data about the zinc finger binding protein equilibrium configurations.
Collapse
Affiliation(s)
- R Cardia
- Dipartimento di Fisica, Università di Cagliari, 09042, Cagliari, Italy
- CRS4, Modelling, Simulation and Data Analysis Program, 09010, Pula, Italy.
| | - G Cappellini
- Dipartimento di Fisica, Università di Cagliari, 09042, Cagliari, Italy
- ETSF, European Theoretical Spectroscopy Facility, Italy
| | - M Valentini
- CRS4, Modelling, Simulation and Data Analysis Program, 09010, Pula, Italy.
| | - E Pieroni
- CRS4, Modelling, Simulation and Data Analysis Program, 09010, Pula, Italy.
| |
Collapse
|
6
|
The Utilization of Physiologically Active Molecular Components of Grape Seeds and Grape Marc. Int J Mol Sci 2022; 23:ijms231911165. [PMID: 36232467 PMCID: PMC9570270 DOI: 10.3390/ijms231911165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes (Vitis vinifera) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.
Collapse
|
7
|
Protti S, Fagnoni M. Recent Advances in Light-Induced Selenylation. ACS ORGANIC & INORGANIC AU 2022; 2:455-463. [PMID: 36855533 PMCID: PMC9955339 DOI: 10.1021/acsorginorgau.2c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Selenium-containing organic molecules have recently found a plethora of applications, ranging from organic synthesis to pharmacology and material sciences. In view of these concepts, the development of mild, efficient, and general protocols for the formation of C-Se bonds is desirable, and light induced approaches are appealing ways. The aim of this Review is to provide the reader with the most recent examples of light promoted selenylation processes.
Collapse
|
8
|
Laitinen T, Meili T, Koyioni M, Koutentis PA, Poso A, Hofmann-Lehmann R, Asquith CRM. Synthesis and evaluation of 1,2,3-dithiazole inhibitors of the nucleocapsid protein of feline immunodeficiency virus (FIV) as a model for HIV infection. Bioorg Med Chem 2022; 68:116834. [PMID: 35653871 DOI: 10.1016/j.bmc.2022.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
We disclose a series of potent anti-viral 1,2,3-dithiazoles, accessed through a succinct synthetic approach from 4,5-dichloro-1,2,3-dithiazolium chloride (Appel's salt). A series of small libraries of compounds were screened against feline immunodeficiency virus (FIV) infected cells as a model for HIV. This approach highlighted new structure activity relationship understanding and led to the development of sub-micro molar anti-viral compounds with reduced toxicity. In addition, insight into the mechanistic progress of this system is provided via advanced QM-MM modelling. The 1,2,3-dithiazole represents a versatile scaffold with potential for further development to treat both FIV and HIV.
Collapse
Affiliation(s)
- Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Maria Koyioni
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Regina Hofmann-Lehmann
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Azeredo JB, Penteado F, Nascimento V, Sancineto L, Braga AL, Lenardao EJ, Santi C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules 2022; 27:1597. [PMID: 35268698 PMCID: PMC8911681 DOI: 10.3390/molecules27051597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.
Collapse
Affiliation(s)
- Juliano B. Azeredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Uruguaiana 97501-970, RS, Brazil;
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Vanessa Nascimento
- Laboratório SupraSelen, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niteroi 24020-150, RJ, Brazil
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianopolis 88040-900, SC, Brazil;
| | - Eder João Lenardao
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| |
Collapse
|
10
|
Tatar E, Yaldız S, Kulabaş N, Vanderlinden E, Naesens L, Küçükgüzel İ. Synthesis and structure-activity relationship of L-methionine-coupled 1,3,4-thiadiazole derivatives with activity against influenza virus. Chem Biol Drug Des 2021; 99:398-415. [PMID: 34873848 DOI: 10.1111/cbdd.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.
Collapse
Affiliation(s)
- Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Seda Yaldız
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Evelien Vanderlinden
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
11
|
Menéndez-Arias L, Delgado R. Update and latest advances in antiretroviral therapy. Trends Pharmacol Sci 2021; 43:16-29. [PMID: 34742581 DOI: 10.1016/j.tips.2021.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022]
Abstract
Since the first cases of AIDS appeared in 1981, human immunodeficiency virus type 1 (HIV-1) infection has reached pandemic proportions. Forty years later, research has led to the approval of more than 30 antiretroviral drugs, while combination therapies have turned HIV-1 infection into a chronic, but manageable disease. Still, drug toxicity and acquired and transmitted drug resistance remain as major threats to therapy success. In this review, we provide an overview on currently available anti-HIV drugs and the latest developments in antiretroviral therapy, focused on new antiretroviral agents acting on known and unexploited antiviral targets, prevention therapies aimed to improve available drug combinations, and research on new long-acting therapies, particularly those involving novel drug candidates such as lenacapavir or islatravir.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rafael Delgado
- Laboratory of Molecular Microbiology. Instituto de Investigación Hospital 12 de Octubre (Imas12) and The University Complutense School of Medicine, Madrid, Spain.
| |
Collapse
|
12
|
l-Arginine Improves Solubility and ANTI SARS-CoV-2 Mpro Activity of Rutin but Not the Antiviral Activity in Cells. Molecules 2021; 26:molecules26196062. [PMID: 34641606 PMCID: PMC8512140 DOI: 10.3390/molecules26196062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
The COVID-19 pandemic outbreak prompts an urgent need for efficient therapeutics, and repurposing of known drugs has been extensively used in an attempt to get to anti-SARS-CoV-2 agents in the shortest possible time. The glycoside rutin shows manifold pharmacological activities and, despite its use being limited by its poor solubility in water, it is the active principle of many pharmaceutical preparations. We herein report our in silico and experimental investigations of rutin as a SARS-CoV-2 Mpro inhibitor and of its water solubility improvement obtained by mixing it with l-arginine. Tests of the rutin/l-arginine mixture in a cellular model of SARS-CoV-2 infection highlighted that the mixture still suffers from unfavorable pharmacokinetic properties, but nonetheless, the results of this study suggest that rutin might be a good starting point for hit optimization.
Collapse
|
13
|
Menéndez-Arias L, Martín-Alonso S, Frutos-Beltrán E. An Update on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:31-61. [PMID: 34258736 DOI: 10.1007/978-981-16-0267-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) still claim many lives across the world. However, research efforts during the last 40 years have led to the approval of over 30 antiretroviral drugs and the introduction of combination therapies that have turned HIV infection into a chronic but manageable disease. In this chapter, we provide an update on current available drugs and treatments, as well as future prospects towards reducing pill burden and developing long-acting drugs and novel antiretroviral therapies. In addition, we summarize efforts to cure HIV, including pharmaceutical strategies focused on the elimination of the virus.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | - Samara Martín-Alonso
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Santi C, Scimmi C, Sancineto L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021; 26:4230. [PMID: 34299505 PMCID: PMC8306772 DOI: 10.3390/molecules26144230] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.
Collapse
Affiliation(s)
| | | | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (C.S.)
| |
Collapse
|
15
|
Ali W, Benedetti R, Handzlik J, Zwergel C, Battistelli C. The innovative potential of selenium-containing agents for fighting cancer and viral infections. Drug Discov Today 2020; 26:256-263. [PMID: 33164821 DOI: 10.1016/j.drudis.2020.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Selenium-containing compounds have emerged as a potentially promising treatment for viral infections and tumor development and dissemination. Selenium per se is often considered as a toxic element with little or no beneficial effects, but considerable advances have been made in the understanding of the complex biology, chemistry and drug delivery of this element, especially when it is included in bioactive molecules. Here, we summarize and critically discuss recent findings in the field of selenium-based applications for the treatment of cancer and viral infections.
Collapse
Affiliation(s)
- Wesam Ali
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany
| | - Rosaria Benedetti
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Clemens Zwergel
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbruecken, Germany; Department of Precision Medicine, Luigi Vanvitelli University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy; Department of Drug Chemistry and Technologies, Sapienza University of Rome, Department of Excellence 2018-2022, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Department of Excellence 2018-2022, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
16
|
Ribeiro RCB, de Marins DB, Di Leo I, da Silva Gomes L, de Moraes MG, Abbadi BL, Villela AD, da Silva WF, da Silva LCRP, Machado P, Bizarro CV, Basso LA, Cristina de Moraes M, Ferreira VF, da Silva FDC, Nascimento V. Anti-tubercular profile of new selenium-menadione conjugates against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain and multidrug-resistant clinical isolates. Eur J Med Chem 2020; 209:112859. [PMID: 33010635 PMCID: PMC7510590 DOI: 10.1016/j.ejmech.2020.112859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 01/15/2023]
Abstract
Tuberculosis (TB) is one of the most fatal diseases and is responsible for the infection of millions of people around the world. Most recently, scientific frontiers have been engaged to develop new drugs that can overcome drug-resistant TB. Following this direction, using a designed scaffold based on the combination of two separate pharmacophoric groups, a series of menadione-derived selenoesters was developed with good yields. All products were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv and attractive results were observed, especially for the compounds 8a, 8c and 8f (MICs 2.1, 8.0 and 8.1 μM, respectively). In addition, 8a, 8c and 8f demonstrated potent in vitro activity against multidrug-resistant clinical isolates (CDCT-16 and CDCT-27) with promising MIC values ranging from 0.8 to 3.1 μM. Importantly, compounds 8a and 8c were found to be non-toxic against the Vero cell line. The SI value of 8a (>23.8) was found to be comparable to that of isoniazid (>22.7), which suggests the possibility of carrying out advanced studies on this derivative. Therefore, these menadione-derived selenoesters obtained as hybrid compounds represent promising new anti-tubercular agents to overcome TB multidrug resistance. New menadione-derived selenoesters were synthesized. The compounds demonstrated excellent activity against M. tuberculosis H37Rv. 8a, 8c and 8f showed potent activity against multidrug resistant clinical isolates. Compounds 8a and 8c were found to be non-toxic. These organoselenium compounds represent promising new anti-tubercular agents.
Collapse
Affiliation(s)
- Ruan C B Ribeiro
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil
| | - Daniel B de Marins
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil
| | - Iris Di Leo
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil
| | - Luana da Silva Gomes
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil
| | - Matheus G de Moraes
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil
| | - Bruno L Abbadi
- Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Centro de Pesquisas Em Biologia Molecular e Funcional, Pontifícia Universidade Católica Do Rio Grande Do Sul, PUCRS, Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900, Porto Alegre, RS, Brazil
| | - Anne D Villela
- Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Centro de Pesquisas Em Biologia Molecular e Funcional, Pontifícia Universidade Católica Do Rio Grande Do Sul, PUCRS, Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900, Porto Alegre, RS, Brazil
| | - Wellington F da Silva
- Universidade Federal Do Rio de Janeiro, Faculdade de Farmácia, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Luiz Cláudio R P da Silva
- Universidade Federal Do Rio de Janeiro, Faculdade de Farmácia, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Centro de Pesquisas Em Biologia Molecular e Funcional, Pontifícia Universidade Católica Do Rio Grande Do Sul, PUCRS, Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900, Porto Alegre, RS, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Centro de Pesquisas Em Biologia Molecular e Funcional, Pontifícia Universidade Católica Do Rio Grande Do Sul, PUCRS, Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900, Porto Alegre, RS, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia Em Tuberculose (INCT-TB), Centro de Pesquisas Em Biologia Molecular e Funcional, Pontifícia Universidade Católica Do Rio Grande Do Sul, PUCRS, Av. Ipiranga 6681 - Prédio 92A Tecnopuc, 90619-900, Porto Alegre, RS, Brazil
| | - Marcela Cristina de Moraes
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000, Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil
| | - Vanessa Nascimento
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus Do Valonguinho, CEP 24020-150, Niterói, RJ, Brazil.
| |
Collapse
|
17
|
Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2020; 64:AAC.00958-20. [PMID: 32747359 DOI: 10.1128/aac.00958-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.
Collapse
|
18
|
Ghosh P, Maayan G. A rationally designed peptoid for the selective chelation of Zn 2+ over Cu 2. Chem Sci 2020; 11:10127-10134. [PMID: 34094275 PMCID: PMC8162371 DOI: 10.1039/d0sc03391j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The selective removal of Zn2+ from proteins by using a synthetic chelator is a promising therapeutic approach for the treatment of various diseases including cancer. Although the chelation of Zn2+ is well known, its removal from a protein in the presence of potential competing biologically relevant ions such as Cu2+ is hardly explored. Herein we present a peptoid - N-substituted glycine trimer - incorporating a picolyl group at the N-terminus, a non-coordinating but structurally directing benzyl group at the C-terminus and a 2,2':6',2''-terpyridine group in the second position, that selectively binds Zn2+ ions in the presence of excess Cu2+ ions in water. We further demonstrate that this chelator can selectively bind Zn2+ from a pool of excess biologically relevant and competitive ions (Cu2+, Fe3+, Ca2+, Mg2+, Na+, and K+) in a simulated body fluid (SBF), and also its ability to remove Zn2+ from a natural zinc protein domain (PYKCPECGKSFSQKSDLVKHQRTHTG) in a SBF.
Collapse
Affiliation(s)
- Pritam Ghosh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
19
|
Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13090211. [PMID: 32859124 PMCID: PMC7558951 DOI: 10.3390/ph13090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.
Collapse
|
20
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
21
|
Ciaco S, Humbert N, Real E, Boudier C, Francesconi O, Roelens S, Nativi C, Seguin-Devaux C, Mori M, Mély Y. A Class of Potent Inhibitors of the HIV-1 Nucleocapsid Protein Based on Aminopyrrolic Scaffolds. ACS Med Chem Lett 2020; 11:698-705. [PMID: 32435373 DOI: 10.1021/acsmedchemlett.9b00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 nucleocapsid protein 7 (NC) is a potential target for effective antiretroviral therapy due to its central role in virus replication, mainly linked to nucleic acid (NA) chaperone activity, and low susceptibility to drug resistance. By screening a compounds library, we identified the aminopyrrolic compound CN14_17, a known carbohydrate binding agent, that inhibits the NC chaperone activity in the low micromolar range. Different from most of available NC inhibitors, CN14_17 fully prevents the NC-induced annealing of complementary NA sequences. Using fluorescence assays and isothermal titration calorimetry, we found that CN14_17 competes with NC for the binding to NAs, preferentially targeting single-stranded sequences. Molecular dynamics simulations confirmed that binding to cTAR occurs preferably within the guanosine-rich single stranded sequence. Finally, CN14_17 exhibited antiretroviral activity in the low micromolar range, although with a moderate therapeutic index. Overall, CN14_17 might be the progenitor of a new promising class of NC inhibitors.
Collapse
Affiliation(s)
- Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Eléonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Oscar Francesconi
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Stefano Roelens
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Cristina Nativi
- Dipartimento di Chimica “Ugo Schiff” and INSTM, University of Florence, via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
22
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
23
|
Humbert N, Kovalenko L, Saladini F, Giannini A, Pires M, Botzanowski T, Cherenok S, Boudier C, Sharma KK, Real E, Zaporozhets OA, Cianférani S, Seguin-Devaux C, Poggialini F, Botta M, Zazzi M, Kalchenko VI, Mori M, Mély Y. (Thia)calixarenephosphonic Acids as Potent Inhibitors of the Nucleic Acid Chaperone Activity of the HIV-1 Nucleocapsid Protein with a New Binding Mode and Multitarget Antiviral Activity. ACS Infect Dis 2020; 6:687-702. [PMID: 32045204 DOI: 10.1021/acsinfecdis.9b00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleocapsid protein (NC) is a highly conserved protein that plays key roles in HIV-1 replication through its nucleic acid chaperone properties mediated by its two zinc fingers and basic residues. NC is a promising target for antiviral therapy, particularly to control viral strains resistant to currently available drugs. Since calixarenes with antiviral properties have been described, we explored the ability of calixarene hydroxymethylphosphonic or sulfonic acids to inhibit NC chaperone properties and exhibit antiviral activity. By using fluorescence-based assays, we selected four calixarenes inhibiting NC chaperone activity with submicromolar IC50 values. These compounds were further shown by mass spectrometry, isothermal titration calorimetry, and fluorescence anisotropy to bind NC with no zinc ejection and to compete with nucleic acids for the binding to NC. Molecular dynamic simulations further indicated that these compounds interact via their phosphonate or sulfonate groups with the basic surface of NC but not with the hydrophobic plateau at the top of the folded fingers. Cellular studies showed that the most soluble compound CIP201 inhibited the infectivity of wild-type and drug-resistant HIV-1 strains at low micromolar concentrations, primarily targeting the early steps of HIV-1 replication. Moreover, CIP201 was also found to inhibit the flipping and polymerization activity of reverse transcriptase. Calixarenes thus form a class of noncovalent NC inhibitors, endowed with a new binding mode and multitarget antiviral activity.
Collapse
Affiliation(s)
- Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Manuel Pires
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Sergiy Cherenok
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Kamal K. Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Olga A. Zaporozhets
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
24
|
Nascimento V, Cordeiro PS, Arca M, Marini F, Sancineto L, Braga AL, Lippolis V, Iwaoka M, Santi C. Fast and easy conversion of ortho amidoaryldiselenides into the corresponding ebselen-like derivatives driven by theoretical investigations. NEW J CHEM 2020. [DOI: 10.1039/d0nj01605e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The in silico predicted Se⋯N interaction on amidoarylselenenyl iodides has been experimentally exploited for the efficient synthesis of N-substituted benzoisoselenazol-3(2H)-ones, benzoisothiazol-3(2H)-ones and ebselen, recently reported as potent antiviral agent against Sars-Cov2.
Collapse
Affiliation(s)
- Vanessa Nascimento
- Departamento de Química Orgânica
- Universidade Federal Fluminense
- Laboratório de Síntese e Aplicação de Substâncias Supramoleculares e Organocalcogênios (SupraSelen)
- Outeiro São João Batista s/n
- Niterói
| | - Pâmella Silva Cordeiro
- Departamento de Química Orgânica
- Universidade Federal Fluminense
- Laboratório de Síntese e Aplicação de Substâncias Supramoleculares e Organocalcogênios (SupraSelen)
- Outeiro São João Batista s/n
- Niterói
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Monserrato
- Italy
| | - Francesca Marini
- Department of Pharmaceutical Sciences
- University of Perugia
- Group of Catalysis, Synthesis and Organic Green Chemistry
- Perugia
- Italy
| | - Luca Sancineto
- Department of Pharmaceutical Sciences
- University of Perugia
- Group of Catalysis, Synthesis and Organic Green Chemistry
- Perugia
- Italy
| | - Antonio Luiz Braga
- LabSelen
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- Monserrato
- Italy
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kanagawa 259-1292
- Japan
| | - Claudio Santi
- Department of Pharmaceutical Sciences
- University of Perugia
- Group of Catalysis, Synthesis and Organic Green Chemistry
- Perugia
- Italy
| |
Collapse
|
25
|
Aðalsteinsson HM, Lima FA, Galuppo C, Abbehausen C. Evaluation of cobalt complexes with tripod ligands for zinc finger targeting. Dalton Trans 2020; 49:16143-16153. [DOI: 10.1039/d0dt00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the ability of CoII and CoIII complexes of tri(2-pyridylmethyl)amine and N,N-di(2-pyridylmethyl)glycinate to disrupt zinc fingers.
Collapse
Affiliation(s)
| | - Frederico A. Lima
- European X-Ray Free-Electron Laser Facility GmbH
- 22869 Schenefeld
- Germany
| | | | | |
Collapse
|
26
|
Begini F, Krasowska D, Jasiak A, Drabowicz J, Santi C, Sancineto L. Continuous flow synthesis of 2,2′-diselenobis(benzoic acid) and derivatives. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00012d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The continuous flow synthesis of the key building block 2,2′-diselenobis(benzoic acid) (DSBA) and its analogues is herein reported.
Collapse
Affiliation(s)
- Francesca Begini
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Dorota Krasowska
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Aleksandra Jasiak
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Jozef Drabowicz
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Claudio Santi
- Department of Pharmaceutical Sciences
- University of Perugia
- Group of Catalysis, Synthesis and Organic Green Chemistry
- 06123 Perugia
- Italy
| | - Luca Sancineto
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| |
Collapse
|
27
|
Krasowska D, Iraci N, Santi C, Drabowicz J, Cieslak M, Kaźmierczak-Barańska J, Palomba M, Królewska-Golińska K, Magiera J, Sancineto L. Diselenides and Benzisoselenazolones as Antiproliferative Agents and Glutathione-S-Transferase Inhibitors. Molecules 2019; 24:E2914. [PMID: 31405214 PMCID: PMC6721112 DOI: 10.3390/molecules24162914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
A series of variously functionalized selenium-containing compounds were purposely synthesized and evaluated against a panel of cancer cell lines. Most of the compounds showed an interesting cytotoxicity profile with compound 5 showing a potent activity on MCF7 cells. The ethyl amino derivative 5 acts synergistically with cis-platin and inhibits the GST enzyme with a potency that well correlates with the cytotoxicity observed in MCF7 cells. A computational analysis suggests a possible binding mode on the GST enzyme. As the main outcome of the present study, the ethyl amino derivative 5 emerged as a valid lead compound for further, future developments.
Collapse
Affiliation(s)
- Dorota Krasowska
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Józef Drabowicz
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute of Chemistry Jan Długosz University in Częstochowa Częstochowa, 42-200 Armii Krajowej 13/15, Poland
| | - Marcin Cieslak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Julia Kaźmierczak-Barańska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Martina Palomba
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Karolina Królewska-Golińska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Jakub Magiera
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Luca Sancineto
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland.
| |
Collapse
|
28
|
Asquith CRM, Sil BC, Laitinen T, Tizzard GJ, Coles SJ, Poso A, Hofmann-Lehmann R, Hilton ST. Novel epidithiodiketopiperazines as anti-viral zinc ejectors of the Feline Immunodeficiency Virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg Med Chem 2019; 27:4174-4184. [PMID: 31395510 DOI: 10.1016/j.bmc.2019.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/02/2023]
Abstract
Focused libraries of multi-substituted epidithiodiketopiperazines (ETP) were prepared and evaluated for efficacy of inhibiting the nucleocapsid protein function of the Feline Immunodeficiency Virus (FIV) as a model for HIV. This activity was compared and contrasted to observed toxicity utilising an in-vitro cell culture approach. This resulted in the identification of several promising lead compounds with nanomolar potency in cells with low toxicity and a favorable therapeutic index.
Collapse
Affiliation(s)
- Christopher R M Asquith
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom; Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bruno C Sil
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom; School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, United Kingdom
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Stephen T Hilton
- School of Pharmacy, Faculty of Life Sciences, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
29
|
Asquith CRM, Meili T, Laitinen T, Baranovsky IV, Konstantinova LS, Poso A, Rakitin OA, Hofmann-Lehmann R. Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg Med Chem Lett 2019; 29:1765-1768. [PMID: 31101470 DOI: 10.1016/j.bmcl.2019.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023]
Abstract
We report the first biological evaluation the 1,2,3-thiaselenazole class of compound and utilising a concise synthetic approach of sulfur extrusion, selenium insertion of the 1,2,3-dithiazoles. We created a small diverse library of compounds to contrast the two ring systems. This approach has highlighted new structure activity relationship insights and lead to the development of sub-micro molar anti-viral compounds with reduced toxicity. The 1,2,3-thiaselenazole represents a new class of potential compounds for the treatment of FIV and HIV.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Department of Pharmacology, School of Medicine University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Theres Meili
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Ilia V Baranovsky
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Lidia S Konstantinova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation; Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk 454080, Russian Federation
| | - Antti Poso
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Oleg A Rakitin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation; Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk 454080, Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
30
|
Asquith CRM, Laitinen T, Konstantinova LS, Tizzard G, Poso A, Rakitin OA, Hofmann-Lehmann R, Hilton ST. Investigation of the Pentathiepin Functionality as an Inhibitor of Feline Immunodeficiency Virus (FIV) via a Potential Zinc Ejection Mechanism, as a Model for HIV Infection. ChemMedChem 2019; 14:454-461. [PMID: 30609219 DOI: 10.1002/cmdc.201800718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/24/2018] [Indexed: 11/10/2022]
Abstract
A small diverse library of pentathiepin derivatives were prepared to evaluate their efficacy against the nucleocapsid protein function of the feline immunodeficiency virus (FIV) as a model for HIV, using an in vitro cell culture approach. This study led to the development of nanomolar active compounds with low toxicity.
Collapse
Affiliation(s)
- Christopher R M Asquith
- School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, UK.,Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.,Current address: Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Genetic Medicine Building, Chapel Hill, NC, 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Lidia S Konstantinova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk, Russian Federation
| | - Graham Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Oleg A Rakitin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Nanotechnology Education and Research Center, South Ural State University, Lenina Ave. 76, Chelyabinsk, Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory & Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Stephen T Hilton
- School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, UK
| |
Collapse
|
31
|
Ren W, Ji D, Xu X. Metal cofactor modulated folding and target recognition of HIV-1 NCp7. PLoS One 2018; 13:e0196662. [PMID: 29715277 PMCID: PMC5929515 DOI: 10.1371/journal.pone.0196662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/17/2018] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.
Collapse
Affiliation(s)
- Weitong Ren
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Dongqing Ji
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Xiulian Xu
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China
- * E-mail:
| |
Collapse
|