1
|
Hu H, Zhang C. Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. J Biomed Mater Res A 2025; 113:e37807. [PMID: 39420678 DOI: 10.1002/jbm.a.37807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Nanoparticles are increasingly being used in the development of vaccines for disease prevention or treatment. Recent research has demonstrated that conjugating a protein onto the surface of nanoparticles can significantly increase its immunogenicity. Considering various pathogens that threaten human health, multivalent vaccines are often desirable. Up to now, nanoparticle-based vaccines are mostly limited to one protein per nanoparticle. No research has been conducted to explore the possibility of conjugating more than one protein onto the surface of a nanoparticle. Here we developed a specific conjugation strategy to conjugate multiple proteins to the PLGA/lipid hybrid nanoparticle surface. The maleimide-thiol Michael addition, Aizde-DBCO (Dibenzocyclooctyne), and TCO (trans-cycloctene)-Tetrazine click chemistry were employed to conjugate three different proteins, subunit keyhole limpet hemocyanin (sKLH), Ovalbumin (OVA), and cross-reactive material 197 (CRM197), to the surface of PLGA/lipid hybrid nanoparticles (hNPs). The successful results of this study pave the way for developing multivalent vaccines against different pathogens.
Collapse
Affiliation(s)
- He Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Hosztafi S, Galambos AR, Köteles I, Karádi DÁ, Fürst S, Al-Khrasani M. Opioid-Based Haptens: Development of Immunotherapy. Int J Mol Sci 2024; 25:7781. [PMID: 39063024 PMCID: PMC11277321 DOI: 10.3390/ijms25147781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past decades, extensive preclinical research has been conducted to develop vaccinations to protect against substance use disorder caused by opioids, nicotine, cocaine, and designer drugs. Morphine or fentanyl derivatives are small molecules, and these compounds are not immunogenic, but when conjugated as haptens to a carrier protein will elicit the production of antibodies capable of reacting specifically with the unconjugated hapten or its parent compound. The position of the attachment in opioid haptens to the carrier protein will influence the specificity of the antiserum produced in immunized animals with the hapten-carrier conjugate. Immunoassays for the determination of opioid drugs are based on the ability of drugs to inhibit the reaction between drug-specific antibodies and the corresponding drug-carrier conjugate or the corresponding labelled hapten. Pharmacological studies of the hapten-carrier conjugates resulted in the development of vaccines for treating opioid use disorders (OUDs). Immunotherapy for opioid addiction includes the induction of anti-drug vaccines which are composed of a hapten, a carrier protein, and adjuvants. In this review we survey the design of opioid haptens, the development of the opioid radioimmunoassay, and the results of immunotherapy for OUDs.
Collapse
Affiliation(s)
- Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Dávid Á Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78., H-1082 Budapest, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| |
Collapse
|
3
|
Barbosa-Méndez S, Salazar-Juárez A. Evaluation of multitarget drugs on the expression of cocaine-induced locomotor sensitization in male rats: A comparative study. Heliyon 2024; 10:e29979. [PMID: 38726128 PMCID: PMC11079035 DOI: 10.1016/j.heliyon.2024.e29979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose - Cocaine use disorder (CUD) is a complex disease. Several studies have shown the efficacy of multitarget drugs used to treat CUD. Here we compare the efficacy of mirtazapine (MIR), pindolol (PIN), fluoxetine (FLX), risperidone (RIS), trazodone (TRZ), ziprasidone (ZPR), ondansetron (OND), yohimbine (YOH), or prazosin (PRZ), to reduce long-term cocaine-induced locomotor activity and the expression of cocaine-induced locomotor sensitization in rats. Methods - The study consists of four experiments, which were divided into four experimental phases. Induction (10 days), cocaine withdrawal (30 days), expression (10 days), and post-expression phase (10 days). Male Wistar rats were daily dosed with cocaine (10 mg/kg; i.p.) during the induction and post-expression phases. During drug withdrawal, the MIR, PIN, FLX, RIS, TRZ, ZPR, OND, YOH, or PRZ were administered 30 min before saline. In the expression, the multitarget drugs were administered 30 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min.During the agonism phase, in experiment four, 8-OH-DPAT, DOI, CP-809-101, SR-57227A, or clonidine (CLO) was administered 30 min before MIR and 60 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min. Results -MIR, FLX, RIS, ZPR, OND, or PRZ attenuated the cocaine-induced locomotor activity and cocaine locomotor sensitization. PIN, TRZ, and YOH failed to decrease cocaine locomotor sensitization. At the optimal doses used, PIN, FLX, RIS, TRZ, ZPR, OND, YOH, or PRZ failed to attenuate long-term cocaine locomotor activation. MIR generated a decrease in cocaine-induced locomotor activity of greater magnitude and duration than the other multitarget drugs evaluated. Conclusion - At the optimal doses of multitarget drugs evaluated, MIR was the multitarget drug that showed the greatest long-term cocaine-induced behavior effects compared to other multitarget drugs.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental. Instituto Nacional de Psiquiatría. Ciudad de México, 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental. Instituto Nacional de Psiquiatría. Ciudad de México, 14370, Mexico
| |
Collapse
|
4
|
Lu T, Li X, Zheng W, Kuang C, Wu B, Liu X, Xue Y, Shi J, Lu L, Han Y. Vaccines to Treat Substance Use Disorders: Current Status and Future Directions. Pharmaceutics 2024; 16:84. [PMID: 38258095 PMCID: PMC10820210 DOI: 10.3390/pharmaceutics16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances.
Collapse
Affiliation(s)
- Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Bingyi Wu
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China;
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| |
Collapse
|
5
|
Vavilis T, Stamoula E, Sachinidis A, Lamprinou M, Dardalas I, Papazisis G. Biopharmaceuticals against substance use disorders - Present and future. Eur J Pharmacol 2023; 944:175587. [PMID: 36775113 DOI: 10.1016/j.ejphar.2023.175587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Pharmacological treatments available for substance use disorder (SUD) focus on pharmacodynamics, agonizing or antagonizing the drug of abuse (DOA) on receptor level. Drawbacks of this approach include the reliance on long-term patient compliance, on-target off-site effects, perpetuation of addiction and unavailability for many DOAs. Newer, pharmacokinetic approaches are needed that restrict DOA's access to the brain or disrupt DOA-instated brain changes maintaining addiction. Biotechnology might be able to provide the right biopharmaceutical tools to deliver a fine-tuned solution with less side effects compared to currently available treatments. METHODS This review examines the available literature on biopharmaceuticals developed to treat SUD. RESULTS Active and passive immunization, metabolic enhancers that augment DOA metabolism and clearance, as well as genetic/epigenetic modulation are promising next generation SUD treatments. Active immunization relies on production of antidrug antibodies by means of vaccination, while passive immunization constitutes of exogenous administration of such antibodies. Metabolic enhancers include drug-specific metabolizing enzymes that can be administered or secreted by modified skin grafts, as well as catalytic antibodies that hasten DOA metabolism. Nanotechnological advances can also allow for brain delivery of siRNAs, mRNAs or DNA in order to modulate central, common in all addictions, genetic or epigenetic targets attenuating drug seeking behavior and reversing drug-induced brain changes. CONCLUSIONS and Scientific Significance: Biopharmaceuticals can in the future complement or even replace traditional pharmacodynamics approaches in SUD treatment. While passive and active immunization biopharmaceuticals have entered human clinical trials, metabolic enhancers and genetic approaches are at the preclinical level.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Dentistry, European University Cyprus, Nicosia, 2404, Cyprus.
| | - Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece; Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Mirtazapine attenuates the cocaine-induced locomotor sensitization in male and female C57BL/6J and BALBA/cJ mouse. Pharmacol Biochem Behav 2023; 222:173507. [PMID: 36481182 DOI: 10.1016/j.pbb.2022.173507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical studies have described the efficacy of various therapeutic approaches. Results are inconsistent and clinical application is limited. Clinical trials have suggested that individual variability in the response to pharmacological therapies and sex affects the efficacy of some antidepressant drugs. Mouse strain-dependent variability influenced the response to antidepressant drugs. Some mouse strains respond faster and better to antidepressants than other mouse strains. We recently reported a series of preclinical studies that showed that dosing of mirtazapine, a noradrenergic and serotonergic antidepressant, in male and female Wistar rats decreased cocaine-induced locomotor activity and attenuated the induction and expression of cocaine-induced locomotor sensitization. Therefore, the aim of this study was to evaluate the mirtazapine effects, on cocaine-induced locomotor activity and cocaine-induced locomotor sensitization in male and female mice of the C57BL/6J and BALB/cJ strains, which differ in sensitivity to the cocaine motor effects and response to antidepressant drugs. METHODS Male and female BALB/cJ and C57BL/6J inbred mice (20-25 g) were daily dosed with 10 mg/kg of cocaine during the induction and expression of locomotor sensitization. During drug withdrawal, cocaine was withdrawn, and the groups received daily mirtazapine (30 mg/kg, i.p.) or saline. Mirtazapine was administered 30 min before cocaine. After each administration, locomotor activity for each animal was recorded for 30 min in transparent Plexiglass activity chambers. RESULTS Cocaine-induced locomotor activity were greater in C57BL/6J strain mice than BALB/cJ strain mice during the induction and expression phase of locomotor sensitization. The female mice of both strains showed a higher cocaine locomotor response than males and mirtazapine significantly decreased cocaine-induced locomotor activity, as well as the induction and expression of locomotor sensitization, regardless of mouse strain or sex. CONCLUSION The results suggest mirtazapine may be considered an effective therapeutic option to treat cocaine use disorder in men and women with very diverse genetic backgrounds.
Collapse
|
7
|
Bao N, Cheng L, Wang Y, Peng Z, Wang Z, Chen S. Protein-protein interactions between RUNX3 and ZEB1 in chronic lung injury induced by methamphetamine abuse. Front Pharmacol 2022; 13:1025922. [DOI: 10.3389/fphar.2022.1025922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (MA) is the most common and highly addictive substance abuse drug. Runt-related transcription factor 3 (RUNX3) and Zinc finger E-box-binding homeobox 1 (ZEB1) are associated with lung inflammation and fibrosis. However, the protein-protein interactions (PPIs) between RUNX3 and ZEB1 and its involvement in MA-induced chronic lung injury is still unclear. In this study, we evaluated lung injury using echocardiography, hematoxylin and eosin staining, and western blot analysis. The viability of alveolar epithelial cells (AECs) was assessed using cell counting kit-8. Molecular Operating Environment software, Search Tool for the Retrieval of Interacting Genes/Proteins database, co-immunoprecipitation, assay and confocal immunofluorescence assay were used to predict and identify the PPIs between RUNX3 and ZEB1. The expression of RUNX3 and ZEB1 were knockdown in AECs using siRNA. The results revealed that MA exposure increased the peak blood flow velocity of the pulmonary artery and the acceleration time of pulmonary artery blood flow. Further, exposure to MA also causes adhesion and fusion of the alveolar walls and altered AEC activity. A decrease in the expression of RUNX3 and an increase in the expression of ZEB1 and its downstream signaling molecules were observed on MA exposure. The PPIs between RUNX3 and ZEB1 were identified. Further, an increase in the protein binding rate of RUNX3-ZEB1 was observed in MA-induced lung injury. These results show interactions between RUNX3 and ZEB1. RUNX3 protects against lung injury; however, ZEB1 expression and the PPIs between ZEB1 and RUNX3 has deleterious effects on chronic lung injury induced by MA exposure. Our results provide a new therapeutic approach for the treatment of chronic lung injury due to MA exposure.
Collapse
|
8
|
Lee J, Eubanks LM, Zhou B, Janda KD. Development of an Effective Monoclonal Antibody against Heroin and Its Metabolites Reveals Therapies Have Mistargeted 6-Monoacetylmorphine and Morphine over Heroin. ACS CENTRAL SCIENCE 2022; 8:1464-1470. [PMID: 36313156 PMCID: PMC9615117 DOI: 10.1021/acscentsci.2c00977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 05/29/2023]
Abstract
The opioid epidemic is a global public health crisis that has failed to abate with current pharmaceutical treatments. Moreover, these FDA-approved drugs possess numerous problems such as adverse side effects, short half-lives, abuse potential, and recidivism after discontinued use. An alternative treatment model for opioid use disorders is immunopharmacotherapy, where antibodies are produced to inhibit illicit substances by sequestering the drug in the periphery. Immunopharmacotherapeutics against heroin have engaged both active and passive vaccines targeting heroin's metabolites, 6-monoacetylmorphine (6-AM) and morphine, since decades of research have stated that heroin's psychoactive and lethal effects are mainly attributed to these compounds. However, concerted efforts to develop effective immunopharmacotherapies against heroin abuse have faced little clinical advancement, suggesting a need for reassessing drug target selection. To address this issue, four unique monoclonal antibodies were procured with distinct affinity to either heroin, 6-AM, or morphine. Examination of these antibodies through in vitro and in vivo tests revealed monoclonal antibody 11D12 as the optimal therapeutic and provided crucial insights into the key chemical species to target for blunting heroin's psychoactive and lethal effects. These findings offer clarification into the problematic attempts of therapeutics targeting heroin's metabolites and provide a path forward for future heroin immunopharmacotherapy development.
Collapse
|
9
|
Hossain MK, Davidson M, Kypreos E, Feehan J, Muir JA, Nurgali K, Apostolopoulos V. Immunotherapies for the Treatment of Drug Addiction. Vaccines (Basel) 2022; 10:vaccines10111778. [PMID: 36366287 PMCID: PMC9697687 DOI: 10.3390/vaccines10111778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Substance use disorders (SUD) are a serious public health concern globally. Existing treatment platforms suffer from a lack of effectiveness. The development of immunotherapies against these substances of abuse for both prophylactic and therapeutic use has gained tremendous importance as an alternative and/or supplementary to existing therapies. Significant development has been made in this area over the last few decades. Herein, we highlight the vaccine and other biologics development strategies, preclinical, clinical updates along with challenges and future directions. Articles were searched in PubMed, ClinicalTrial.gov, and google electronic databases relevant to development, preclinical, clinical trials of nicotine, cocaine, methamphetamine, and opioid vaccines. Various new emerging vaccine development strategies for SUD were also identified through this search and discussed. A good number of vaccine candidates demonstrated promising results in preclinical and clinical phases and support the concept of developing a vaccine for SUD. However, there have been no ultimate success as yet, and there remain some challenges with a massive push to take more candidates to clinical trials for further evaluation to break the bottleneck.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Erica Kypreos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Joshua Alexander Muir
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
10
|
Maiese A, La Russa R, David MC, Cantatore S, Manetti AC, De Matteis A, Ciallella C, Frati P, Fineschi V. 6-Monoacetylmorphine-antibody distribution in tissues from heroin-related death cases: An experimental study to investigate the distributive response. J Cell Mol Med 2022; 26:4666-4677. [PMID: 35916437 PMCID: PMC9443947 DOI: 10.1111/jcmm.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022] Open
Abstract
Heroin, a semisynthetic opioid drug synthesized from morphine, is the 3,6-diacetyl ester of morphine (diacetylmorphine). The post-mortem diagnosis of heroin-related death could be an issue and usually rely on a combination of investigations, including the autopsy, histological and toxicological analysis. We conducted the present study to evaluate the correlation between the heroin concentration in biological fluids (peripheral blood, bile and urine) and the post-mortem anti-6-MAM antibody expression in various tissues (brain, heart, lung, liver and kidney) using immunohistochemical staining. A quantitative analysis of the immunohistochemical reaction was carried out. 45 cases of heroin-related death investigated at the Forensic Pathology Institutes of the University of Rome, Foggia and Pisa were included. The control group was composed of 15 cases of death due to other causes, without brain lesions and negative toxicological analysis for drugs. We found a positive immunohistochemical reaction in different organs and it was related to the timing of heroin metabolization. No reaction was found in the control group. Our findings show that immunohistochemistry can be a valuable tool for the post-mortem diagnosis of acute heroin abuse. A better understanding of the timing of heroin's metabolism can be useful in the forensic field and for future therapeutic applications.
Collapse
Affiliation(s)
- Aniello Maiese
- Institute of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, Ospedale Santa Chiara, Pisa, Italy
| | - Raffaele La Russa
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Foggia, Italy
| | - Maria Chiara David
- Department of Public Security, Health Central Directorate, Research Center and Forensic Toxicology Laboratory, Ministry of the Interior, Rome, Italy
| | - Santina Cantatore
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Ospedale Colonnello D'Avanzo, Foggia, Italy
| | - Alice Chiara Manetti
- Institute of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, Ospedale Santa Chiara, Pisa, Italy
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Costantino Ciallella
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
da Silva Neto L, da Silva Maia AF, Godin AM, de Almeida Augusto PS, Pereira RLG, Caligiorne SM, Alves RB, Fernandes SOA, Cardoso VN, Goulart GAC, Martins FT, das Neves MDCL, Garcia FD, de Fátima Â. Calix[ n]arene-based immunogens: A new non-proteic strategy for anti-cocaine vaccine. J Adv Res 2022; 38:285-298. [PMID: 35572397 PMCID: PMC9091763 DOI: 10.1016/j.jare.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure. Objectives The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties. Methods The preclinical assessment corresponded to the immunogenicity and dose-response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood-brain-barrier (BBB), modifying its biodistribution was also investigated. Results Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model. Conclusion The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Leonardo da Silva Neto
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Angélica Faleiros da Silva Maia
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana Martins Godin
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | | | - Sordaini Maria Caligiorne
- Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Rosemeire Brondi Alves
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Felipe Terra Martins
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, MG, Brazil
| | | | - Frederico Duarte Garcia
- Department of Mental Health, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Ângelo de Fátima
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
12
|
Jones CM, Houry D, Han B, Baldwin G, Vivolo-Kantor A, Compton WM. Methamphetamine use in the United States: epidemiological update and implications for prevention, treatment, and harm reduction. Ann N Y Acad Sci 2022; 1508:3-22. [PMID: 34561865 PMCID: PMC9097961 DOI: 10.1111/nyas.14688] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Recent attention has focused on the growing role of psychostimulants, such as methamphetamine in overdose deaths. Methamphetamine is an addictive and potent stimulant, and its use is associated with a range of physical and mental health harms, overdose, and mortality. Adding to the complexity of this resurgent methamphetamine threat is the reality that the increases in methamphetamine availability and harms are occurring in the midst of and intertwined with the ongoing opioid overdose crisis. Opioid involvement in psychostimulant-involved overdose deaths increased from 34.5% of overdose deaths in 2010 to 53.5% in 2019-an increase of more than 50%. This latest evolution of the nation's overdose epidemic poses novel challenges for prevention, treatment, and harm reduction. This narrative review synthesizes what is known about changing patterns of methamphetamine use with and without opioids in the United States, other characteristics associated with methamphetamine use, the contributions of the changing illicit drug supply to use patterns and overdose risk, motivations for couse of methamphetamine and opioids, and awareness of exposure to opioids via the illicit methamphetamine supply. Finally, the review summarizes illustrative community and health system strategies and research opportunities to advance prevention, treatment, and harm reduction policies, programs, and practices.
Collapse
Affiliation(s)
- Christopher M. Jones
- National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Debra Houry
- National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Beth Han
- National Institute on Drug Abuse, National Institutes of Health, Rockville, Maryland
| | - Grant Baldwin
- Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alana Vivolo-Kantor
- Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wilson M. Compton
- National Institute on Drug Abuse, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
13
|
Lee JC, Janda KD. Development of effective therapeutics for polysubstance use disorders. Curr Opin Chem Biol 2021; 66:102105. [PMID: 34936944 DOI: 10.1016/j.cbpa.2021.102105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
Traditional pharmacotherapies for substance use disorders have focused on mono-substance abuse. However, recent epidemiological studies have found polysubstance use disorders (PUD) are becoming more prevalent and the abuse of adulterated drugs has led to increasing unintentional overdose deaths. Unfortunately, there are no approved pharmacological agents for PUD. Hence, a therapeutic model of interest to address this growing epidemic is immunopharmacotherapy, where individuals are inoculated with conjugate vaccines formulated with haptens that mimic the drug of abuse. These conjugate vaccines have demonstrated significant therapeutic potential against mono-substance abuse, thus recent studies have applied this model to address PUD. This review presents immunopharmacotherapeutic advancements against polysubstance abuse and discusses necessary developments for conjugate vaccines in order to effectively treat this unaddressed epidemic.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
14
|
Trends in Mortality Due to Stimulants Use in Adolescents and Young Adults. ADDICTIVE DISORDERS & THEIR TREATMENT 2021. [DOI: 10.1097/adt.0000000000000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Abstract
PURPOSE OF REVIEW Opioid use disorder (OUD) remains a national epidemic with an immense consequence to the United States' healthcare system. Current therapeutic options are limited by adverse effects and limited efficacy. RECENT FINDINGS Recent advances in therapeutic options for OUD have shown promise in the fight against this ongoing health crisis. Modifications to approved medication-assisted treatment (MAT) include office-based methadone maintenance, implantable and monthly injectable buprenorphine, and an extended-release injectable naltrexone. Therapies under investigation include various strategies such as heroin vaccines, gene-targeted therapy, and biased agonism at the G protein-coupled receptor (GPCR), but several pharmacologic, clinical, and practical barriers limit these treatments' market viability. This manuscript provides a comprehensive review of the current literature regarding recent innovations in OUD treatment.
Collapse
|
16
|
Lee JC, Janda KD. Immunopharmacotherapeutic advancements in addressing methamphetamine abuse. RSC Chem Biol 2021; 2:77-93. [PMID: 34458776 PMCID: PMC8341824 DOI: 10.1039/d0cb00165a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/01/2020] [Indexed: 12/26/2022] Open
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is known to account for substance abuse disorders globally, second only to opioids, yet has no approved pharmacotherapies. Traditional therapies employ small molecule agonists or antagonists for substance use disorders or overdose reversal by targeting drug-specific receptors in the brain. However, the comprehensive mechanism of METH on multiple sites within the central nervous system (CNS) implies its receptors lack the high affinity and specificity required for an "ideal" drug target. The alternative to pharmacotherapies is to sequester abused drugs in the periphery, effectively eliminating the effects from CNS receptor occupation through pharmacokinetic antagonism. This review presents updates on immunopharmacotherapeutic advancements in addressing methamphetamine abuse by focusing on the cultivation of research optimization strategies regarding hapten chemistry, carrier proteins, and adjuvants implemented in active immunization. Furthermore, we discuss necessary developments for each component of active immunopharmacotherapies and the future of active vaccines in treating METH use disorder.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute 10550 North Torrey Pines Rd La Jolla CA 92037 USA
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute 10550 North Torrey Pines Rd La Jolla CA 92037 USA
| |
Collapse
|
17
|
Lowell JA, Dikici E, Joshi PM, Landgraf R, Lemmon VP, Daunert S, Izenwasser S, Daftarian P. Vaccination against cocaine using a modifiable dendrimer nanoparticle platform. Vaccine 2020; 38:7989-7997. [PMID: 33158592 DOI: 10.1016/j.vaccine.2020.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Pharmacological therapies for the treatment of cocaine addiction have had disappointing efficacy, and the lack of recent developments in the clinical care of cocaine-addicted patients indicates a need for novel treatment strategies. Recent studies have shown that vaccination against cocaine to elicit production of antibodies that reduce concentrations of free drug in the blood is a promising method to protect against the effects of cocaine and reduce rates of relapse. However, the poorly immunogenic nature of cocaine remains a major hurdle to active immunization. Therefore, we hypothesized that strategies to increase targeted exposure of cocaine to the immune system may produce a more effective vaccine. To specifically direct an immune response against cocaine, in the present study we have conjugated a cocaine analog to a dendrimer-based nanoparticle carrier with MHC II-binding moieties that previously has been shown to activate antigen-presenting cells necessary for antibody production. This strategy produced a rapid, prolonged, and high affinity anti-cocaine antibody response without the need for an adjuvant. Surprisingly, additional evaluation using multiple adjuvant formulations in two strains of inbred mice found adjuvants were either functionally redundant or deleterious in the vaccination against cocaine using this platform. The use of conditioned place preference in rats after administration of this vaccine provided proof of concept for the ability of this vaccine to diminish cocaine reward. Together these data demonstrate the intrinsic efficacy of an immune-targeting dendrimer-based cocaine vaccine, with a vast potential for design of future vaccines against other poorly immunogenic antigens by substitution of the conjugated cargo.
Collapse
Affiliation(s)
- Jeffrey A Lowell
- Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States
| | - Pratibha M Joshi
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States; Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States; Miami Clinical and Translational Science Institute, University of Miami, Clinical Research Building, 1120 NW 14th St., Miami, FL 33136, United States
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami, 1600 NW 10(th) Avenue, Miami, FL 33136, United States.
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, University of Miami, 1011 NW 15th Street, Miami, FL 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Life Science and Technology Park, 1951 Northwest 7th Avenue, Miami, FL 33136, United States.
| |
Collapse
|
18
|
Deng CL, Murkli SL, Isaacs LD. Supramolecular hosts as in vivo sequestration agents for pharmaceuticals and toxins. Chem Soc Rev 2020; 49:7516-7532. [PMID: 33043945 PMCID: PMC7606718 DOI: 10.1039/d0cs00454e] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pharmaceutical agents, drugs of abuse, and toxic substances have a large impact, positive and negative, on modern society. Efforts to mitigate the side effects of pharmaceuticals and counteract the life threatening effects of drugs of abuse and toxins can occur either by pharmacodynamic (PD) approaches based on bioreceptor·drug antagonism or by pharmacokinetic (PK) approaches that seek to reduce the concentration of free drug. In this tutorial review, we present the use of supramolecular hosts (cyclodextrins, calixarenes, (acyclic) cucurbiturils, and pillararenes) as in vivo sequestration agents for neuromuscular blockers, drugs of abuse (methamphetamine and fentanyl), anesthetics, neurotoxins, the pesticide paraquat, and heparin anti-coagulants by the PK approach. The review presents the basic physical and molecular recognition features of the supramolecular hosts and some of the principles used in their selection and structural optimization for in vivo sequestration applications. The influence of host·guest complexation on other relevant in vivo properties of drugs (e.g. distribution, circulation time, excretion, redox properties) is also mentioned. The article concludes with a discussion of future directions.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
19
|
Paulus MP, Stewart JL. Neurobiology, Clinical Presentation, and Treatment of Methamphetamine Use Disorder: A Review. JAMA Psychiatry 2020; 77:959-966. [PMID: 32267484 PMCID: PMC8098650 DOI: 10.1001/jamapsychiatry.2020.0246] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE The prevalence of and mortality associated with methamphetamine use has doubled during the past 10 years. There is evidence suggesting that methamphetamine use disorder could be the next substance use crisis in the United States and possibly worldwide. OBSERVATION The neurobiology of methamphetamine use disorder extends beyond the acute effect of the drug as a monoaminergic modulator and includes intracellular pathways focused on oxidative stress, neurotoxic and excitotoxic effects, and neuroinflammation. Similarly, the clinical picture extends beyond the acute psychostimulatory symptoms to include complex cardiovascular and cerebrovascular signs and symptoms that need to be identified by the clinician. Although there are no pharmacologic treatments for methamphetamine use disorder, cognitive behavioral therapy, behavioral activation, and contingency management show modest effectiveness. CONCLUSIONS AND RELEVANCE There is a need to better understand the complex neurobiology of methamphetamine use disorder and to develop interventions aimed at novel biological targets. Parsing the disorder into different processes (eg, craving or mood-associated alterations) and targeting the neural systems and biological pathways underlying these processes may lead to greater success in identifying disease-modifying interventions. Finally, mental health professionals need to be trained in recognizing early cardiovascular and cerebrovascular warning signs to mitigate the mortality associated with methamphetamine use disorder.
Collapse
Affiliation(s)
- Martin P. Paulus
- Scientific Director and President Laureate Institute for Brain Research 6655 S Yale Ave, Tulsa, OK 74136-3326,Department of Community Medicine, University of Tulsa, Tulsa OK 74104
| | - Jennifer L. Stewart
- Scientific Director and President Laureate Institute for Brain Research 6655 S Yale Ave, Tulsa, OK 74136-3326,Department of Community Medicine, University of Tulsa, Tulsa OK 74104
| |
Collapse
|