1
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Tao J, Dhanjee HH, Gribble MW, Kottisch V, Rodriguez J, Brown JS, Schmidt H, Juneja J, Denhez F, Lee PS, Lipovšek D, Krystek S, Zhang Y, Bousquet P, Zhang Y, Pentelute BL, Buchwald SL. Site-Specific Antibody Prodrugs via S-Arylation: a Bioconjugation Approach Toward Masked Tyrosine Analogues. J Am Chem Soc 2024; 146:20080-20085. [PMID: 39001844 DOI: 10.1021/jacs.4c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use. They are designed to reveal the active, parent antibody only when encountering proteases upregulated in the microenvironment of the targeted disease tissue, thereby minimizing off-target activity. However, current pro-antibody designs are relegated to fusion proteins that append masking groups restricted to the use of only canonical amino acids, offering excellent control of the site of introduction, but with no authority over where the masking group is installed other than the N-terminus of the antibody. Here, we present a palladium-based bioconjugation approach for the site-specific introduction of a masked tyrosine mimic in the complementary determining region of the FDA approved antibody therapeutic ipilimumab used as a model system. The approach enables the introduction of a protease cleavable group tethered to noncanonical polymers (polyethylene glycol (PEG)) resulting in 47-fold weaker binding to cells expressing CTLA-4, the target antigen of ipilimumab. Upon exposure to tumor-associated proteases, the masking group is cleaved, unveiling a tyrosine-mimic (dubbed hydroxyphenyl cysteine (HPC)) that restores (>90% restoration) binding affinity to its target antigen.
Collapse
Affiliation(s)
- Jason Tao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heemal H Dhanjee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael W Gribble
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Veronika Kottisch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph S Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Holly Schmidt
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Juhi Juneja
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Fabienne Denhez
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Peter S Lee
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Daša Lipovšek
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Stanley Krystek
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Yihong Zhang
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Patrick Bousquet
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Yong Zhang
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol 2024; 21:203-223. [PMID: 38191923 DOI: 10.1038/s41571-023-00850-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody-drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody-drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Summer Y Y Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
4
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
5
|
Goudy OJ, Nallathambi A, Kinjo T, Randolph NZ, Kuhlman B. In silico evolution of autoinhibitory domains for a PD-L1 antagonist using deep learning models. Proc Natl Acad Sci U S A 2023; 120:e2307371120. [PMID: 38032933 PMCID: PMC10710080 DOI: 10.1073/pnas.2307371120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/24/2023] [Indexed: 12/02/2023] Open
Abstract
There has been considerable progress in the development of computational methods for designing protein-protein interactions, but engineering high-affinity binders without extensive screening and maturation remains challenging. Here, we test a protein design pipeline that uses iterative rounds of deep learning (DL)-based structure prediction (AlphaFold2) and sequence optimization (ProteinMPNN) to design autoinhibitory domains (AiDs) for a PD-L1 antagonist. With the goal of creating an anticancer agent that is inactive until reaching the tumor environment, we sought to create autoinhibited (or masked) forms of the PD-L1 antagonist that can be unmasked by tumor-enriched proteases. Twenty-three de novo designed AiDs, varying in length and topology, were fused to the antagonist with a protease-sensitive linker, and binding to PD-L1 was measured with and without protease treatment. Nine of the fusion proteins demonstrated conditional binding to PD-L1, and the top-performing AiDs were selected for further characterization as single-domain proteins. Without any experimental affinity maturation, four of the AiDs bind to the PD-L1 antagonist with equilibrium dissociation constants (KDs) below 150 nM, with the lowest KD equal to 0.9 nM. Our study demonstrates that DL-based protein modeling can be used to rapidly generate high-affinity protein binders.
Collapse
Affiliation(s)
- Odessa J. Goudy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
| | - Amrita Nallathambi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
| | - Tomoaki Kinjo
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
| | - Nicholas Z. Randolph
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
- Department of Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, NC27599
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC27599
- Department of Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC27599
| |
Collapse
|
6
|
Gedi V, Duarte F, Patel P, Bhattacharjee P, Tecza M, McGourty K, Hudson SP. Impact of Propeptide Cleavage on the Stability and Activity of a Streptococcal Immunomodulatory C5a Peptidase for Biopharmaceutical Development. Mol Pharm 2023; 20:4041-4049. [PMID: 37406301 PMCID: PMC10410607 DOI: 10.1021/acs.molpharmaceut.3c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Posttranslational modifications of proteins can impact their therapeutic efficacy, stability, and potential for pharmaceutical development. The Group AStreptococcus pyogenesC5a peptidase (ScpA) is a multi-domain protein composed of an N-terminal signal peptide, a catalytic domain (including propeptide), three fibronectin domains, and cell membrane-associated domains. It is one of several proteins produced by Group AS. pyogenesknown to cleave components of the human complement system. After signal peptide removal, ScpA undergoes autoproteolysis and cleaves its propeptide for full maturation. The exact location and mechanism of the propeptide cleavage, and the impact of this cleavage on stability and activity, are not clearly understood, and the exact primary sequence of the final enzyme is not known. A form of ScpA with no autoproteolysis fragments of propeptide present may be more desirable for pharmaceutical development from a regulatory and a biocompatibility in the body perspective. The current study describes an in-depth structural and functional characterization of propeptide truncated variants of ScpA expressed inEscherichia colicells. All three purified ScpA variants, ScpA, 79ΔPro, and 92ΔPro, starting with N32, D79, and A92 positions, respectively, showed similar activity against C5a, which suggests a propeptide-independent activity profile of ScpA. CE-SDS and MALDI top-down sequencing analyses highlight a time-dependent propeptide autoproteolysis of ScpA at 37 °C with a distinct end point at A92 and/or D93. In comparison, all three variants of ScpA exhibit similar stability, melting temperatures, and secondary structure orientation. In summary, this work not only highlights propeptide localization but also provides a strategy to recombinantly produce a final mature and active form of ScpA without any propeptide-related fragments.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Francisco Duarte
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Pratikkumar Patel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Promita Bhattacharjee
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Malgorzata Tecza
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Kieran McGourty
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- SSPC
SFI Research Centre for Pharmaceuticals, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
7
|
Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol 2023; 14:1218082. [PMID: 37483629 PMCID: PMC10357296 DOI: 10.3389/fimmu.2023.1218082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cytokines are pivotal mediators of cell communication in the tumor microenvironment. Multiple cytokines are involved in the host antitumor response, but the production and function of these cytokines are usually dysregulated during malignant tumor progression. Considering their clinical potential and the early successful use of cytokines in cancer immunotherapy, such as interferon alpha-2b (IFNα-2b; IntronA®) and IL-2 (Proleukin®), cytokine-based therapeutics have been extensively evaluated in many follow-up clinical trials. Following these initial breakthroughs, however, clinical translation of these natural messenger molecules has been greatly limited owing to their high-degree pleiotropic features and complex biological properties in many cell types. These characteristics, coupled with poor pharmacokinetics (a short half-life), have hampered the delivery of cytokines via systemic administration, particularly because of severe dose-limiting toxicities. New engineering approaches have been developed to widen the therapeutic window, prolong pharmacokinetic effects, enhance tumor targeting and reduce adverse effects, thereby improving therapeutic efficacy. In this review, we focus on the recent progress and competitive landscape in cytokine engineering strategies and preclinical/clinical therapeutics for cancer. In addition, aiming to promote engineered cytokine-based cancer immunotherapy, we present a profound discussion about the feasibility of recently developed methods in clinical medicine translation.
Collapse
Affiliation(s)
- Yong Fu
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China
| | - Xiaofeng Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| |
Collapse
|
8
|
Slapak EJ, El Mandili M, Brink MST, Kros A, Bijlsma MF, Spek CA. Preclinical Assessment of ADAM9-Responsive Mesoporous Silica Nanoparticles for the Treatment of Pancreatic Cancer. Int J Mol Sci 2023; 24:10704. [PMID: 37445886 DOI: 10.3390/ijms241310704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) remains largely refractory to chemotherapeutic treatment regimens and, consequently, has the worst survival rate of all cancers. The low efficacy of current treatments results largely from toxicity-dependent dose limitations and premature cessation of therapy. Recently, targeted delivery approaches that may reduce off-target toxicities have been developed. In this paper, we present a preclinical evaluation of a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSNs) functionalized with a protease linker that is specifically cleaved by PDAC cells. Our previous work demonstrated that ADAM9 is a PDAC-enriched protease and that paclitaxel-loaded ADAM9-responsive MSNs effectively kill PDAC cells in vitro. Here, we show that paclitaxel-loaded ADAM9-MSNs result in off-target cytotoxicity in clinically relevant models, which spurred the development of optimized ADAM9-responsive MSNs (OPT-MSNs). We found that these OPT-MSNs still efficiently kill PDAC cells but, as opposed to free paclitaxel, do not induce death in neuronal or bone marrow cells. In line with these in vitro data, paclitaxel-loaded OPT-MSNs showed reduced organ damage and leukopenia in a preclinical PDAC xenograft model. However, no antitumor response was observed upon OPT-MSN administration in vivo. The poor in vivo antitumor activity of OPT-MSNs despite efficient antitumor effects in vitro highlights that although MSN-based tumor-targeting strategies may hold therapeutic potential, clinical translation does not seem as straightforward as anticipated.
Collapse
Affiliation(s)
- Etienne J Slapak
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 3521 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, 1081 HV Amsterdam, The Netherlands
| | - Mouad El Mandili
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 3521 AZ Amsterdam, The Netherlands
| | - Marieke S Ten Brink
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 3521 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, 1081 HV Amsterdam, The Netherlands
| | - C Arnold Spek
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Goudy OJ, Nallathambi A, Kinjo T, Randolph N, Kuhlman B. In silico evolution of protein binders with deep learning models for structure prediction and sequence design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539278. [PMID: 37205527 PMCID: PMC10187191 DOI: 10.1101/2023.05.03.539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There has been considerable progress in the development of computational methods for designing protein-protein interactions, but engineering high-affinity binders without extensive screening and maturation remains challenging. Here, we test a protein design pipeline that uses iterative rounds of deep learning (DL)-based structure prediction (AlphaFold2) and sequence optimization (ProteinMPNN) to design autoinhibitory domains (AiDs) for a PD-L1 antagonist. Inspired by recent advances in therapeutic design, we sought to create autoinhibited (or masked) forms of the antagonist that can be conditionally activated by proteases. Twenty-three de novo designed AiDs, varying in length and topology, were fused to the antagonist with a protease sensitive linker, and binding to PD-L1 was tested with and without protease treatment. Nine of the fusion proteins demonstrated conditional binding to PD-L1 and the top performing AiDs were selected for further characterization as single domain proteins. Without any experimental affinity maturation, four of the AiDs bind to the PD-L1 antagonist with equilibrium dissociation constants (KDs) below 150 nM, with the lowest KD equal to 0.9 nM. Our study demonstrates that DL-based protein modeling can be used to rapidly generate high affinity protein binders.
Collapse
Affiliation(s)
- Odessa J Goudy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Amrita Nallathambi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tomoaki Kinjo
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Nicholas Randolph
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Goudy OJ, Peng A, Tripathy A, Kuhlman B. Design of a protease-activated PD-L1 inhibitor. Protein Sci 2023; 32:e4578. [PMID: 36705186 PMCID: PMC9926466 DOI: 10.1002/pro.4578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Immune checkpoint inhibitors that bind to the cell surface receptor PD-L1 are effective anti-cancer agents but suffer from immune-related adverse events as PD-L1 is expressed on both healthy and cancer cells. To mitigate toxicity, researchers are testing prodrugs that have low affinity for checkpoint targets until activated with proteases enriched in the tumor microenvironment. Here, we engineer a prodrug form of a PD-L1 inhibitor. The inhibitor is a soluble PD-1 mimetic that was previously engineered to have high affinity for PD-L1. In the basal state, the binding surface of the PD-1 mimetic is masked by fusing it to a soluble variant of its natural ligand, PD-L1. Proteolytic cleavage of the linker that connects the mask to the inhibitor activates the molecule. To optimize the mask so that it effectively blocks binding to PD-L1 but releases upon cleavage, we tested a set of mutants with varied affinity for the inhibitor. The top-performing mask reduces the affinity of the prodrug for PD-L1 120-fold, and binding is nearly fully recovered upon cleavage. In a cell-based assay measuring inhibition of the PD-1:PD-L1 interaction on the surface of cells, the IC50s of the masked inhibitors were up to 40-fold higher than their protease-treated counterparts. The changes in activity we observe upon protease treatment are comparable to systems currently tested in the clinic and provide evidence that natural binding partners are an excellent starting point for creating a prodrug.
Collapse
Affiliation(s)
- Odessa J. Goudy
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Alice Peng
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Ashutosh Tripathy
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Brian Kuhlman
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
11
|
Jiang FY, Zhang YZ, Tai YH, Chou CY, Hsieh YC, Chang YC, Huang HC, Li ZQ, Hsieh YC, Chen IJ, Huang BC, Su YC, Lin WW, Lin HC, Chao JI, Yuan SSF, Wang YM, Cheng TL, Tzou SC. A lesion-selective albumin-CTLA4Ig as a safe and effective treatment for collagen-induced arthritis. Inflamm Regen 2023; 43:13. [PMID: 36797799 PMCID: PMC9933273 DOI: 10.1186/s41232-023-00264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.
Collapse
Affiliation(s)
- Fu-Yao Jiang
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Yan-Zhu Zhang
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Yuan-Hong Tai
- grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Chien-Yu Chou
- grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Yu-Ching Hsieh
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ya-Chi Chang
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Hsiao-Chen Huang
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Zhi-Qin Li
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Yuan-Chin Hsieh
- grid.411447.30000 0004 0637 1806School of Medicine for International Students, I-Shou University, Kaoshiung, Taiwan, Republic of China
| | - I-Ju Chen
- grid.411447.30000 0004 0637 1806School of Medicine, I-Shou University, Kaohsiung, Taiwan, Republic of China
| | - Bo-Cheng Huang
- grid.412036.20000 0004 0531 9758Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | - Yu-Cheng Su
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China ,grid.412019.f0000 0000 9476 5696Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Wen-Wei Lin
- grid.412019.f0000 0000 9476 5696Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China ,grid.412019.f0000 0000 9476 5696Department of Laboratory Medicine, Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Hsin-Chieh Lin
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Jui-I Chao
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China ,grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shyng-Shiou F. Yuan
- grid.412027.20000 0004 0620 9374Translational Research Center, Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, and Faculty and College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Yun-Ming Wang
- grid.260539.b0000 0001 2059 7017Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China ,grid.260539.b0000 0001 2059 7017Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China ,grid.260539.b0000 0001 2059 7017Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Tian-Lu Cheng
- grid.412019.f0000 0000 9476 5696Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China ,grid.412019.f0000 0000 9476 5696Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China ,grid.412019.f0000 0000 9476 5696Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China. .,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
12
|
Evolution of protease activation and specificity via alpha-2-macroglobulin-mediated covalent capture. Nat Commun 2023; 14:768. [PMID: 36765057 PMCID: PMC9918453 DOI: 10.1038/s41467-023-36099-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Tailoring of the activity and specificity of proteases is critical for their utility across industrial, medical and research purposes. However, engineering or evolving protease catalysts is challenging and often labour intensive. Here, we describe a generic method to accelerate this process based on yeast display. We introduce the protease selection system A2Mcap that covalently captures protease catalysts by repurposed alpha-2-macroglobulin (A2Ms). To demonstrate the utility of A2Mcap for protease engineering we exemplify the directed activity and specificity evolution of six serine proteases. This resulted in a variant of Staphylococcus aureus serin-protease-like (Spl) protease SplB, an enzyme used for recombinant protein processing, that no longer requires activation by N-terminal signal peptide removal. SCHEMA-based domain shuffling was used to map the specificity determining regions of Spl proteases, leading to a chimeric scaffold that supports specificity switching via subdomain exchange. The ability of A2Mcap to overcome key challenges en route to tailor-made proteases suggests easier access to such reagents in the future.
Collapse
|
13
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
14
|
Pablo-Moreno JAD, Serrano LJ, Revuelta L, Sánchez MJ, Liras A. The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int J Mol Sci 2022; 23:ijms23158283. [PMID: 35955419 PMCID: PMC9425441 DOI: 10.3390/ijms23158283] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.
Collapse
Affiliation(s)
- Juan A. De Pablo-Moreno
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Javier Serrano
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Revuelta
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, 41013 Sevilla, Spain;
| | - Antonio Liras
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
- Correspondence:
| |
Collapse
|
15
|
Orozco CT, Bersellini M, Irving LM, Howard WW, Hargreaves D, Devine PWA, Siouve E, Browne GJ, Bond NJ, Phillips JJ, Ravn P, Jackson SE. Mechanistic insights into the rational design of masked antibodies. MAbs 2022; 14:2095701. [PMID: 35799328 PMCID: PMC9272835 DOI: 10.1080/19420862.2022.2095701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Although monoclonal antibodies have greatly improved cancer therapy, they can trigger side effects due to on-target, off-tumor toxicity. Over the past decade, strategies have emerged to successfully mask the antigen-binding site of antibodies, such that they are only activated at the relevant site, for example, after proteolytic cleavage. However, the methods for designing an ideal affinity-based mask and what parameters are important are not yet well understood. Here, we undertook mechanistic studies using three masks with different properties and identified four critical factors: binding site and affinity, as well as association and dissociation rate constants, which also played an important role. HDX-MS was used to identify the location of binding sites on the antibody, which were subsequently validated by obtaining a high-resolution crystal structure for one of the mask-antibody complexes. These findings will inform future designs of optimal affinity-based masks for antibodies and other therapeutic proteins.
Collapse
Affiliation(s)
- Carolina T Orozco
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.,Biologics Engineering, R&D, AstraZeneca, Cambridge, UK.,Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Wesley W Howard
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Paul W A Devine
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Cambridge, UK
| | - Elise Siouve
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Peter Ravn
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK.,Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|