1
|
Geng Q, Xu Y, Hu Y, Wang L, Wang Y, Fan Z, Kong D. Progress in the Application of Organoids-On-A-Chip in Diseases. Organogenesis 2024; 20:2386727. [PMID: 39126669 PMCID: PMC11318694 DOI: 10.1080/15476278.2024.2386727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
With the rapid development of the field of life sciences, traditional 2D cell culture and animal models have long been unable to meet the urgent needs of modern biomedical research and new drug development. Establishing a new generation of experimental models and research models is of great significance for deeply understanding human health and disease processes, and developing effective treatment measures. As is well known, long research and development cycles, high risks, and high costs are the "three mountains" facing the development of new drugs today. Organoids and organ-on-chips technology can highly simulate and reproduce the human physiological environment and complex reactions in vitro, greatly improving the accuracy of drug clinical efficacy prediction, reducing drug development costs, and avoiding the defects of drug testing animal models. Therefore, organ-on-chips have enormous potential in medical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Geng
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyan Xu
- Department of Anoenterology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Hu
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wang
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhimin Fan
- Department of colorectal surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Iriondo C, Koornneef S, Skarp KP, Buscop-van Kempen M, Boerema-de Munck A, Rottier RJ. Simple-Flow: A 3D-Printed Multiwell Flow Plate to Coculture Primary Human Lung Cells at the Air-Liquid Interface. ACS Biomater Sci Eng 2024. [PMID: 39719361 DOI: 10.1021/acsbiomaterials.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Immortalized epithelial cell lines and animal models have been used in fundamental and preclinical research to study pulmonary diseases. However valuable, though, these models incompletely recapitulate the in vivo human lung, which leads to low predictive outcomes in potential respiratory treatments. Advanced technology and cell culture techniques stimulate the development of improved models that more closely mimic the physiology of the human lung. Nonetheless, most of these models are technically demanding and have a low throughput and reproducibility. Here, we describe a robust fluidic device consisting of a biocompatible and customizable 3D-printed cell culture plate, the Simple-Flow, which has medium throughput, is simple to manufacture, and is easy to set up. As a proof of principle, human primary bronchial epithelial cells (hPBECs) and human pulmonary microvascular endothelial cells (hMVECs) were cocultured on the apical and basolateral sides of the inset membranes, respectively. While hPBECs were cultured at the air-liquid interface to induce mucociliary differentiation, hMVECs were exposed to flow medium for up to 2 weeks. We show the versatility of 3D-printing technology in designing in vitro models for cell culturing applications, such as pediatric lung diseases or other pulmonary disorders.
Collapse
Affiliation(s)
- Cinta Iriondo
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Sem Koornneef
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Kari-Pekka Skarp
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam 3000 CB, The Netherlands
| |
Collapse
|
3
|
Kumar A, Vaiphei KK, Gulbake A. A nanotechnology driven effectual localized lung cancer targeting approaches using tyrosine kinases inhibitors: Recent progress, preclinical assessment, challenges, and future perspectives. Int J Pharm 2024; 666:124745. [PMID: 39321904 DOI: 10.1016/j.ijpharm.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The higher incidence and mortality rate among all populations worldwide explains the unmet solutions in the treatment of lung cancer. The evolution of targeted therapies using tyrosine kinase inhibitors (TKI) has encouraged anticancer therapies. However, on-target and off-target effects and the development of drug resistance limited the anticancer potential of such targeted biologics. The advances in nanotechnology-driven-TKI embedded carriers that offered a new path toward lung cancer treatment. It is the inhalation route of administration known for its specific, precise, and efficient drug delivery to the lungs. The development of numerous TKI-nanocarriers through inhalation is proof of TKI growth. The future scopes involve using potential lung cancer biomarkers to achieve localized active cancer-targeting strategies. The adequate knowledge of in vitro absorption models usually helps establish better in vitro - in vivo correlation/extrapolation (IVIVC/E) to successfully evaluate inhalable drugs and drug products. The advanced in vitro and ex vivo lung tissue/ organ models offered better tumor heterogeneity, etiology, and microenvironment heterogeneity. The involvement of lung cancer organoids (LCOs), human organ chip models, and genetically modified mouse models (GEMMs) has resolved the challenges associated with conventional in vitro and in vivo models. To access potential inhalation-based drugtherapies, biological barriers, drug delivery, device-based challenges, and regulatory challenges must be encountered associated with their development. A proper understanding of material toxicity, size-based particle deposition at active disease sites, mucociliary clearance, phagocytosis, and the presence of enzymes and surfactants are required to achieve successful inhalational drug delivery (IDD). This article summarizes the future of lung cancer therapy using targeted drug-mediated inhalation using TKI.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
4
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
5
|
Antczak LAM, Moore KN, Hendrick TE, Heise RL. Binary fabrication of decellularized lung extracellular matrix hybridgels for in vitro chronic obstructive pulmonary disease modeling. Acta Biomater 2024; 185:190-202. [PMID: 39059731 PMCID: PMC11474825 DOI: 10.1016/j.actbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Limited treatments and a lack of appropriate animal models have spurred the study of scaffolds to mimic lung disease in vitro. Decellularized human lung and its application in extracellular matrix (ECM) hydrogels has advanced the development of these lung ECM models. Controlling the biochemical and mechanical properties of decellularized ECM hydrogels continues to be of interest due to inherent discrepancies of hydrogels when compared to their source tissue. To optimize the physiologic relevance of ECM hydrogel lung models without sacrificing the native composition we engineered a binary fabrication system to produce a Hybridgel composed of an ECM hydrogel reinforced with an ECM cryogel. Further, we compared the effect of ECM-altering disease on the properties of the gels using elastin poor Chronic Obstructive Pulmonary Disease (COPD) vs non-diseased (ND) human lung source tissue. Nanoindentation confirmed the significant loss of elasticity in hydrogels compared to that of ND human lung and further demonstrated the recovery of elastic moduli in ECM cryogels and Hybridgels. These findings were supported by similar observations in diseased tissue and gels. Successful cell encapsulation, distribution, cytotoxicity, and infiltration were observed and characterized via confocal microscopy. Cells were uniformly distributed throughout the Hybridgel and capable of survival for 7 days. Cell-laden ECM hybridgels were found to have elasticity similar to that of ND human lung. Compositional investigation into diseased and ND gels indicated the conservation of disease-specific elastin to collagen ratios. In brief, we have engineered a composited ECM hybridgel for the 3D study of cell-matrix interactions of varying lung disease states that optimizes the application of decellularized lung ECM materials to more closely mimic the human lung while conserving the compositional bioactivity of the native ECM. STATEMENT OF SIGNIFICANCE: The lack of an appropriate disease model for the study of chronic lung diseases continues to severely inhibit the advancement of treatments and preventions of these otherwise fatal illnesses due to the inability to recapture the biocomplexity of pathologic cell-ECM interactions. Engineering biomaterials that utilize decellularized lungs offers an opportunity to deconstruct, understand, and rebuild models that highlight and investigate how disease specific characteristics of the extracellular environment are involved in driving disease progression. We have advanced this space by designing a binary fabrication system for a ECM Hybridgel that retains properties from its source material required to observe native matrix interactions. This design simulates a 3D lung environment that is both mechanically elastic and compositionally relevant when derived from non-diseased tissue and pathologically diminished both mechanically and compositionally when derived from COPD tissue. Here we describe the ECM hybridgel as a model for the study of cell-ECM interactions involved in COPD.
Collapse
Affiliation(s)
- Leigh-Ann M Antczak
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Karah N Moore
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Taylor E Hendrick
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
6
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
7
|
Streutker EM, Devamoglu U, Vonk MC, Verdurmen WPR, Le Gac S. Fibrosis-on-Chip: A Guide to Recapitulate the Essential Features of Fibrotic Disease. Adv Healthc Mater 2024; 13:e2303991. [PMID: 38536053 DOI: 10.1002/adhm.202303991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis, which is primarily marked by excessive extracellular matrix (ECM) deposition, is a pathophysiological process associated with many disorders, which ultimately leads to organ dysfunction and poor patient outcomes. Despite the high prevalence of fibrosis, currently there exist few therapeutic options, and importantly, there is a paucity of in vitro models to accurately study fibrosis. This review discusses the multifaceted nature of fibrosis from the viewpoint of developing organ-on-chip (OoC) disease models, focusing on five key features: the ECM component, inflammation, mechanical cues, hypoxia, and vascularization. The potential of OoC technology is explored for better modeling these features in the context of studying fibrotic diseases and the interplay between various key features is emphasized. This paper reviews how organ-specific fibrotic diseases are modeled in OoC platforms, which elements are included in these existing models, and the avenues for novel research directions are highlighted. Finally, this review concludes with a perspective on how to address the current gap with respect to the inclusion of multiple features to yield more sophisticated and relevant models of fibrotic diseases in an OoC format.
Collapse
Affiliation(s)
- Emma M Streutker
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Utku Devamoglu
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
8
|
Nuckhir M, Withey D, Cabral S, Harrison H, Clarke RB. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? J Mammary Gland Biol Neoplasia 2024; 29:14. [PMID: 39012440 PMCID: PMC11252219 DOI: 10.1007/s10911-024-09567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
Collapse
Affiliation(s)
- Mia Nuckhir
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - David Withey
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Sara Cabral
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Hannah Harrison
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
9
|
Li L, Bo W, Wang G, Juan X, Xue H, Zhang H. Progress and application of lung-on-a-chip for lung cancer. Front Bioeng Biotechnol 2024; 12:1378299. [PMID: 38854856 PMCID: PMC11157020 DOI: 10.3389/fbioe.2024.1378299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a malignant tumour with the highest incidence and mortality worldwide. Clinically effective therapy strategies are underutilized owing to the lack of efficient models for evaluating drug response. One of the main reasons for failure of anticancer drug therapy is development of drug resistance. Anticancer drugs face severe challenges such as poor biodistribution, restricted solubility, inadequate absorption, and drug accumulation. In recent years, "organ-on-a-chip" platforms, which can directly regulate the microenvironment of biomechanics, biochemistry and pathophysiology, have been developed rapidly and have shown great potential in clinical drug research. Lung-on-a-chip (LOC) is a new 3D model of bionic lungs with physiological functions created by micromachining technology on microfluidic chips. This approach may be able to partially replace animal and 2D cell culture models. To overcome drug resistance, LOC realizes personalized prediction of drug response by simulating the lung-related microenvironment in vitro, significantly enhancing therapeutic effectiveness, bioavailability, and pharmacokinetics while minimizing side effects. In this review, we present an overview of recent advances in the preparation of LOC and contrast it with earlier in vitro models. Finally, we describe recent advances in LOC. The combination of this technology with nanomedicine will provide an accurate and reliable treatment for preclinical evaluation.
Collapse
Affiliation(s)
- Lantao Li
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Guangyan Wang
- Department of General Internal Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Juan
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyi Xue
- Department of Intensive Care Unit, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
11
|
Vo Q, Benam KH. Advancements in preclinical human-relevant modeling of pulmonary vasculature on-chip. Eur J Pharm Sci 2024; 195:106709. [PMID: 38246431 PMCID: PMC10939731 DOI: 10.1016/j.ejps.2024.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Lung vasculature is particularly important due to its involvement in genesis and progression of rare, debilitating disorders as well as common chronic pathologies. Here, we provide an overview of the latest advances in the development of pulmonary vascular (PV) models using emerging microfluidic tissue engineering technology Organs-on-Chips (so-called PV-Chips). We first review the currently reported PV-Chip systems and their key features, and then critically discuss their major limitations in reproducing in vivo-seen and disease-relevant cellularity, localization, and microstructure. We conclude by presenting latest efforts to overcome such technical and biological limitations and future directions.
Collapse
Affiliation(s)
- Quoc Vo
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Chen W, Zhu Y, Liu R, Kong B, Xia N, Zhao Y, Sun L. Screening Therapeutic Effects of MSC-EVs to Acute Lung Injury Model on A Chip. Adv Healthc Mater 2024; 13:e2303123. [PMID: 38084928 DOI: 10.1002/adhm.202303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Acute lung injury (ALI) is a lethal disease with high mortality rate, and its physiologically relevant models that could mimic human disease processes are urgently needed to study pathophysiology and predict drug efficacy. Here, this work presents a novel lipopolysaccharide (LPS) based ALI model on a microfluidic chip that reconstitutes an air-liquid interface lined by human alveolar epithelium and microvascular endothelium for screening the therapeutic effects of mesenchymal stem cells (MSC) derived extracellular vesicles (MSC-EVs) to the biomimetic ALI. The air-liquid interface is established by coculture of alveolar epithelium and microvascular endothelium on the opposite sides of the porous membrane. The functionalized architecture is characterized by integrate cell layers and suitable permeability. Using this biomimetic microsystem, LPS based ALI model is established, which exhibits the disrupted alveolar-capillary barrier, reduced transepithelial/transendothelial electrical resistance (TEER), and impaired expression of junction proteins. As a reliable disease model, this work examines the effects of MSC-EVs, and the data indicate the therapeutic potential of EVs for severe ALI. MSC-EVs can alleviate barrier disruption by restoring both the epithelial and endothelial barrier integrity. They hope this study can become a unique approach to study human pathophysiology of ALI and advance drug development.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yujuan Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Nan Xia
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| |
Collapse
|
13
|
Jiang L, Khawaja H, Tahsin S, Clarkson TA, Miranti CK, Zohar Y. Microfluidic-based human prostate-cancer-on-chip. Front Bioeng Biotechnol 2024; 12:1302223. [PMID: 38322789 PMCID: PMC10844564 DOI: 10.3389/fbioe.2024.1302223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Lack of adequate models significantly hinders advances in prostate cancer treatment, where resistance to androgen-deprivation therapies and bone metastasis remain as major challenges. Current in vitro models fail to faithfully mimic the complex prostate physiology. In vivo animal models can shed light on the oncogenes involved in prostate cancer development and progression; however, the animal prostate gland is fundamentally different from that of human, and the underlying genetic mechanisms are different. To address this problem, we developed the first in vitro microfluidic human Prostate-Cancer-on-Chip (PCoC) model, where human prostate cancer and stromal fibroblast cells were co-cultivated in two channels separated by a porous membrane under culture medium flow. The established microenvironment enables soluble signaling factors secreted by each culture to locally diffuse through the membrane pores affecting the neighboring culture. We particularly explored the conversion of the stromal fibroblasts into cancer-associated fibroblasts (CAFs) due to the interaction between the 2 cell types. Immunofluorescence microscopy revealed that tumor cells induced CAF biomarkers, αSMA and COL1A1, in stromal fibroblasts. The stromal CAF conversion level was observed to increase along the flow direction in response to diffusion agents, consistent with simulations of solute concentration gradients. The tumor cells also downregulated androgen receptor (AR) expression in stromal fibroblasts, while an adequate level of stromal AR expression is maintained in normal prostate homeostasis. We further investigated tumor invasion into the stroma, an early step in the metastatic cascade, in devices featuring a serpentine channel with orthogonal channel segments overlaying a straight channel and separated by an 8 µm-pore membrane. Both tumor cells and stromal CAFs were observed to cross over into their neighboring channel, and the stroma's role seemed to be proactive in promoting cell invasion. As control, normal epithelial cells neither induced CAF conversion nor promoted cell invasion. In summary, the developed PCoC model allows spatiotemporal analysis of the tumor-stroma dynamic interactions, due to bi-directional signaling and physical contact, recapitulating tissue-level multicellular responses associated with prostate cancer in vivo. Hence, it can serve as an in vitro model to dissect mechanisms in human prostate cancer development and seek advanced therapeutic strategies.
Collapse
Affiliation(s)
- Linan Jiang
- Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, Tucson, AZ, United States
| | - Shekha Tahsin
- Cancer Biology Graduate Interdisciplinary Program, Tucson, AZ, United States
| | | | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, Tucson, AZ, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Kanabekova P, Dauletkanov B, Bekezhankyzy Z, Toktarkan S, Martin A, Pham TT, Kostas K, Kulsharova G. A hybrid fluorescent nanofiber membrane integrated with microfluidic chips towards lung-on-a-chip applications. LAB ON A CHIP 2024; 24:224-233. [PMID: 38053518 DOI: 10.1039/d3lc00751k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Here, we report a fluorescent electrospun nanofiber membrane for integration into microfluidic devices towards lung-on-a-chip applications complemented with the results of computational fluid dynamics modelling. A proposed hybrid poly(ε-caprolactone) (PCL)-collagen membrane was developed, characterized, tested, and integrated into a prototype microfluidic chip for biocompatibility studies. The resulting membrane has a thickness of approximately 10 μm, can be adjusted for appropriate porosity, and offers excellent biocompatibility for mimicry of a basement membrane to be used in lung-on-a-chip device applications. Several membrane variations were synthesized and evaluated using SEM, FTIR, AFM, and high-resolution confocal fluorescence microscopy. A sample microfluidic chip made of cyclic olefin copolymer and polydimethylsiloxane was built and integrated with the developed PCL-collagen membrane for on-chip cell culture visualisation and biocompatibility studies. The sample chip design was modelled to determine the optimal fluidic conditions for using the membrane in the chip under fluidic conditions for future studies. The integration of the proposed membrane into microfluidic devices represents a novel strategy for improving lung-on-a-chip applications which can enhance laboratory recapitulation of the lung microenvironment.
Collapse
Affiliation(s)
- Perizat Kanabekova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Bereke Dauletkanov
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Zhibek Bekezhankyzy
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Sultanali Toktarkan
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Alma Martin
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Tri T Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Konstantinos Kostas
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Gulsim Kulsharova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
15
|
Drobintseva AO, Mironova ES, Zubareva TS, Krylova YS, Kvetnoy IM, Paltsev MA, Yablonsky PK. [Modern approaches to studying the molecular mechanisms of lung functioning in normal and pathological conditions]. Arkh Patol 2024; 86:58-64. [PMID: 38591908 DOI: 10.17116/patol20248602158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Problems with breathing and lung function are caused by the development of various lung diseases associated with lifestyle, harmful environmental factors and genetic predisposition. Knowledge of the molecular mechanisms of the development of the pathological process will allow on time identification of the disease or the development of targeted therapy. The article provides an overview of modern methods that make it possible to most accurately reproduce the structural, functional and mechanical properties of the lung (organ-on-a-chip), to perform non-invasive molecular studies of biomarkers of bronchopulmonary pathology using saliva diagnostics, as well as using DNA and RNA aptamers, verify tumor markers in biological samples of human tissue. Analysis of alterations in the pattern of protein glycosylation using glycodiagnostic methods makes it possible to detect lung cancer in the early stages.
Collapse
Affiliation(s)
- A O Drobintseva
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - E S Mironova
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - T S Zubareva
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - Yu S Krylova
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- First Saint Petersburg State Medical University named after. acad. I.P. Pavlov (Pavlov University), St. Petersburg, Russia
| | - I M Kvetnoy
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| | - M A Paltsev
- Lomonosov Moscow State University, Moscow, Russia
| | - P K Yablonsky
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
16
|
Aljabali AAA, Obeid MA, Mishra V, El-Tanani M, Tambuwala MM. Customizable Microfluidic Devices: Progress, Constraints, and Future Advances. Curr Drug Deliv 2024; 21:1285-1299. [PMID: 39034714 DOI: 10.2174/0115672018264064231017113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/13/2023] [Accepted: 08/31/2023] [Indexed: 07/23/2024]
Abstract
The field of microfluidics encompasses the study of fluid behavior within micro-channels and the development of miniature systems featuring internal compartments or passageways tailored for fluid control and manipulation. Microfluidic devices capitalize on the unique chemical and physical properties exhibited by fluids at the microscopic scale. In contrast to their larger counterparts, microfluidic systems offer a multitude of advantages. Their implementation facilitates the investigation and utilization of reduced sample, solvent, and reagent volumes, thus yielding decreased operational expenses. Owing to their compact dimensions, these devices allow for the concurrent execution of multiple procedures, leading to expedited experimental timelines. Over the past two decades, microfluidics has undergone remarkable advancements, evolving into a multifaceted discipline. Subfields such as organ-on-a-chip and paper-based microfluidics have matured into distinct fields of study. Nonetheless, while scientific progress within the microfluidics realm has been notable, its translation into autonomous end-user applications remains a frontier to be fully explored. This paper sets forth the central objective of scrutinizing the present research paradigm, prevailing limitations, and potential prospects of customizable microfluidic devices. Our inquiry revolves around the latest strides achieved, prevailing constraints, and conceivable trajectories for adaptable microfluidic technologies. We meticulously delineate existing iterations of microfluidic systems, elucidate their operational principles, deliberate upon encountered limitations, and provide a visionary outlook toward the future trajectory of microfluidic advancements. In summation, this work endeavors to shed light on the current state of microfluidic systems, underscore their operative intricacies, address incumbent challenges, and unveil promising pathways that chart the course toward the next frontier of microfluidic innovation.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, UK
| |
Collapse
|
17
|
Shin M, Ha T, Lim J, An J, Beak G, Choi J, Melvin AA, Yoon J, Choi J. Human Motor System-Based Biohybrid Robot-On-a-Chip for Drug Evaluation of Neurodegenerative Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305371. [PMID: 38036423 PMCID: PMC10811491 DOI: 10.1002/advs.202305371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Indexed: 12/02/2023]
Abstract
Biohybrid robots have been developed for biomedical applications and industrial robotics. However, the biohybrid robots have limitations to be applied in neurodegenerative disease research due to the absence of a central nervous system. In addition, the organoids-on-a-chip has not yet been able to replicate the physiological function of muscle movement in the human motor system, which is essential for evaluating the accuracy of the drugs used for treating neurodegenerative diseases. Here, a human motor system-based biohybrid robot-on-a-chip composed of a brain organoid, multi-motor neuron spheroids, and muscle bundle on solid substrateis proposed to evaluate the drug effect on neurodegenerative diseases for the first time. The electrophysiological signals from the cerebral organoid induced the muscle bundle movement through motor neuron spheroids. To evaluate the drug effect on Parkinson's disease (PD), a patient-derived midbrain organoid is generated and incorporated into a biohybrid robot-on-a-chip. The drug effect on PD is successfully evaluated by measuring muscle bundle movement. The muscle bundle movement of PD patient-derived midbrain organoid-based biohybrid robot-on-a-chip is increased from 4.5 ± 0.99 µm to 18.67 ± 2.25 µm in response to levodopa. The proposed human motor system-based biohybrid robot-on-a-chip can serve as a standard biohybrid robot model for drug evaluation.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Taehyeong Ha
- Department of Chemical & Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Joohyun An
- Department of Chemical & Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Geunyoung Beak
- Department of Chemical & Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Jin‐Ha Choi
- School of Chemical EngineeringJeonbuk National University567 Baekje‐daero, Deokjin‐guJeonju‐siJeollabuk‐do54896Republic of Korea
| | - Ambrose Ashwin Melvin
- Department of Chemical & Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| | - Jinho Yoon
- Department of Biomedical‐Chemical EngineeringThe Catholic University of Korea43 Jibong‐ro, Wonmi‐guBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of Korea43 Jibong‐ro, Wonmi‐guBucheon‐siGyeonggi‐do14662Republic ofKorea
| | - Jeong‐Woo Choi
- Department of Chemical & Biomolecular EngineeringSogang University35 Baekbeom‐ro, Mapo‐guSeoul04107Republic of Korea
| |
Collapse
|
18
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
19
|
Halwes M, Stamp M, Collins DJ. A Rapid Prototyping Approach for Multi-Material, Reversibly Sealed Microfluidics. MICROMACHINES 2023; 14:2213. [PMID: 38138382 PMCID: PMC10745384 DOI: 10.3390/mi14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Microfluidic organ-on-chip models recapitulate increasingly complex physiological phenomena to study tissue development and disease mechanisms, where there is a growing interest in retrieving delicate biological structures from these devices for downstream analysis. Standard bonding techniques, however, often utilize irreversible sealing, making sample retrieval unfeasible or necessitating destructive methods for disassembly. To address this, several commercial devices employ reversible sealing techniques, though integrating these techniques into early-stage prototyping workflows is often ignored because of the variation and complexity of microfluidic designs. Here, we demonstrate the concerted use of rapid prototyping techniques, including 3D printing and laser cutting, to produce multi-material microfluidic devices that can be reversibly sealed. This is enhanced via the incorporation of acrylic components directly into polydimethylsiloxane channel layers to enhance stability, sealing, and handling. These acrylic components act as a rigid surface separating the multiple mechanical seals created between the bottom substrate, the microfluidic features in the device, and the fluidic interconnect to external tubing, allowing for greater design flexibility. We demonstrate that these devices can be produced reproducibly outside of a cleanroom environment and that they can withstand ~1 bar pressures that are appropriate for a wide range of biological applications. By presenting an accessible and low-cost method, we hope to enable microfluidic prototyping for a broad range of biomedical research applications.
Collapse
Affiliation(s)
- Michael Halwes
- Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia; (M.H.); (M.S.)
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Melanie Stamp
- Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia; (M.H.); (M.S.)
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - David J. Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia; (M.H.); (M.S.)
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
20
|
Sun L, Bian F, Xu D, Luo Y, Wang Y, Zhao Y. Tailoring biomaterials for biomimetic organs-on-chips. MATERIALS HORIZONS 2023; 10:4724-4745. [PMID: 37697735 DOI: 10.1039/d3mh00755c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Organs-on-chips are microengineered microfluidic living cell culture devices with continuously perfused chambers penetrating to cells. By mimicking the biological features of the multicellular constructions, interactions among organs, vascular perfusion, physicochemical microenvironments, and so on, these devices are imparted with some key pathophysiological function levels of living organs that are difficult to be achieved in conventional 2D or 3D culture systems. In this technology, biomaterials are extremely important because they affect the microstructures and functionalities of the organ cells and the development of the organs-on-chip functions. Thus, herein, we provide an overview on the advances of biomaterials for the construction of organs-on-chips. After introducing the general components, structures, and fabrication techniques of the biomaterials, we focus on the studies of the functions and applications of these biomaterials in the organs-on-chips systems. Applications of the biomaterial-based organs-on-chips as alternative animal models for pharmaceutical, chemical, and environmental tests are described and highlighted. The prospects for exciting future directions and the challenges of biomaterials for realizing the further functionalization of organs-on-chips are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
21
|
Paudel KR, Rajput R, De Rubis G, Raju Allam VSR, Williams KA, Singh SK, Gupta G, Salunke P, Hansbro PM, Gerlach J, Dua K. In vitro anti-cancer activity of a polyherbal preparation, VEDICINALS®9, against A549 human lung adenocarcinoma cells. Pathol Res Pract 2023; 250:154832. [PMID: 37774532 DOI: 10.1016/j.prp.2023.154832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is among the leading causes of morbidity and mortality worldwide. Despite the availability of several treatment options, the five-year survival rate of NSCLC is extremely low (<20%). This underlines the necessity of more effective therapeutic alternatives. In this context, plant-derived extracts and bioactive molecules extracted from plants, known collectively as phytoceuticals, represent an extremely variegated source of bioactive compounds with potent anticancer potential. In the present study, we tested the in vitro anticancer activity of a polyherbal preparation, VEDICINALS®9, containing nine different bioactive principles extracted by medicinal plants. METHODS The anticancer activity of VEDICINALS®9 was investigated by measuring its impact on A549 human NSCLC cell proliferation (MTT assay and trypan blue staining), migration (wound healing assay and transwell chamber assay) and by measuring the impact on the expression of cancer-related proteins (Human XL Oncology Protein Array). RESULTS We show that VEDICINALS®9 at a concentration of 0.2% v/v has potent anticancer effect, significantly inhibiting A549 cell proliferation and migration. Mechanistically, this was achieved by downregulating the expression of proteins involved in cancer cell proliferation (Axl, FGF basic, enolase 2, progranulin, survivin) and migration (Dkk-1, cathepsins B and D, BCL-x, amphiregulin, CapG, u-plasminogen activator). Furthermore, treatment with VEDICINALS®9 resulted in increased expression of the oncosuppressor protein p53 and of the angiogenesis inhibitor endostatin. CONCLUSIONS Taken together, our results provide proof of principle of the potent anticancer activity of the polyherbal preparation VEDICINALS®9, highlighting its enormous potential as an alternative or adjuvant therapy for lung cancer.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Kylie Anne Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
22
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
23
|
van Os L, Yeoh J, Witz G, Ferrari D, Krebs P, Chandorkar Y, Zeinali S, Sengupta A, Guenat O. Immune cell extravasation in an organ-on-chip to model lung imflammation. Eur J Pharm Sci 2023:106485. [PMID: 37270149 DOI: 10.1016/j.ejps.2023.106485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition with high mortality and various causes, including lung infection. No specific treatment is currently available and more research aimed at better understanding the pathophysiology of ARDS is needed. Most lung-on-chip models that aim at mimicking the air-blood barrier are designed with a horizontal barrier through which immune cells can migrate vertically, making it challenging to visualize and investigate their migration. In addition, these models often lack a barrier of natural protein-derived extracellular matrix (ECM) suitable for live cell imaging to investigate ECM-dependent migration of immune cells as seen in ARDS. This study reports a novel inflammation-on-chip model with live cell imaging of immune cell extravasation and migration during lung inflammation. The three-channel perfusable inflammation-on-chip system mimics the lung endothelial barrier, the ECM environment and the (inflamed) lung epithelial barrier. A chemotactic gradient was established across the ECM hydrogel, leading to the migration of immune cells through the endothelial barrier. We found that immune cell extravasation depends on the presence of an endothelial barrier, on the ECM density and stiffness, and on the flow profile. In particular, bidirectional flow, broadly used in association with rocking platforms, was found to importantly delay extravasation of immune cells in contrast to unidirectional flow. Extravasation was increased in the presence of lung epithelial tissue. This model is currently used to study inflammation-induced immune cell migration but can be used to study infection-induced immune cell migration under different conditions, such as ECM composition, density and stiffness, type of infectious agents used, and the presence of organ-specific cell types.
Collapse
Affiliation(s)
- Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jeremy Yeoh
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Institute of Pathology, University of Bern, Bern, Switzerland
| | - Guillaume Witz
- Microscopy Imaging Center (MIC) & Data Science Lab (DSL), University of Bern, Bern, Switzerland
| | - Dario Ferrari
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Yashoda Chandorkar
- Laboratory for Biointerfaces, EMPA Empa Swiss Federal Laboratories for Material Science and Technology, St Gallen, Switzerland
| | - Soheila Zeinali
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Olivier Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland.
| |
Collapse
|
24
|
Su M, Li X, Li Z, Hua C, Shang P, Zhao J, Liu K, Xie F. Design of a microfluidic lung chip and its application in assessing the toxicity of formaldehyde. Toxicol Mech Methods 2023; 33:427-436. [PMID: 36573377 DOI: 10.1080/15376516.2022.2159903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
In this work, a microfluidic lung chip with membrane supporting cell growth that can produce multiple concentration gradients of gas and liquid is introduced. The chip is composed of a gas gradient layer in the upper part, a porous membrane supporting cell growth in the middle and a liquid gradient layer in the lower part. The gas-liquid interface environment of the cells on the membrane can expose the cells to the gas in the upper layer and the liquid in the lower layer at the same time. Then, the chip is applied to the toxicity testing of formaldehyde in A549 cells. The results showed that at 6 × 10-5 mol/L formaldehyde, the survival rate of the cells in four channels were 90, 87, 81, and 71%, which shows a dose-response trend under the influence of different concentrations of formaldehyde. ROS staining results also showed that formaldehyde exposure at 6 × 10-5 mol/L lead to the increase of ROS level in the cells. These results suggest that the chip based on cell growth on membrane could be used for toxicological evaluation of environmental polluting gases.
Collapse
Affiliation(s)
- Man Su
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Zezhi Li
- Beijing Technology and Business University, Beijing, P. R. China
| | - Chenfeng Hua
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, P. R. China
| |
Collapse
|
25
|
Dai M, Xiao G, Shao M, Zhang YS. The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review. BIOSENSORS 2023; 13:389. [PMID: 36979601 PMCID: PMC10046732 DOI: 10.3390/bios13030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs.
Collapse
Affiliation(s)
- Manna Dai
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Computing and Intelligence Department, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Ming Shao
- Department of Computer and Information Science, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Ito K, Daly L, Coates M. An impact of age on respiratory syncytial virus infection in air-liquid-interface culture bronchial epithelium. Front Med (Lausanne) 2023; 10:1144050. [PMID: 36999069 PMCID: PMC10043235 DOI: 10.3389/fmed.2023.1144050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundElderly people are known to be vulnerable to virus infection. However, this has not been appropriately tested in in vitro studies due to a lack of appropriate virus infection models. In this report, we investigated the impact of age on respiratory syncytial virus (RSV) in pseudostratified air-liquid-interface (ALI) culture bronchial epithelium, which more closely mimic human airway epithelium morphologically and physiologically, than submerged cancer cell line cultures.MethodsRSV A2 was inoculated apically to the bronchial epithelium obtained from 8 donors with different ages (28–72 years old), and time-profiles of viral load and inflammatory cytokines were analyzed.ResultsRSV A2 replicated well in ALI-culture bronchial epithelium. The viral peak day and peak viral load were similar between donors at ≤60 years old (n = 4) and > 65 years old (n = 4; elderly group), but virus clearance was impaired in the elderly group. Furthermore, area under the curve (AUC) analysis, calculated from viral load peak to the end of sample collection (from Day 3 to 10 post inoculation), revealed statistically higher live viral load (PFU assay) and viral genome copies (PCR assay) in the elderly group, and a positive correlation between viral load and age was observed. In addition, the AUCs of RANTES, LDH, and dsDNA (cell damage marker) were statistically higher in the elderly group, and the elderly group showed a trend of higher AUC of CXCL8, CXCL10 and mucin production. The gene expression of p21CDKN1A (cellular senescence marker) at baseline was also higher in the elderly group, and there was a good positive correlation between basal p21 expression and viral load or RANTES (AUC).ConclusionAge was found to be a key factor affecting viral kinetics and biomarkers post virus infection in an ALI-culture model. Currently, novel or innovative in vitro cell models are introduced for virus research, but when virus studies are conducted, similarly to working with other clinical samples, the age balance is important to obtain more accurate results.
Collapse
|
27
|
Ramalho AS, Amato F, Gentzsch M. Patient-derived cell models for personalized medicine approaches in cystic fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S32-S38. [PMID: 36529661 PMCID: PMC9992303 DOI: 10.1016/j.jcf.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.
Collapse
Affiliation(s)
- Anabela S Ramalho
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Felice Amato
- Department Of Molecular Medicine and Medical Biotechnologies and CE.IN.GE - Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Martina Gentzsch
- Marsico Lung Institute - Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Shao C, Cao T, Wang X, Fan Q, Ye F. Reconstruction of the alveolar-capillary barrier in vitro based on a photo-responsive stretchable Janus membrane. SMART MEDICINE 2023; 2:e20220035. [PMID: 39188563 PMCID: PMC11235665 DOI: 10.1002/smmd.20220035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 08/28/2024]
Abstract
The lung is the respiratory organ of the human body, and the alveoli are the most basic functional units of the lung. Herein, a photo-responsive stretchable Janus membrane was proposed for the reconstruction of the alveolar-capillary barrier in vitro. This Janus membrane was fabricated by photocrosslinking methylacrylamide gelatin (Gelma) hydrogel and N-isoacrylamide (NIPAM) hydrogel mixed with graphene oxide (GO). The Gelma hydrogel containing large amounts of collagen provides a natural extracellular matrix environment for cell growth, while the temperature-sensitive NIPAM hydrogel combined with GO gives the membrane a light-controlled stretching property. Based on this Janus membrane, an open polydimethylsiloxane chip was established to coculture alveolar epithelial cells and vascular endothelial cells at the air-liquid interface. It was demonstrated that the alveolar epithelial cells cultured on the upper side of the Janus membrane could express epithelial cell marker protein E-cadherin and secrete alveolar surfactant. In addition, VE-cadherin, an endothelium-specific protein located at the junction between endothelial cells, was also detected in vascular endothelial cells cultured on the underside of Janus membrane. The constructed lung tissue model with the dynamically stretchable Janus membrane is well-suited for COVID-19 infection studies and drug testing.
Collapse
Affiliation(s)
- Changmin Shao
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Ting Cao
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Xiaochen Wang
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Fangfu Ye
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| |
Collapse
|
29
|
Tan J, Guo Q, Tian L, Pei Z, Li D, Wu M, Zhang J, Gao X. Biomimetic lung-on-a-chip to model virus infection and drug evaluation. Eur J Pharm Sci 2023; 180:106329. [PMID: 36375766 PMCID: PMC9650675 DOI: 10.1016/j.ejps.2022.106329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Viral infectious diseases remain a global public health problem. The rapid and widespread spread of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV‑2) has had a severe impact on the global economy and human activities, highlighting the vulnerability of humans to viral infectious diseases and the urgent need to develop new technologies and effective treatments. Organ-on-a-chip is an emerging technology for constructing the physiological and pathological microenvironment of human organs in vitro and has the advantages of portability, high throughput, low cost, and accurate simulation of the in vivo microenvironment. Indeed, organ-on-a-chip provides a low-cost alternative for investigating human organ physiology, organ diseases, toxicology, and drug efficacy. The lung is a main target organ of viral infection, and lung pathophysiology must be assessed after viral infection and treatment with antiviral drugs. This review introduces the construction of lung-on-a-chip and its related pathophysiological models, focusing on the in vitro simulation of viral infection and evaluation of antiviral drugs, providing a developmental direction for research and treatment of viral diseases.
Collapse
Affiliation(s)
- Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Lingling Tian
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhendong Pei
- Anesthesia Surgery Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Mengxi Wu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China,Corresponding author at: Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China,Corresponding author at: Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
30
|
Yin F, Ge P, Wei W, Wang H, Cheng Y, Zhao F, Li D. WITHDRAWN: Human placental barrier-brain organoid-on-a-chip for modeling maternal PM2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022:160565. [PMID: 36464052 DOI: 10.1016/j.scitotenv.2022.160565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Fangchao Yin
- Medical School, Nantong University, Nantong 226001, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, China
| | - Pinghua Ge
- Shanghai Yuanhao Environmental Technology Co., Ltd., Shanghai 201100, China
| | - Wenbo Wei
- First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hui Wang
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yan Cheng
- Medical School, Nantong University, Nantong 226001, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Feng Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Dong Li
- Medical School, Nantong University, Nantong 226001, China.
| |
Collapse
|
31
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|