1
|
Samarghandian S, Rajabi S, Aschner M, Noferesti V, Farkhondeh T. Oxidative stress and apoptotic index modifications in the hippocampus of rat pups born to mothers exposed to buprenorphine during lactation. Toxicol Rep 2022; 9:2050-2054. [PMID: 36518388 PMCID: PMC9742962 DOI: 10.1016/j.toxrep.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Background The effect of opioids administration during lactation on nervous system has not fully understood. Objective The aim of this study was to evaluate the buprenorphine (BUP) impact on oxidative stress indexes and apoptotic gene expression in the hippocampus of neonates exposed to this drug through breastfeeding. Methods Lactating female rats were subcutaneously injected with BUP (1 or 0.5 mg/kg). After 28 days, the pups were anesthetized, then their hippocampus were obtained for measurement of oxidative stress parameters [glutathione (GSH), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) and superoxide dismutase (SOD)] and gene expression of apoptotic indices (Bcl2, Bax and caspase 3). Results This study showed that BUP (0.5 and 1 mg/kg) could not markedly change oxidative stress indices levels and apoptotic markers expression in the hippocampus of pups versus controls. Conclusion This study did not find BUP effect on the apoptosis and oxidative stress indices in the hippocampus of pups born to mothers exposed to this drug during lactation.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahnaz Rajabi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Vahid Noferesti
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
2
|
Short- and long-term administration of buprenorphine improved p2x4 gene expression and reduction GABAA in the hippocampus of methamphetamine rats. Heliyon 2022; 8:e11432. [DOI: 10.1016/j.heliyon.2022.e11432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/02/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
3
|
Etaee F, Rezvani-Kamran A, Komaki S, Asadbegi M, Faraji N, Raoufi S, Taheri M, Kourosh-Arami M, Komaki A. Effects of Buprenorphine on the Memory and Learning Deficit Induced by Methamphetamine Administration in Male Rats. Front Behav Neurosci 2021; 15:748563. [PMID: 34887733 PMCID: PMC8650604 DOI: 10.3389/fnbeh.2021.748563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Little is known about the effects of methamphetamine (Meth) and buprenorphine (Bup) on memory and learning in rats. The aim of this investigation was to examine the impact of Meth and Bup on memory and learning. Fourteen male Wistar rats weighing 250–300 g were assigned to four groups: Sham, Meth, Bup, and Meth + Bup and were treated for 1 week. Spatial learning and memory, avoidance learning, and locomotion were assessed using the Morris water maze, passive avoidance learning, and open field tests, respectively. Meth and Bup impaired spatial learning and memory in rats. Co-administration of Meth + Bup did not increase the time spent in the target quadrant compared to Meth alone in the MWM. The Bup and Meh + Bup groups were found with an increase in step-through latency (STLr) and a decrease in the time spent in the dark compartment (TDC). Meth and Bup had no effects on locomotor activity in the open field test. Bup showed a beneficial effect on aversive memory. Since Bup demonstrates fewer side effects than other opioid drugs, it may be preferable for the treatment of avoidance memory deficits in patients with Meth addiction.
Collapse
Affiliation(s)
- Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nafiseh Faraji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Bouet V, Percelay S, Leroux E, Diarra B, Léger M, Delcroix N, Andrieux A, Dollfus S, Freret T, Boulouard M. A new 3-hit mouse model of schizophrenia built on genetic, early and late factors. Schizophr Res 2021; 228:519-528. [PMID: 33298334 DOI: 10.1016/j.schres.2020.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Whether the etiology of schizophrenia remains unknown, its multifactorial aspect is conversely now well admitted. However, most preclinical models of the disease still rely on a mono-factorial construction and do not allow discover unequivocal treatments, particularly for negative and cognitive symptoms. The main interaction factors that have been implicated in schizophrenia are a genetic predisposition and unfavorable environmental factors. Here we propose a new animal model combining a genetic predisposition (1st hit: partial deletion of MAP-6 (microtubule-associated protein)) with an early postnatal stress (2nd hit: 24 h maternal separation at post-natal day 9), and a late cannabinoid exposure during adolescence (3rd hit: tetrahydrocannabinol THC from post-natal day 32 to 52; 8 mg/kg/day). The 2-hit mice displayed spatial memory deficits, decreased cortical thickness and fractional anisotropy of callosal fibers. The 3-hit mice were more severely affected as attested by supplementary deficits such a decrease in spontaneous activity, sociability-related behavior, working memory performances, an increase in anxiety-like behavior, a decrease in hippocampus volume together with impaired integrity of corpus callosum fibers (less axons, less myelin). Taken together, these results show that the new 3-hit model displays several landmarks mimicking negative and cognitive symptoms of schizophrenia, conferring a high relevance for research of new treatments. Moreover, this 3-hit model possesses a strong construct validity, which fits with gene x environment interactions hypothesis of schizophrenia. The 2-hit model, which associates maternal separation with THC exposure in wild-type mice gives a less severe phenotype, and could be useful for research on other forms of psychiatric diseases.
Collapse
Affiliation(s)
- Valentine Bouet
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France.
| | - Solenn Percelay
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Elise Leroux
- Normandie Université, UNICAEN, EA 7466 ISTS, GIP Cyceron, 14000 Caen, France
| | - Boubacar Diarra
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Marianne Léger
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Nicolas Delcroix
- CNRS, UMS 3408, GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 Caen cedex, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sonia Dollfus
- Normandie Université, UNICAEN, EA 7466 ISTS, GIP Cyceron, 14000 Caen, France; CHU de Caen, Service de Psychiatrie Adulte, 14000 Caen, France
| | - Thomas Freret
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Michel Boulouard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| |
Collapse
|
5
|
Etaee F, Rezvani-Kamran A, Taheri M, Omidi G, Hasanein P, Komaki A. Comparing the Antinociceptive Effects of Methamphetamine, Buprenorphine, or Both After Chronic Treatment and Withdrawal in Male Rats. Basic Clin Neurosci 2019. [PMID: 32231768 PMCID: PMC7101515 DOI: 10.32598/bcn.10.4.290.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Introduction: Methamphetamine (Meth) and Buprenorphine (BUP) modulate pain perception. However, the antinociceptive effects of their interactions, which affect through different systems, are unclear in rats. This study aimed to compare the analgesic effects of Meth, BUP, and their coadministration, as well as the effect of withdrawal from these substances on nociception in male rats. Methods: In this experiment, 40 male Wistar rats (weight: 250–300 g) were categorized into four groups: control, Meth, BUP, or BUP+Meth. After seven days of treatments, the antinociceptive effects were assessed using the hot plate and the tail flick tests. The differences among the groups were analyzed with ANOVA and Tukey’s post hoc tests. P values less than 0.05 were considered significant. Results: Meth and BUP increased the reaction times during the hot plate and tail flick tests. The combination of Meth and BUP increased reaction time more than Meth or BUP alone. Conclusion: The significantly high reaction times in rats treated with Meth and BUP indicate that these substances have antinociceptive effects. In addition, Meth enhanced the antinociceptive effects of BUP. These synergistic effects might occur through the dopaminergic, serotonergic, and or adrenergic systems.
Collapse
Affiliation(s)
- Farshid Etaee
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Hasanein
- Department of Biology, School of Sciences, University of Zabol, Zabol, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Burke NN, Ferdousi M, Deaver DR, Finn DP, Roche M, Kelly JP. Locomotor and anti-immobility effects of buprenorphine in combination with the opioid receptor modulator samidorphan in rats. Neuropharmacology 2019; 146:327-336. [PMID: 30553825 DOI: 10.1016/j.neuropharm.2018.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
Modulation of the opioid system has re-emerged as a potential therapeutic avenue for treating depression, with efficacy of a fixed-dose combination of buprenorphine (BUP), a partial μ-opioid receptor (MOR) agonist and κ-opioid receptor (KOR) antagonist, and samidorphan (SAM), a potent MOR antagonist, as an adjuvant treatment in patients with major depressive disorder (MDD). To advance understanding of the mechanism of action underlying this combination, we examined BUP, SAM and their combination in a series of rat behavioural assays. We examined effects on locomotor activity in Sprague Dawley (SD) rats over an extended period of time in a home-cage tracking system, and behavioural despair (immobility) in the forced swim test (FST), a commonly-used test to study antidepressants, in SD and Wistar-Kyoto (WKY) rats. Strain differences in opioid receptor and prepropeptide mRNA expression in the brain (prefrontal cortex, amygdala, hippocampus and striatum) were examined using qRT-PCR. BUP produced locomotor hyperactivity in SD rats from 2 to 6 h following administration, which was attenuated by SAM. In SD rats, a low, but not a high, dose of SAM in combination with BUP counteracted swim-stress induced immobility. This effect was not seen with BUP alone. In contrast, BUP alone reduced immobility in WKY rats, and this effect was enhanced by a low, but not high, dose of SAM. In WKY rats, MOR mRNA expression was higher in the hippocampus and lower in the striatum vs. SD rats. KOR mRNA expression was higher in the amygdala and nociceptin receptor (NOP) mRNA expression was lower in the hippocampus vs. SD rats. Differences in opioid receptor expression may account for the differential behavioural profile of WKY and SD rats. In summary, administration of BUP, a MOR receptor agonist together with a MOR opioid-receptor antagonist, SAM, reduces behavioural despair in animal models traditionally used to study effects of antidepressants.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Behavior, Animal/drug effects
- Buprenorphine/pharmacology
- Depression/drug therapy
- Depression/metabolism
- Hippocampus/metabolism
- Male
- Motor Activity/drug effects
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Opioid Peptides/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Swimming
- Nociceptin
Collapse
Affiliation(s)
- Nikita N Burke
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Physiology, School of Medicine, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Mehnaz Ferdousi
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | | | - David P Finn
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - John P Kelly
- Pharmacology and Therapeutics, NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Subramaniam SR, Magen I, Bove N, Zhu C, Lemesre V, Dutta G, Elias CJ, Lester HA, Chesselet MF. Chronic nicotine improves cognitive and social impairment in mice overexpressing wild type α-synuclein. Neurobiol Dis 2018; 117:170-180. [PMID: 29859873 PMCID: PMC6051902 DOI: 10.1016/j.nbd.2018.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022] Open
Abstract
In addition to dopaminergic and motor deficits, patients with Parkinson's disease (PD) suffer from non-motor symptoms, including early cognitive and social impairment, that do not respond well to dopaminergic therapy. Cholinergic deficits may contribute to these problems, but cholinesterase inhibitors have limited efficacy. Mice over-expressing α-synuclein, a protein critically associated with PD, show deficits in cognitive and social interaction tests, as well as a decrease in cortical acetylcholine. We have evaluated the effects of chronic administration of nicotine in mice over-expressing wild type human α-synuclein under the Thy1-promoter (Thy1-aSyn mice). Nicotine was administered subcutaneously by osmotic minipump for 6 months from 2 to 8 months of age at 0.4 mg/kg/h and 2.0 mg/kg/h. The higher dose was toxic in the Thy1-aSyn mice, but the low dose was well tolerated and both doses ameliorated cognitive impairment in Y-maze performance after 5 months of treatment. In a separate cohort of Thy1-aSyn mice, nicotine was administered at the lower dose for one month beginning at 5 months of age. This treatment partially eliminated the cognitive deficit in novel object recognition and social impairment. In contrast, chronic nicotine did not improve motor deficits after 2, 4 or 6 months of treatment, nor modified α-synuclein aggregation, tyrosine hydroxylase immunostaining, synaptic and dendritic markers, or microglial activation in Thy1-aSyn mice. These results suggest that cognitive and social impairment in synucleinopathies like PD may result from deficits in cholinergic neurotransmission and may benefit from chronic administration of nicotinic agonists.
Collapse
Affiliation(s)
- Sudhakar R Subramaniam
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Iddo Magen
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas Bove
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chunni Zhu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vincent Lemesre
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Garima Dutta
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chris Jean Elias
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marie-Francoise Chesselet
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
The effects of methamphetamine and buprenorphine, and their interaction on anxiety-like behavior and locomotion in male rats. Neurosci Lett 2017; 655:172-178. [PMID: 28698151 DOI: 10.1016/j.neulet.2017.04.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Methamphetamine (Meth) abuse and dependence are major global problems. Most of previous studies showed that Meth is anxiogenic. While buprenorphine (Bup) is used to treat anxiety-related behaviors, the effects of Meth in combination with Bup on anxiety-like behavior are unclear. In this study, we examined the effects of these drugs on anxiety-like behavior with the elevated plus maze (EPM) and open field (OF) tests, which are widely used to assess anxiety-like behavior in small rodents. Forty male Wistar rats were divided into four groups: sham, Meth, Bup, and Bup+Meth. The groups were administered their assigned treatments for 7days. The time spent in the open arms, and number of total entries into the arms (total activity) in the EPM were recorded. In addition, locomotor activity and number of entrances into the center area in the OF were recorded. The 7-day administration of Meth or Bup increased open arm exploration in the EPM. In contrast, the combined administration of Bup and Meth had the opposite effects. In addition, Meth and Bup had no effects on total and locomotor activity. Furthermore, the rats in the Meth and Bup groups spent more time in the center of the OF, while the group given both Bup and Meth spent less time in the center of the OF. The administration of Meth and Bup alone was anxiolytic in rats, whereas the coadministration of Bup and Meth was anxiogenic.
Collapse
|
9
|
Ma LL, Bourgine J, Philoxène B, Morello R, Coquerel A. Accroissement de la létalité aiguë chez la souris par interaction synergique de benzodiazépines avec la buprénorphine. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2016. [DOI: 10.1016/j.toxac.2016.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Almatroudi A, Husbands SM, Bailey CP, Bailey SJ. Combined administration of buprenorphine and naltrexone produces antidepressant-like effects in mice. J Psychopharmacol 2015; 29:812-21. [PMID: 26045511 PMCID: PMC5075030 DOI: 10.1177/0269881115586937] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Opiates have been used historically for the treatment of depression. Renewed interest in the use of opiates as antidepressants has focused on the development of kappa opioid receptor (κ-receptor) antagonists. Buprenorphine acts as a partial µ-opioid receptor agonist and a κ-receptor antagonist. By combining buprenorphine with the opioid antagonist naltrexone, the activation of µ-opioid receptors will be reduced and the κ-antagonist properties enhanced. We have established that a combination dose of buprenorphine (1 mg/kg) with naltrexone (1 mg/kg) functions as a short-acting κ-antagonist in the mouse tail withdrawal test. Furthermore, this dose combination is neither rewarding nor aversive in the conditioned place preference paradigm, and is without significant locomotor effects. We have shown for the first time that systemic co-administration of buprenorphine (1 mg/kg) with naltrexone (1 mg/kg) in CD-1 mice produced an antidepressant-like response in behaviours in both the forced swim test and novelty induced hypophagia task. Behaviours in the elevated plus maze and light dark box were not significantly altered by treatment with buprenorphine alone, or in combination with naltrexone. We propose that the combination of buprenorphine with naltrexone represents a novel, and potentially a readily translatable approach, to the treatment of depression.
Collapse
Affiliation(s)
| | | | | | - Sarah J Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
11
|
Effects of buprenorphine on behavioral tests for antidepressant and anxiolytic drugs in mice. Psychopharmacology (Berl) 2015; 232:907-15. [PMID: 25178815 PMCID: PMC4326609 DOI: 10.1007/s00213-014-3723-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/13/2014] [Indexed: 01/26/2023]
Abstract
RATIONALE Buprenorphine (BPN) has been shown to rapidly improve mood in treatment-resistant depressed patients in small clinical studies. However, BPN's effects in preclinical tests for mood and antidepressant efficacy are largely unexplored. OBJECTIVE The current study examined the effects of BPN in the forced swim test (FST) and novelty-induced hypophagia (NIH) test as measures of antidepressant and anxiolytic-like effects in C57BL/6 J mice. Microdialysis was used to measure whether BPN engaged kappa-opioid receptor (KORs) in the nucleus accumbens shell (NAcSh) at a behaviorally active dose (0.25 mg/kg). METHODS BPN was tested in the FST at both 30 min and 24 h post-administration. Also measured in the FST at 24 h post-administration were the KOR antagonist norbinaltorphimine (nor-BNI), the MOR agonist morphine and the reference antidepressant desipramine. The anxiolytic effects of BPN were examined in the NIH test 24 h after treatment. The effects of acute injection of BPN and the KOR agonist U50,488 were measured on extracellular dopamine (DA) levels in the NAcSh. RESULTS BPN produced significant reductions in FST immobility without changing locomotor activity and reduced approach latencies in the novel environment of the NIH test when tested 24 h after treatment. Repeated daily BPN injections for 6 days did not produce tolerance to these behavioral effects. nor-BNI produced a similar antidepressant-like response in the FST 24 h post-injection but morphine and desipramine were ineffective. BPN (0.25 mg/kg) did not alter DA levels when given alone but prevented the KOR agonist U50,488 from reducing DA levels. CONCLUSIONS Acute and subchronic treatment with BPN produced antidepressant and anxiolytic-like responses in mice at doses that engage KORs. These studies support the clinical evidence that BPN may be a novel rapid-acting antidepressant medication and provides rodent models for investigating associated neurochemical mechanisms.
Collapse
|
12
|
Khroyan TV, Wu J, Polgar WE, Cami-Kobeci G, Fotaki N, Husbands SM, Toll L. BU08073 a buprenorphine analogue with partial agonist activity at μ-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Br J Pharmacol 2014; 172:668-80. [PMID: 24903063 DOI: 10.1111/bph.12796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Buprenorphine is a potent analgesic with high affinity at μ, δ and κ and moderate affinity at nociceptin opioid (NOP) receptors. Nevertheless, NOP receptor activation modulates the in vivo activity of buprenorphine. Structure activity studies were conducted to design buprenorphine analogues with high affinity at each of these receptors and to characterize them in in vitro and in vivo assays. EXPERIMENTAL APPROACH Compounds were tested for binding affinity and functional activity using [(35) S]GTPγS binding at each receptor and a whole-cell fluorescent assay at μ receptors. BU08073 was evaluated for antinociceptive agonist and antagonist activity and for its effects on anxiety in mice. KEY RESULTS BU08073 bound with high affinity to all opioid receptors. It had virtually no efficacy at δ, κ and NOP receptors, whereas at μ receptors, BU08073 has similar efficacy as buprenorphine in both functional assays. Alone, BU08073 has anxiogenic activity and produces very little antinociception. However, BU08073 blocks morphine and U50,488-mediated antinociception. This blockade was not evident at 1 h post-treatment, but is present at 6 h and remains for up to 3-6 days. CONCLUSIONS AND IMPLICATIONS These studies provide structural requirements for synthesis of 'universal' opioid ligands. BU08073 had high affinity for all the opioid receptors, with moderate efficacy at μ receptors and reduced efficacy at NOP receptors, a profile suggesting potential analgesic activity. However, in vivo, BU08073 had long-lasting antagonist activity, indicating that its pharmacokinetics determined both the time course of its effects and what receptor-mediated effects were observed. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
|
13
|
Leger M, Paizanis E, Dzahini K, Quiedeville A, Bouet V, Cassel JC, Freret T, Schumann-Bard P, Boulouard M. Environmental Enrichment Duration Differentially Affects Behavior and Neuroplasticity in Adult Mice. Cereb Cortex 2014; 25:4048-61. [DOI: 10.1093/cercor/bhu119] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Ma LL, Freret T, Lange M, Bourgine J, Coquerel A, Lelong-Boulouard V. Benzodiazepines increase the reward effects of buprenorphine in a conditioned place preference test in the mouse. Fundam Clin Pharmacol 2014; 28:681-9. [DOI: 10.1111/fcp.12072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 02/12/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Lin-Lin Ma
- Normandie University; CS 14032 Cedex 5 Caen France
- UCBN; COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
- Inserm; U 1075 COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
| | - Thomas Freret
- Normandie University; CS 14032 Cedex 5 Caen France
- UCBN; Groupe Mémoire et Plasticité comportementale (GMPc) EA 4259; UFR des Sciences Pharmaceutiques, Boulevard Becquerel; 14032 Caen France
| | - Mathilde Lange
- CHU de Caen, Service de Pharmacologie; Avenue de la Côte de Nacre 14033 Caen France
| | - Joanna Bourgine
- Normandie University; CS 14032 Cedex 5 Caen France
- UCBN; COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
- Inserm; U 1075 COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
- CHU de Caen, Service de Pharmacologie; Avenue de la Côte de Nacre 14033 Caen France
| | - Antoine Coquerel
- Normandie University; CS 14032 Cedex 5 Caen France
- UCBN; COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
- Inserm; U 1075 COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
- CHU de Caen, Service de Pharmacologie; Avenue de la Côte de Nacre 14033 Caen France
- Centres régionaux de pharmacovigilance et d'addictovigilance; CHU Caen; 14033 Caen France
| | - Véronique Lelong-Boulouard
- Normandie University; CS 14032 Cedex 5 Caen France
- UCBN; COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
- Inserm; U 1075 COMETE; UFR de Médecine; Avenue de la Côte de Nacre CS 14032 Cedex 5 Caen France
- CHU de Caen, Service de Pharmacologie; Avenue de la Côte de Nacre 14033 Caen France
| |
Collapse
|
15
|
5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology (Berl) 2012; 222:99-115. [PMID: 22367167 DOI: 10.1007/s00213-011-2627-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/18/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE Blockade of 5-HT6 receptors (5-HT6R) is known to improve cognitive performances in the rodent. This improvement has been hypothesized to be the result, at least in part, of a modulation of the cholinergic neurotransmission. OBJECTIVE We assessed the effects of 5-HT6R blockade on selected types of memory relevant to functional deficits of ageing and neurodegenerative diseases, in mice that present a scopolamine-induced cholinergic disruption of memory. METHOD Following the selection of an adequate dose of scopolamine to induce cognitive deficits, we have studied the effects of the selective 5-HT6R antagonist SB-271046, alone or in combination with scopolamine, on working memory (spontaneous alternation task in the T-maze), recognition memory (place recognition) and aversive learning (passive avoidance). RESULTS SB-271046 alone failed to affect working memory, recognition memory and aversive learning performances. In contrast, SB-271046 was able to reverse the scopolamine-induced deficits in working memory (only at 30 mg kg⁻¹) and those of acquisition and retrieval of aversive learning (dose-dependent effect); scopolamine-induced deficits in episodic-like memory (acquisition and retrieval) were partially counteracted by 5-HT6R blockade. CONCLUSION The modulation between 5-HT6R and the cholinergic system appears to be predominant for working memory and aversive learning, but not for other types of memory (i.e. episodic-like memory). Interactions between 5-HT6R and alternative neurotransmission systems (i.e. glutamatergic system) should be further studied. The respective involvement of these interactions in the memory disorders related to ageing and neurodegenerative diseases is of pivotal importance regarding the possible use of 5-HT6R antagonists in the treatment of memory disorders in humans.
Collapse
|
16
|
Reynaud-Davin I, Francony G, Fauvage B, Canet C, Coppo F, Payen JF. Évaluation d’un protocole d’arrêt de la sédation chez le patient cérébrolésé. ACTA ACUST UNITED AC 2012; 31:109-13. [DOI: 10.1016/j.annfar.2011.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
|
17
|
Comparison of the effects of erythropoietin and its carbamylated derivative on behaviour and hippocampal neurogenesis in mice. Neuropharmacology 2010; 60:354-64. [PMID: 20932982 DOI: 10.1016/j.neuropharm.2010.09.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 11/21/2022]
Abstract
Erythropoietin (EPO), a well known haematopoietic growth factor, possesses neuroprotective and neurotrophic effects which have been recently reported to improve cognition and to modulate emotional processing. We investigated the effects of EPO and of its non-erythropoietic carbamylated derivative (CEPO) on memory- and emotion-related behaviour in the adult mouse. Locomotor activity, memory performances (place and object recognition tasks), anxiety- (light/dark transition test) and despair-like behaviours (tail suspension test) were assessed over 6 weeks of repeated EPO or CEPO administration (40 μg/kg, twice a week). Given the potential involvement of hippocampal neurogenesis in memory, we also assessed the effects of EPO and CEPO on neurogenesis in the dentate gyrus. Both treatments improved spatial and non-spatial recognition memory and increased the number of NeuN/BrdU double-labeled cells in the dentate gyrus. These effects seem to be, at least partly, independent from an haematopoietic action since administration of CEPO leads to the similar results. Moreover, CEPO decreased, albeit modestly, despair-related behaviour and tended to decrease anxiety-like behaviour. These results suggest that CEPO is as an attractive molecule for the treatment of neuropsychiatric diseases associating memory and/or emotional disorders.
Collapse
|
18
|
Bazin MA, El Kihel L, Boulouard M, Bouët V, Rault S. The effects of DHEA, 3beta-hydroxy-5alpha-androstane-6,17-dione, and 7-amino-DHEA analogues on short term and long term memory in the mouse. Steroids 2009; 74:931-7. [PMID: 19577585 DOI: 10.1016/j.steroids.2009.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 11/26/2022]
Abstract
Neurosteroids have been reported to modulate memory processes in rodents. Three analogues of dehydroepiandrosterone (DHEA), two of them previously described (7beta-aminoDHEA and 7beta-amino-17-ethylenedioxy-DHEA), and a new one (3beta-hydroxy-5alpha-androstane-6,17-dione) were synthesized, and their effects were evaluated on memory. This study examined their effects on long term and short term memory in male (6 weeks old) NMRI mice in comparison with the reference drug. Long term memory was assessed using the passive avoidance task and short term memory (spatial working memory) using the spontaneous alternation task in a Y maze. Moreover, the effects of DHEA and its analogues on spontaneous locomotion were measured. In all tests, DHEA and analogues were injected at three equimolar doses (0.300-1.350-6.075 microM/kg). DHEA and its three analogues administered immediately post-training at the highest doses (6.075 microM/kg, s.c.) improved retention in passive avoidance test. Without effect per se in the spatial working memory task, the four compounds failed to reverse scopolamine (1mg/kg, i.p.)-induced deficit in spontaneous alternation. These data suggested an action of DHEA and analogues in consolidation of long term memory particularly when emotional components are implied. Moreover, data indicated that pharmacological modulation of DHEA as performed in this study provides derivatives giving the same mnemonic profile than reference molecule.
Collapse
Affiliation(s)
- Marc-Antoine Bazin
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, UFR des Sciences Pharmaceutiques, Boulevard Becquerel, 14032 Caen cedex, France
| | | | | | | | | |
Collapse
|
19
|
Tramullas M, Martínez-Cué C, Hurlé MA. Facilitation of avoidance behaviour in mice chronically treated with heroin or methadone. Behav Brain Res 2008; 189:332-40. [PMID: 18336928 DOI: 10.1016/j.bbr.2008.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
Abstract
Although the repercussion of chronic treatment with large amounts of opioids on cognitive performance is a matter of concern, the effects of opioid drugs on passive avoidance learning have been scarcely studied. Here, we analyzed the effects of prolonged administration of heroin and methadone, as well as the impact of suffering repeated episodes of withdrawal on fear-motivated learning using the passive avoidance test. Mice received chronic treatment (39 days) with methadone (10 mg/kg/24 h), associated or not with repeated withdrawal episodes, or with heroin (5 mg/kg/12 h). Our results show that, regardless of the type of treatment received, all mice displayed similar basal thermal nociceptive thresholds during 25 days of treatment. In the hot plate test, both methadone and heroin induced antinociception 30 min after drug administration. The analgesic effect was absent when measured 4 h after heroin and 12 h after methadone. Pain behavioural responses elicited by growing intensities of electric shock, applied on day 28th of treatment, were similar in all groups of mice. Our results indicate that chronic opioid treatment had promnesic effects on passive avoidance behaviour in mice, unrelated to changes in the nociceptive state.
Collapse
Affiliation(s)
- Mónica Tramullas
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
20
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|