1
|
Hersey M, Bartole MK, Jones CS, Newman AH, Tanda G. Are There Prevalent Sex Differences in Psychostimulant Use Disorder? A Focus on the Potential Therapeutic Efficacy of Atypical Dopamine Uptake Inhibitors. Molecules 2023; 28:5270. [PMID: 37446929 PMCID: PMC10343811 DOI: 10.3390/molecules28135270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Psychostimulant use disorders (PSUD) affect a growing number of men and women and exert sizable public health and economic burdens on our global society. Notably, there are some sex differences in the onset of dependence, relapse rates, and treatment success with PSUD observed in preclinical and clinical studies. The subtle sex differences observed in the behavioral aspects of PSUD may be associated with differences in the neurochemistry of the dopaminergic system between sexes. Preclinically, psychostimulants have been shown to increase synaptic dopamine (DA) levels and may downregulate the dopamine transporter (DAT). This effect is greatest in females during the high estradiol phase of the estrous cycle. Interestingly, women have been shown to be more likely to begin drug use at younger ages and report higher levels of desire to use cocaine than males. Even though there is currently no FDA-approved medication, modafinil, a DAT inhibitor approved for use in the treatment of narcolepsy and sleep disorders, has shown promise in the treatment of PSUD among specific populations of affected individuals. In this review, we highlight the therapeutic potential of modafinil and other atypical DAT inhibitors focusing on the lack of sex differences in the actions of these agents.
Collapse
Affiliation(s)
| | | | | | | | - Gianluigi Tanda
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA; (M.H.); (M.K.B.); (C.S.J.); (A.H.N.)
| |
Collapse
|
2
|
Aggarwal S, Mortensen OV. Discovery and Development of Monoamine Transporter Ligands. ADVANCES IN NEUROBIOLOGY 2023; 30:101-129. [PMID: 36928847 PMCID: PMC10074400 DOI: 10.1007/978-3-031-21054-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Monoamine transporters (MATs) are targets of a wide range of compounds that have been developed as therapeutic treatments for various neuropsychiatric and neurodegenerative disorders such as depression, ADHD, neuropathic pain, anxiety disorders, stimulant use disorders, epilepsy, and Parkinson's disease. The MAT family is comprised of three main members - the dopamine transporter (DAT), the norepinephrine transporter (NET), and the serotonin transporter (SERT). These transporters are through reuptake responsible for the clearance of their respective monoamine substrates from the extracellular space. The determination of X-ray crystal structures of MATs and their homologues bound with various substrates and ligands has resulted in a surge of structure-function-based studies of MATs to understand the molecular basis of transport function and the mechanism of various ligands that ultimately result in their behavioral effects. This review focusses on recent examples of ligand-based structure-activity relationship studies trying to overcome some of the challenges associated with previously developed MAT inhibitors. These studies have led to the discovery of unique and novel structurally diverse MAT ligands including allosteric modulators. These novel molecular scaffolds serve as leads for designing more effective therapeutic interventions by modulating the activities of MATs and ultimately their associated neurotransmission and behavioral effects.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Haney M, Rubin E, Denson RK, Foltin RW. Modafinil reduces smoked cocaine self-administration in humans: effects vary as a function of cocaine 'priming' and cost. Drug Alcohol Depend 2021; 221:108554. [PMID: 33610094 PMCID: PMC8026732 DOI: 10.1016/j.drugalcdep.2021.108554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The absence of an FDA-approved medication for the treatment of cocaine use disorder (CUD) may, in part, reflect the varying conditions present when the decision to use cocaine is made, with one medication unlikely to work under all conditions. The objective of this double-blind, placebo-controlled, human laboratory study was to test the effects of modafinil, a medication with mixed efficacy for the treatment of CUD, using a novel self-administration procedure designed to model distinct clinical scenarios. METHODS During modafinil maintenance (0, 300 mg/day), participants chose to self-administer up to 7 doses of smoked cocaine (25 mg) under 9 conditions: immediately after exposure to: (a) cues associated with cocaine and a non-contingent cocaine administration, i.e. 'prime' (25 mg), (b) only cocaine cues, and (c) neither cues nor cocaine. Each condition was tested when self-administered cocaine cost $5, $10 and $15/dose. RESULTS Nontreatment-seeking cocaine smokers (3 F,13 M), spending $388 ± 218/week on cocaine and with no history of alcohol use disorder, completed the study. Relative to placebo, modafinil robustly attenuated self-administration when cocaine was expensive ($10,$15/dose) and when there was no 'prime.' Modafinil had no effect on self-administration when cocaine was inexpensive ($5/dose) or when participants received a 'prime.' CONCLUSIONS Modafinil's effects on cocaine-taking varied substantially as a function of recent cocaine exposure and cost, which may help explain the mixed clinical findings. Modafinil may be most effective for preventing relapse in abstinent patients, particularly under conditions in which cocaine is costly, rather than initiating abstinence for those continuing to use cocaine.
Collapse
Affiliation(s)
- Margaret Haney
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, USA.
| | - Eric Rubin
- Department of Psychiatry, Harlem Hospital Center, Columbia University College of Physicians and Surgeons, USA
| | - Rebecca K Denson
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, USA
| | - Richard W Foltin
- Department of Psychiatry, Columbia University Irving Medical Center and the New York State Psychiatric Institute, USA
| |
Collapse
|
5
|
Tanda G, Hersey M, Hempel B, Xi ZX, Newman AH. Modafinil and its structural analogs as atypical dopamine uptake inhibitors and potential medications for psychostimulant use disorder. Curr Opin Pharmacol 2020; 56:13-21. [PMID: 32927246 DOI: 10.1016/j.coph.2020.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Pharmacotherapeutics for treatment of psychostimulant use disorder are still an unmet medical goal. Recently, off label use of modafinil (MOD), an approved medication for treatment of sleep disturbances, has been tested as a therapeutic for cocaine and methamphetamine use disorder. Positive results have been found in subjects dependent on psychostimulants without concurrent abuse of other substances. Novel structural analogs of MOD have been synthesized in the search for compounds with potentially broader therapeutic efficacy than the parent drug. In the present report we review their potential efficacy as treatments for psychostimulant abuse and dependence assessed in preclinical tests. Results from these preclinical proof of concept studies reveal that some modafinil analogs do not possess typical cocaine-like neurochemical and behavioral effects. Further, they might blunt the reinforcing effects of psychostimulants in animal models, suggesting their potential efficacy as pharmacotherapeutics for treatment of psychostimulant use disorders.
Collapse
Affiliation(s)
- Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Briana Hempel
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Amy Hauck Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
6
|
Modafinil potentiates cocaine self-administration by a dopamine-independent mechanism: possible involvement of gap junctions. Neuropsychopharmacology 2020; 45:1518-1526. [PMID: 32340023 PMCID: PMC7360549 DOI: 10.1038/s41386-020-0680-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Modafinil and methylphenidate are medications that inhibit the neuronal reuptake of dopamine, a mechanism shared with cocaine. Their use as "smart drugs" by healthy subjects poses health concerns and requires investigation. We show that methylphenidate, but not modafinil, maintained intravenous self-administration in Sprague-Dawley rats similar to cocaine. Both modafinil and methylphenidate pretreatments potentiated cocaine self-administration. Cocaine, at self-administered doses, stimulated mesolimbic dopamine levels. This effect was potentiated by methylphenidate, but not by modafinil pretreatments, indicating dopamine-dependent actions for methylphenidate, but not modafinil. Modafinil is known to facilitate electrotonic neuronal coupling by actions on gap junctions. Carbenoxolone, a gap junction inhibitor, antagonized modafinil, but not methylphenidate potentiation of cocaine self-administration. Our results indicate that modafinil shares mechanisms with cocaine and methylphenidate but has a unique pharmacological profile that includes facilitation of electrotonic coupling and lower abuse liability, which may be exploited in future therapeutic drug design for cocaine use disorder.
Collapse
|
7
|
Tsapakis EM, Preti A, Mintzas MD, Fountoulakis KN. Adjunctive treatment with psychostimulants and stimulant-like drugs for resistant bipolar depression: a systematic review and meta-analysis. CNS Spectr 2020; 26:1-12. [PMID: 32641179 DOI: 10.1017/s109285292000156x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Depression is considered to be the most difficult to treat phase of bipolar disorder as patients experience residual symptoms causing long-term disability. This work aims to explore the role of add-on stimulant and stimulant-like medication in resistant bipolar depression patients. METHODS Systematic review of add-on stimulants and stimulant-like drugs in resistant bipolar depression by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Analysis was performed using the random-effects models. Heterogeneity was evaluated with Cochran's Q and I2 statistics. RESULTS Six randomized controlled trials of add-on modafinil, armodafinil, and lisdexamphetamine (LDX) (n = 813) vs placebo (n = 815) in the treatment of resistant bipolar depression were included. These drugs were more likely to induce remission from an episode of resistant bipolar depression (relative risk [RR] = 1.37; 95% confidence interval [CI]: 1.06-1.77; number needed to treat for an additional beneficial outcome = 16). Moreover, they did not induce more dropouts than placebo (RR = 1.04; 95% CI: 0.91-1.18), nor did they increase the risk of adverse effects (53/772 vs 41/771) at the end of treatment (RR = 1.30; 95% CI: 0.81-2.10; number needed to treat for an additional harmful outcome = 62). Suicidality and manic switch were not affected by active treatment. Heterogeneity was low (Cochran's Q: P > .05), but sometimes with a large CI. CONCLUSIONS LDX, modafinil, and armodafinil seem to offer a reasonably well-tolerated and safe treatment in resistant bipolar depression. Treatment guidelines should, therefore, be revised to include these medications earlier in the therapeutic algorithm for resistant acute bipolar depression. Further research is, however, necessary for the elucidation of the clinical usefulness of these and other similar compounds.
Collapse
Affiliation(s)
- Evangelia Maria Tsapakis
- Agios Charalambos Mental Health Clinic, Heraklion, Greece
- First Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonio Preti
- Genneruxi Medical Center, Cagliari, Italy
- Center for Consultation-Liaison Psychiatry and Psychosomatics, University Hospital of Cagliari, Cagliari, Italy
| | | | - Konstantinos N Fountoulakis
- Third Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Wuo-Silva R, Fukushiro-Lopes DF, Fialho BP, Hollais AW, Santos-Baldaia R, Marinho EAV, Mári-Kawamoto E, Yokoyama TS, Lopes-Silva LB, Berro LF, Frussa-Filho R, Longo BM. Participation of Dopamine D1 and D2 Receptors in the Rapid-Onset Behavioral Sensitization to Modafinil. Front Pharmacol 2019; 10:211. [PMID: 30914950 PMCID: PMC6421293 DOI: 10.3389/fphar.2019.00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Studies on the abuse potential of modafinil, a psychostimulant-like drug used to treat narcolepsy, are still controversial. While some studies claim no potential for abuse, increasing evidence suggests that modafinil induces abuse-related effects, including rapid-onset behavioral sensitization (i.e., a type of sensitization that develops within hours from the drug priming administration). The rapid-onset sensitization paradigm is a valuable tool to study the neuroplastic changes that occur quickly after drug administration, and shares neuroadaptations with drug abuse in humans. However, the mechanisms involved in the rapid-onset behavioral sensitization induced by modafinil are uncertain. Our aim was to investigate the possible involvement of dopamine D1 and D2 receptors on acute modafinil-induced hyperlocomotion and on the induction and expression of rapid-onset behavioral sensitization induced by modafinil in male Swiss mice. Treatment with the D1 receptor antagonist SCH 23390 or the D2 receptor antagonist sulpiride attenuated the acute modafinil-induced hyperlocomotion in a dose-dependent manner. Pretreatment with either antagonist before the priming injection of modafinil prevented the development of sensitization in response to a modafinil challenge 4 h later. However, only SCH 23390 decreased the expression of modafinil-induced rapid-onset behavioral sensitization. Taken together, the present findings provide evidence of the participation of D1 and D2 receptors on the development of rapid-onset behavioral sensitization to modafinil, and point to a prominent role of D1 receptors on the expression of this phenomenon.
Collapse
Affiliation(s)
- Raphael Wuo-Silva
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Bruno P Fialho
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - André W Hollais
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renan Santos-Baldaia
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Elisa Mári-Kawamoto
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thaís S Yokoyama
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Laís F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Roberto Frussa-Filho
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz M Longo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Zanettini C, Scaglione A, Keighron JD, Giancola JB, Lin SC, Newman AH, Tanda G. Pharmacological classification of centrally acting drugs using EEG in freely moving rats: an old tool to identify new atypical dopamine uptake inhibitors. Neuropharmacology 2018; 161:107446. [PMID: 30481526 DOI: 10.1016/j.neuropharm.2018.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/05/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
Atypical dopamine uptake inhibitors (DUIs) bind to the dopamine transporter and inhibit the reuptake of dopamine but have lower abuse potential than psychostimulants. Several atypical DUIs can block abuse-related effects of cocaine and methamphetamine, thus making them potential medication candidates for psychostimulant use disorders. The aim of the current study is to establish an in-vivo assay using EEG for the rapid identification of atypical DUIs with potential for medication development. The typical DUIs cocaine and methylphenidate dose-dependently decreased the power of the alpha, beta, and gamma bands. The atypical DUI modafinil and its F-analog, JBG1-049, decreased the power of beta, but in contrast to cocaine, none of the other frequency bands, while JHW007 did not significantly alter the EEG spectrum. The mu-opioid receptor agonists heroin and morphine dose-dependently decreased the power of gamma and increased power of the other bands. The effect of morphine on EEG power bands was antagonized by naltrexone. The NMDA receptor antagonist ketamine increased the power of all frequency bands. Therefore, typical and atypical DUIs and drugs of other classes differentially affected EEG spectra, showing distinctive features in the magnitude and direction of their effects on EEG. Comparative analysis of the effects of test drugs on EEG indicates a potential atypical profile of JBG1-049 with similar potency and effectiveness to its parent compound modafinil. These data suggest that EEG can be used to rapidly screen compounds for potential activity at specific pharmacological targets and provide valuable information for guiding the early stages of drug development. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Claudio Zanettini
- Medication Development Program, Molecular Targets and Medications Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA.
| | - Alessandro Scaglione
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, NIA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Jacqueline D Keighron
- Medication Development Program, Molecular Targets and Medications Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - JoLynn B Giancola
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Shih-Chieh Lin
- Neural Circuits and Cognition Unit, Laboratory of Behavioral Neuroscience, NIA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Amy H Newman
- Medication Development Program, Molecular Targets and Medications Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA; Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medications Discovery Branch, NIDA-IRP, NIH/DHHS, Baltimore, MD, USA
| |
Collapse
|
10
|
Tunstall BJ, Ho CP, Cao J, Vendruscolo JCM, Schmeichel BE, Slack RD, Tanda G, Gadiano AJ, Rais R, Slusher BS, Koob GF, Newman AH, Vendruscolo LF. Atypical dopamine transporter inhibitors attenuate compulsive-like methamphetamine self-administration in rats. Neuropharmacology 2017; 131:96-103. [PMID: 29217282 DOI: 10.1016/j.neuropharm.2017.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 11/30/2022]
Abstract
Methamphetamine (METH) is a highly addictive drug, but no pharmacological treatment is yet available for METH use disorders. Similar to METH, the wake-promoting drug (R)-modafinil (R-MOD) binds to the dopamine transporter (DAT). Unlike METH, R-MOD is not a substrate for transport by DAT and has low abuse potential. We tested the hypothesis that the atypical DAT inhibitor R-MOD and compounds that are derived from modafinil would decrease METH intake by reducing the actions of METH at the DAT. We tested the effects of systemic injections of R-MOD and four novel modafinil-derived ligands with increased DAT affinity (JJC8-016, JJC8-088, JJC8-089, and JJC8-091) on intravenous (i.v.) METH self-administration in rats that were allowed short access (ShA; 1 h) or long access (LgA; 6 h) to the drug. ShA rats exhibited stable METH intake over sessions, whereas LgA rats exhibited an escalation of drug intake. R-MOD decreased METH self-administration in ShA and LgA rats (in the 1st hour only). JJC8-091 and JJC8-016 decreased METH self-administration in both ShA and LgA rats. JJC8-089 decreased METH self-administration in LgA rats only, whereas JJC8-088 had no effect on METH self-administration in either ShA or LgA rats. These findings support the potential of atypical DAT inhibitors for the treatment of METH use disorders and suggest several novel compounds as candidate drugs.
Collapse
Affiliation(s)
- Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Chelsea P Ho
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Program, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Janaína C M Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Brooke E Schmeichel
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Rachel D Slack
- Molecular Targets and Medications Discovery Program, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Gianluigi Tanda
- Molecular Targets and Medications Discovery Program, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Alexandra J Gadiano
- Molecular Targets and Medications Discovery Program, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Amy H Newman
- Molecular Targets and Medications Discovery Program, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Sangroula D, Motiwala F, Wagle B, Shah VC, Hagi K, Lippmann S. Modafinil Treatment of Cocaine Dependence: A Systematic Review and Meta-Analysis. Subst Use Misuse 2017; 52:1292-1306. [PMID: 28350194 DOI: 10.1080/10826084.2016.1276597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Currently, there is none FDA-approved medication to treat cocaine dependency. Studies conducted with various medications, including antipsychotics, antidepressants, anticonvulsants, and others, revealed inconsistent results. OBJECTIVES To meta-analytically investigate the efficacy and safety of modafinil in the treatment of cocaine-dependent patients. METHODS Randomized controlled trials with ≥20 subjects comparing the numerical therapeutic outcomes of modafinil with placebo were identified in databases, such as PUBMED, psycINFO, EMBASE, and Clinicaltrials.gov. Relevant data on efficacy and safety were extracted. Relative risk (RR) and standardized mean difference were applied for reporting dichotomous and continuous outcomes respectively. Random effects, subgroup, and meta-regression analyses were conducted to further explore the results and evaluate for any moderators. RESULTS In total, 11 studies (participants = 896, duration = 6.7 ± 1.9 weeks) comparing modafinil with placebo were systematically analyzed, which indicated that modafinil was not superior to placebo in improving the treatment retention rate (studies = 11, participants = 891, RR = 1.030, 95% CI = 0.918-1.156, p = .613). Similarly, data from 7/11 studies did not evidence superiority of modafinil in achieving cocaine abstinence (participants = 696, RR = 1.259, 95% CI = 0.813-1.949, p = .302). However, subgroup analysis of six studies conducted in the United States demonstrated superiority of modafinil in cocaine abstinence rate (studies = 6, participants = 669, 95% CI = 1.027-2.020, p = 0.035). In addition, no evidence suggested modafinil-related discontinuation or specific adverse events than placebo. CONCLUSIONS Overall, there is no evidence to conclude superiority of modafinil in increasing cocaine abstinence and treatment retention rate. However, promising result in subgroup analysis of cocaine abstinence, secondary outcomes, and good safety profile urged the need of larger studies to derive more conclusive results.
Collapse
Affiliation(s)
- Dinesh Sangroula
- a Department of Psychiatry , Jamaica Hospital Medical Center , New York , New York , USA
| | - Fatima Motiwala
- b Department of Psychiatric Research , Columbia University Medical Center , New York , New York , USA
| | - Bivek Wagle
- c Department of Biology , California State University , Hayward , California , USA
| | - Vivek C Shah
- d Department of Psychiatry , Nassau University Medical Center , East Meadow , New York , USA
| | | | - Steven Lippmann
- f Department of Psychiatry , University of Louisville School of Medicine , Louisville , Kentucky , USA
| |
Collapse
|
12
|
The Novel Modafinil Analog, JJC8-016, as a Potential Cocaine Abuse Pharmacotherapeutic. Neuropsychopharmacology 2017; 42:1871-1883. [PMID: 28266501 PMCID: PMC5564383 DOI: 10.1038/npp.2017.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
Abstract
(±)Modafinil ((±)MOD) and its R-enantiomer (R-modafinil; R-MOD) have been investigated for their potential as treatments for psychostimulant addiction. We recently reported a series of (±)MOD analogs, of which JJC8-016 (N-(2-((bis(4-fluorophenyl)methyl)thio)ethyl)-3-phenylpropan-1-amine) was selected for further development. JJC8-016 and R-MOD were evaluated for binding across ~70 receptors, transporters, and enzymes. Although at a concentration of 10 μM, there were many hits for JJC8-016, binding affinities in the range of its DAT affinity were only observed at the serotonin transporter (SERT), dopamine D2-like, and sigma1 receptors. R-MOD was more selective, but had much lower affinity at the DAT (Ki=3 μM) than JJC8-016 (Ki=116 nM). In rats, systemic administration of R-MOD alone (10-30 mg/kg i.p.) dose-dependently increased locomotor activity and electrical brain-stimulation reward, whereas JJC8-016 (10-30 mg/kg i.p.) did not produce these effects. Strikingly, pretreatment with JJC8-016 dose-dependently inhibited cocaine-enhanced locomotion, cocaine self-administration, and cocaine-induced reinstatement of drug-seeking behavior, whereas R-MOD inhibited cocaine-induced reinstatement only at the high dose of 100 mg/kg. Notably, JJC8-016 alone neither altered extracellular dopamine in the nucleus accumbens nor maintained self-administration. It also failed to induce reinstatement of drug-seeking behavior. These findings suggest that JJC8-016 is a unique DAT inhibitor that has no cocaine-like abuse potential by itself. Moreover, pretreatment with JJC8-016 significantly inhibits cocaine-taking and cocaine-seeking behavior likely by interfering with cocaine binding to DAT. In addition, off-target actions may also contribute to its potential therapeutic utility in the treatment of cocaine abuse.
Collapse
|
13
|
Wang P, Zhang X, Fu T, Li S, Li B, Xue W, Yao X, Chen Y, Zhu F. Differentiating Physicochemical Properties between Addictive and Nonaddictive ADHD Drugs Revealed by Molecular Dynamics Simulation Studies. ACS Chem Neurosci 2017; 8:1416-1428. [PMID: 28557437 DOI: 10.1021/acschemneuro.7b00173] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental disorder of children and adolescents. Although psychostimulants are currently the first-line drugs for ADHD, their highly addictive profile raises great abuse concerns. It is known that psychostimulants' addictiveness is largely attributed to their interaction with dopamine transporter (DAT) and their binding modes in DAT can thus facilitate the understanding of the mechanism underlining drugs' addictiveness. However, no DAT residue able to discriminate ADHD drugs' addictiveness is identified, and the way how different drug structures affect their abuse liability is still elusive. In this study, multiple computational methods were integrated to differentiate binding modes between approved psychostimulants and ADHD drugs of little addictiveness. As a result, variation in energy contribution of 8 residues between addictive and nonaddictive drugs was observed, and a reduction in hydrophobicity of drugs' 2 functional groups was identified as the indicator of drugs' addictiveness. This finding agreed well with the physicochemical properties of 8 officially reported controlled substances. The identified variations in binding mode can shed light on the mechanism underlining drugs' addictiveness, which may thus facilitate the discovery of improved ADHD therapeutics with reduced addictive profile.
Collapse
Affiliation(s)
- Panpan Wang
- College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiaoyu Zhang
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Shuang Li
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Bo Li
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic
Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuzong Chen
- Bioinformatics and
Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Feng Zhu
- College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Innovative Drug Research and Bioinformatics
Group, School of Pharmaceutical Sciences and Collaborative Innovation
Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
14
|
Abstract
Several international guidelines indicate stimulants, including methylphenidate (MPH), amphetamines and derivatives, modafinil, and armodafinil among the second-third-line choices for bipolar depression. Efficacy of stimulants has been also reported for the management of residual depressive symptoms such as fatigue and sleepiness and for the management of affective, cognitive, and behavioral symptoms in children and adult bipolar patients with comorbid ADHD. Few case reports show positive results with MPH in the treatment of resistant mania. Finally, MPH might be an option in some bipolar forms observed in psychiatric presentations of frontotemporal dementia and traumatic brain injury. In spite of these preliminary observations, the use of stimulants in bipolar patients is still controversial. Potential of misuse and abuse and mood destabilization with induction of (hypo)manic switches, mixed states, and rapid cycling are the concerns most frequently reported. Our aims are to summarize available literature on this topic and discuss practical management implications.
Collapse
|
15
|
Wuo-Silva R, Fukushiro DF, Hollais AW, Santos-Baldaia R, Mári-Kawamoto E, Berro LF, Yokoyama TS, Lopes-Silva LB, Bizerra CS, Procópio-Souza R, Hashiguchi D, Figueiredo LA, Costa JL, Frussa-Filho R, Longo BM. Modafinil Induces Rapid-Onset Behavioral Sensitization and Cross-Sensitization with Cocaine in Mice: Implications for the Addictive Potential of Modafinil. Front Pharmacol 2016; 7:420. [PMID: 27872594 PMCID: PMC5097917 DOI: 10.3389/fphar.2016.00420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
There is substantial controversy about the addictive potential of modafinil, a wake-promoting drug used to treat narcolepsy, proposed as pharmacotherapy for cocaine abuse, and used indiscriminately by healthy individuals due to its positive effects on arousal and cognition. The rapid-onset type of behavioral sensitization (i.e., a type of sensitization that develops within a few hours from the drug priming administration) has been emerged as a valuable tool to study binge-like patterns of drug abuse and the neuroplastic changes that occur quickly after drug administration that ultimately lead to drug abuse. Our aim was to investigate the possible development of rapid-onset behavioral sensitization to modafinil and bidirectional rapid-onset cross-sensitization with cocaine in male Swiss mice. A priming injection of a high dose of modafinil (64 mg/kg) induced rapid-onset behavioral sensitization to challenge injections of modafinil at the doses of 16, 32, and 64 mg/kg, administered 4 h later. Furthermore, rapid-onset cross-sensitization was developed between modafinil and cocaine (64 mg/kg modafinil and 20 mg/kg cocaine), in a bidirectional way. These results were not due to residual levels of modafinil as the behavioral effects of the priming injection of modafinil were no longer present and modafinil plasma concentration was reduced at 4 h post-administration. Taken together, the present findings provide preclinical evidence that modafinil can be reinforcing per se and can enhance the reinforcing effects of stimulants like cocaine within hours after administration.
Collapse
Affiliation(s)
- Raphael Wuo-Silva
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São PauloSão Paulo, Brazil; Department of Pharmacology, Universidade Federal de São PauloSão Paulo, Brazil
| | - Daniela F Fukushiro
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | - André W Hollais
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Elisa Mári-Kawamoto
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Laís F Berro
- Department of Psychobiology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Thaís S Yokoyama
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Carolina S Bizerra
- Department of Pharmacology, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Debora Hashiguchi
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Lilian A Figueiredo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jose L Costa
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas Campinas, Brazil
| | | | - Beatriz M Longo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
16
|
Castells X, Cunill R, Pérez‐Mañá C, Vidal X, Capellà D. Psychostimulant drugs for cocaine dependence. Cochrane Database Syst Rev 2016; 9:CD007380. [PMID: 27670244 PMCID: PMC6457633 DOI: 10.1002/14651858.cd007380.pub4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cocaine dependence is a severe disorder for which no medication has been approved. Like opioids for heroin dependence, replacement therapy with psychostimulants could be an effective therapy for treatment. OBJECTIVES To assess the effects of psychostimulants for cocaine abuse and dependence. Specific outcomes include sustained cocaine abstinence and retention in treatment. We also studied the influence of type of drug and comorbid disorders on psychostimulant efficacy. SEARCH METHODS This is an update of the review previously published in 2010. For this updated review, we searched the Cochrane Drugs and Alcohol Group Trials Register, CENTRAL, MEDLINE, Embase and PsycINFO up to 15 February 2016. We handsearched references of obtained articles and consulted experts in the field. SELECTION CRITERIA We included randomised parallel group controlled clinical trials comparing the efficacy of a psychostimulant drug versus placebo. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 26 studies involving 2366 participants. The included studies assessed nine drugs: bupropion, dexamphetamine, lisdexamfetamine, methylphenidate, modafinil, mazindol, methamphetamine, mixed amphetamine salts and selegiline. We did not consider any study to be at low risk of bias for all domains included in the Cochrane 'Risk of bias' tool. Attrition bias was the most frequently suspected potential source of bias of the included studies. We found very low quality evidence that psychostimulants improved sustained cocaine abstinence (risk ratio (RR) 1.36, 95% confidence interval (CI) 1.05 to 1.77, P = 0.02), but they did not reduce cocaine use (standardised mean difference (SMD) 0.16, 95% CI -0.02 to 0.33) among participants who continued to use it. Furthermore, we found moderate quality evidence that psychostimulants did not improve retention in treatment (RR 1.00, 95% CI 0.93 to 1.06). The proportion of adverse event-induced dropouts and cardiovascular adverse event-induced dropouts was similar for psychostimulants and placebo (RD 0.00, 95% CI -0.01 to 0.01; RD 0.00, 95% CI -0.02 to 0.01, respectively). When we included the type of drug as a moderating variable, the proportion of patients achieving sustained cocaine abstinence was higher with bupropion and dexamphetamine than with placebo. Psychostimulants also appeared to increase the proportion of patients achieving sustained cocaine and heroin abstinence amongst methadone-maintained, dual heroin-cocaine addicts. Retention to treatment was low, though, so our results may be compromised by attrition bias. We found no evidence of publication bias. AUTHORS' CONCLUSIONS This review found mixed results. Psychostimulants improved cocaine abstinence compared to placebo in some analyses but did not improve treatment retention. Since treatment dropout was high, we cannot rule out the possibility that these results were influenced by attrition bias. Existing evidence does not clearly demonstrate the efficacy of any pharmacological treatment for cocaine dependence, but substitution treatment with psychostimulants appears promising and deserves further investigation.
Collapse
Affiliation(s)
- Xavier Castells
- Universitat de GironaUnit of Clinical Pharmacology, TransLab Research Group, Department of Medical SciencesEmili Grahit, 77GironaCataloniaSpain17071
| | - Ruth Cunill
- Parc Sanitari Sant Joan de DéuParc Sanitari Sant Joan de Déu‐NumanciaBarcelonaCatalunyaSpain08735
| | - Clara Pérez‐Mañá
- Universitat Autònoma de BarcelonaIntegrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute‐IMIM, Parc de Salut Mar, and Department of Pharmacology, Therapeutics and ToxicologyDoctor Aiguader 88BarcelonaCataloniaSpain08003
| | - Xavier Vidal
- Hospital Universitari Vall d'Hebron, Universitat Autònoma de BarcelonaDepartment of Clinical PharmacologyPasseig Vall d'Hebron 119‐129BarcelonaCataloniaSpain08035
| | - Dolors Capellà
- Faculty of Medicine, Universitat de GironaUnit of Clinical Pharmacology, TransLab Research Group, Department of Medical SciencesGironaSpain
| | | |
Collapse
|
17
|
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol Rev 2016; 67:1005-24. [PMID: 26408528 DOI: 10.1124/pr.114.010397] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders.
Collapse
Affiliation(s)
- Christopher L German
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Michelle G Baladi
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
De Ron P, Dremier S, Winlow P, Jenkins A, Hanon E, Nogueira da Costa A. Correlating behaviour and gene expression endpoints in the dopaminergic system after modafinil administration in mouse. Eur Neuropsychopharmacol 2016; 26:729-40. [PMID: 26875113 DOI: 10.1016/j.euroneuro.2016.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
The mechanisms of action of modafinil continue to be poorly characterised and its potential for abuse in preclinical models remains controverted. The aim of this study was to further elucidate the mechanism of action of modafinil, through a potential behavioural and molecular association in the mouse. A conditioned place preference (CPP) paradigm was implemented to investigate the rewarding properties of modafinil. Whole genome expression and qRT-PCR analysis were performed on the ventral tegmental area (VTA), nucleus accumbens (NAC) and prefrontal cortex (PFC) of modafinil-treated and control animals. Modafinil administration (65 mg/kg) induced an increase in locomotor activity, an increase in the change of preference for the drug paired side after a conditioning period as well as changes to gene expression profiles in the VTA (120 genes), NAC (23 genes) and PFC (19 genes). A molecular signature consisting of twelve up-regulated genes was identified as common to the three brain regions. Multiple linear correlation analysis showed a strong correlation (R(2)>0.70) between the behavioural and molecular endpoints in the three brain regions. We show that modafinil had a concomitant effect on CPP, locomotor activity, and up-regulation of interferon-γ (IFN-γ) regulated genes (Gbp2, Gbp3, Gbp10, Cd274, Igtp), while correlating the latter set of genes with behaviour changes evaluated through the CPP. A potential association can be proposed based on the dysregulation of p47 family genes and Gbp family of IFN-γ induced GTPases. In conclusion, these findings suggest a link between the behavioural and molecular events in the context of modafinil administration.
Collapse
Affiliation(s)
- P De Ron
- Non-Clinical Development, UCB Biopharma SPRL, Belgium
| | - S Dremier
- Non-Clinical Development, UCB Biopharma SPRL, Belgium
| | - P Winlow
- Non-Clinical Development, UCB Biopharma SPRL, Belgium
| | - A Jenkins
- Non-Clinical Development, UCB Biopharma SPRL, Belgium
| | - E Hanon
- CNS Research, UCB Biopharma SPRL, Belgium
| | | |
Collapse
|
19
|
Yousuf MS, Kerr BJ. The Role of Regulatory Transporters in Neuropathic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:245-71. [PMID: 26920015 DOI: 10.1016/bs.apha.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neuropathic pain arises from an injury or disease of the somatosensory nervous system rather than stimulation of pain receptors. As a result, the fine balance between excitation and inhibition is perturbed leading to hyperalgesia and allodynia. Various neuropathic pain models provide considerable evidence that changes in the glutamatergic, GABAergic, and monoaminergic systems. Neurotransmitter reuptake transporter proteins have the potential to change the temporal and spatial profile of various neurotransmitters throughout the nervous system. This, in turn, can affect the downstream effects of these neurotransmitters and hence modulate pain. This chapter explores various reuptake transporter systems and implicates their role in pain processing. Understanding the transporter systems will enhance drug discovery targeting different facets of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Bernardi RE, Broccoli L, Spanagel R, Hansson AC. Sex differences in dopamine binding and modafinil conditioned place preference in mice. Drug Alcohol Depend 2015; 155:37-44. [PMID: 26342627 DOI: 10.1016/j.drugalcdep.2015.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Studies in humans and rodents have demonstrated under certain conditions some reinforcing properties of modafinil, a drug being examined clinically for its potential to treat psychostimulant abuse. However, the majority of rodent studies examining the abuse potential of modafinil have used high doses that may not be clinically relevant. In fact, recent work has indicated that doses similar to those administered to humans are not reinforcing in mice. METHODS The current study examined sex differences in the ability of low-dose modafinil (0.75mg/kg, IP) to induce a conditioned place preference in mice, and assessed sex-dependent alterations in dopamine D1, D2 and DAT binding sites in reward-related regions in naïve and modafinil-treated mice. RESULTS Low-dose modafinil failed to induce a conditioned place preference in male mice, while female mice demonstrated a significant modafinil place preference. Several dopamine binding differences were also detected in naïve and modafinil-treated mice, including sex differences in D1 and D2 availability in reward-related regions, and are discussed in relation to sex-dependent differences in the reinforcing effects of modafinil and psychostimulants in general. CONCLUSIONS These findings implicate sex differences in the reinforcing properties of modafinil in mice, and indicate that clinical evaluation of the sex dependence of the reinforcing properties of modafinil in humans is warranted.
Collapse
Affiliation(s)
- Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
| | - Laura Broccoli
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| |
Collapse
|
21
|
Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 2015; 147:1-19. [PMID: 25548026 PMCID: PMC4297708 DOI: 10.1016/j.drugalcdep.2014.12.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Treatment of stimulant-use disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. METHODS This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. RESULTS Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of Drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. CONCLUSIONS Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse.
Collapse
Affiliation(s)
- Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA,Corresponding author: Maarten E.A. Reith, Department of Psychiatry, Alexandria Center of Life Sciences, New York University School of Medicine, 450 E 29th Street, Room 803, New York, NY 10016. Tel.: 212 - 263 8267; Fax: 212 – 263 8183;
| | - Bruce E. Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Weimin C. Hong
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kymry T. Jones
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Kyle C. Schmitt
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Michael H. Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - John S. Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B. Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonathan L. Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Shorter D, Domingo CB, Kosten TR. Emerging drugs for the treatment of cocaine use disorder: a review of neurobiological targets and pharmacotherapy. Expert Opin Emerg Drugs 2014; 20:15-29. [PMID: 25425416 DOI: 10.1517/14728214.2015.985203] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Cocaine use is a global public health concern of significant magnitude, negatively impacting both the individual as well as larger society. Despite numerous trials, the discovery of an effective medication for treatment of cocaine use disorder remains elusive. AREAS COVERED This article reviews the emerging pharmacotherapies for treatment of cocaine use disorder, focusing on those medications that are currently in Phase II or III human clinical trials. Articles reviewed were obtained through searches of PubMed, Ovid MEDLINE, Clinicaltrials.gov and the Pharmaprojects database. EXPERT OPINION Research into cocaine pharmacotherapy must continue to show innovation. Given that medications targeting single neurotransmitter systems have demonstrated little efficacy in treatment of cocaine use disorder, the recent focus on pharmacotherapeutic agents with multiple neurobiochemical targets represents an exciting shift in trial design and approach. Additionally, consideration of pharmacogenetics may be helpful in identification of subpopulations of cocaine-dependent individuals who may preferentially respond to medications.
Collapse
Affiliation(s)
- Daryl Shorter
- Michael E. DeBakey VA Medical Center, Research Service Line , 2002 Holcombe Blvd, Bldg 121, Office 121-137, Houston, TX 77030 , USA +1 713 791 1414 Ext. 24643 ;
| | | | | |
Collapse
|
23
|
Stoops WW, Rush CR. Agonist replacement for stimulant dependence: a review of clinical research. Curr Pharm Des 2014; 19:7026-35. [PMID: 23574440 DOI: 10.2174/138161281940131209142843] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022]
Abstract
Stimulant use disorders are an unrelenting public health concern worldwide. Agonist replacement therapy is among the most effective strategies for managing substance use disorders including nicotine and opioid dependence. The present paper reviewed clinical data from human laboratory self-administration studies and clinical trials to determine whether agonist replacement therapy is a viable strategy for managing cocaine and/or amphetamine use disorders. The extant literature suggests that agonist replacement therapy may be effective for managing stimulant use disorders, however, the clinical selection of an agonist replacement medication likely needs to be based on the pharmacological mechanism of the medication and the stimulant abused by patients. Specifically, dopamine releasers appear most effective for reducing cocaine use whereas dopamine reuptake inhibitors appear most effective for reducing amphetamine use.
Collapse
Affiliation(s)
- William W Stoops
- Department of Behavioral Science, University of Kentucky Medical Center, Lexington, KY 40536- 0086.
| | | |
Collapse
|
24
|
Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations. Neuropharmacology 2014; 87:66-80. [PMID: 24662599 DOI: 10.1016/j.neuropharm.2014.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/26/2014] [Accepted: 03/12/2014] [Indexed: 01/09/2023]
Abstract
Examination of a drug's abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
|
25
|
Monoamine transporter inhibitors and substrates as treatments for stimulant abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:129-76. [PMID: 24484977 DOI: 10.1016/b978-0-12-420118-7.00004-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The acute and chronic effects of abused psychostimulants on monoamine transporters and associated neurobiology have encouraged development of candidate medications that target these transporters. Monoamine transporters, in general, and dopamine transporters, in particular, are critical molecular targets that mediate abuse-related effects of psychostimulants such as cocaine and amphetamine. Moreover, chronic administration of psychostimulants can cause enduring changes in neurobiology reflected in dysregulation of monoamine neurochemistry and behavior. The current review will evaluate evidence for the efficacy of monoamine transporter inhibitors and substrates to reduce abuse-related effects of stimulants in preclinical assays of stimulant self-administration, drug discrimination, and reinstatement. In considering deployment of monoamine transport inhibitors and substrates as agonist-type medications to treat stimulant abuse, the safety and abuse liability of the medications are an obvious concern, and this will also be addressed. Future directions in drug discovery should identify novel medications that retain efficacy to decrease stimulant use but possess lower abuse liability and evaluate the degree to which efficacious medications can attenuate or reverse neurobiological effects of chronic stimulant use.
Collapse
|
26
|
Verrico CD, Haile CN, Newton TF, Kosten TR, De La Garza R, De La Garza R. Pharmacotherapeutics for substance-use disorders: a focus on dopaminergic medications. Expert Opin Investig Drugs 2013; 22:1549-68. [PMID: 24033127 DOI: 10.1517/13543784.2013.836488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Illicit substance-use is a substantial public health concern, contributing over $150 billion in costs annually to Americans. A complex disease, a substance-use disorder affects neural circuits involved in reinforcement, motivation, learning and memory, and inhibitory control. AREAS COVERED The modulatory influence of dopamine in mesocorticolimbic circuits contributes to encoding the primary reinforcing effects of substances and numerous studies suggest that aberrant signaling within these circuits contributes to the development of a substance-use disorder in some individuals. Decades of research focused on the clinical development of medications that directly target dopamine receptors has led to recent studies of agonist-like dopaminergic treatments for stimulant-use disorders and, more recently, cannabis-use disorder. Human studies evaluating the efficacy of dopaminergic agonist-like medications to reduce reinforcing effects and substance-use provide some insight into the design of future pharmacotherapy trials. A search of PubMed using specific brain regions, medications, and/or the terms 'dopamine', 'cognition', 'reinforcement', 'cocaine', 'methamphetamine', 'amphetamine', 'cannabis', 'treatment/pharmacotherapy', 'addiction/abuse/dependence' identified articles relevant to this review. EXPERT OPINION Conceptualization of substance-use disorders and their treatment continues to evolve. Current efforts increasingly focus on a strategy fostering combination pharmacotherapies that target multiple neurotransmitter systems.
Collapse
Affiliation(s)
- Christopher D Verrico
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , One Baylor Plaza, Houston, TX 77030-3411 , USA
| | | | | | | | | | | |
Collapse
|
27
|
Superior chronic tolerability of adjunctive modafinil compared to pramipexole in treatment-resistant bipolar disorder. J Affect Disord 2013; 150:130-5. [PMID: 23261131 DOI: 10.1016/j.jad.2012.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/07/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Suboptimal outcomes are common in bipolar disorder (BD) pharmacotherapy, and may be mitigated with novel adjunctive agents such as modafinil (a low-affinity dopamine transport inhibitor) and pramipexole (a dopamine D2/D3 receptor agonist). While uncontrolled long-term effectiveness data have been reported for these treatments, reports specifically assessing their comparative acute versus chronic tolerability in BD are lacking. Such information, particularly in relation to discontinuation causes, has substantial relevance, providing initial indications to clinicians which treatment may be better tolerated, and to researchers which agent ought to be assessed in longer-term controlled trials. METHODS BD outpatients assessed with the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) Affective Disorders Evaluation, and followed with the STEP-BD Clinical Monitoring Form, were naturalistically prescribed adjunctive modafinil or pramipexole, and somatic/psychiatric intolerability discontinuation rates were compared. RESULTS Among 63 BD outpatients (mean ± SD age 43.5 ± 14.3 years, 60.3% female, 42.9% type I, 44.4% type II, 12.7% type not otherwise specified), taking 3.5 ± 1.5 (median 3) concurrent prescription psychotropics, adjunctive modafinil (n=24) for 626.9 ± 863.9 (286) days versus pramipexole (n=39) for 473.7 ± 613.4 (214; p=0.51) days yielded a 26.0% lower somatic/psychiatric intolerability discontinuation rate (12.5% vs. 38.5%; p<0.05), with most of the difference accounted for by more pramipexole somatic intolerability discontinuations, due to nausea and sedation, after the first 12 weeks of treatment. LIMITATIONS No placebo comparison group. Small sample of predominantly female Caucasian insured outpatients, taking complex concurrent medication regimens. CONCLUSIONS Further studies are warranted to assess our preliminary observation that modafinil, compared to pramipexole, may be better tolerated for longer-term BD treatment.
Collapse
|
28
|
Dell'Osso B, Ketter TA, Cremaschi L, Spagnolin G, Altamura AC. Assessing the roles of stimulants/stimulant-like drugs and dopamine-agonists in the treatment of bipolar depression. Curr Psychiatry Rep 2013; 15:378. [PMID: 23881710 DOI: 10.1007/s11920-013-0378-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bipolar depression is considered the most difficult-to-treat phase of bipolar disorder, in relation to its pervasiveness and efficacy and/or tolerability limitations of available treatments. Indeed, most mood stabilizers and atypical antipsychotics are not as effective in ameliorating depressive compared with manic symptoms, and entail substantial tolerability limitations. However, the use of antidepressants is highly controversial, as their efficacy appears less robust in bipolar compared with unipolar depression. In addition, antidepressants, in spite of generally having adequate somatic tolerability, in BD may be associated with a higher risk of manic/hypomanic switch, suicidality and rapid cycling. Among alternative pharmacological strategies, compounds with stimulant and pro-dopaminergic effects, such as methylphenidate, modafinil, armodafinil and pramipexole, have showed potential antidepressant activity, even though their use in clinical practice has been limited by the paucity of controlled evidence. This article seeks to review available evidence about the use of the aforementioned compounds in the treatment of bipolar depression. Findings from reviewed studies suggested that pro-dopaminergic compounds, such as pramipexole and stimulants/stimulant-like agents, deserve consideration as adjunctive therapies in bipolar depressed patients, at least in some subgroups of patients. Nevertheless, caution regarding their use is recommended as further clinical trials with larger samples and longer follow-up periods are necessary to clarify the roles of these medications in bipolar depression.
Collapse
Affiliation(s)
- Bernardo Dell'Osso
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy.
| | | | | | | | | |
Collapse
|
29
|
Quisenberry AJ, Prisinzano T, Baker LE. Combined effects of modafinil and d-amphetamine in male Sprague-Dawley rats trained to discriminate d-amphetamine. Pharmacol Biochem Behav 2013; 110:208-15. [PMID: 23880213 DOI: 10.1016/j.pbb.2013.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 07/09/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
Modafinil is a novel wake-promoting drug with FDA approval for the treatment of sleep-related disorders that has recently been investigated as a potential agonist replacement therapy for psychostimulant dependence. Previous research in animals and humans indicates modafinil has a lower abuse liability than traditional psychostimulants, although few studies have carefully assessed modafinil's stimulus properties in combination with other psychostimulants. The current study trained male Sprague-Dawley rats to discriminate subcutaneous injections of 0.3 mg/kg (n=8) or 1.0 mg/kg d-amphetamine (n=8) from saline under an FR 20 schedule of food reinforcement and substitution tests were administered with d-amphetamine (0.03-1.0 mg/kg, s.c.), modafinil (32-256 mg/kg, i.g.), and a low modafinil dose (32 mg/kg, i.g.) in combination with d-amphetamine (0.03-1.0 mg/kg, s.c.) to determine if these drugs have additive effects. The selective D2 dopamine agonist, PNU-91356A, was also tested as a positive control and ethanol and morphine were tested as negative controls. Results indicate that modafinil produced dose-dependent and statistically significant d-amphetamine-lever responding in both groups and nearly complete substitution in animals trained to discriminate 1.0 mg/kg d-amphetamine. Modafinil pretreatment slightly increased the discrimination of low d-amphetamine doses in animals trained to discriminate 0.3 mg/kg d-amphetamine. These results support previous findings that modafinil and d-amphetamine may have additive effects. In consideration of recent interests in modafinil as an agonist treatment for psychostimulant dependence, additional preclinical investigations utilizing other methodologies to examine modafinil in combination with other stimulants, such as behavioral sensitization paradigms or drug self-administration, may be of interest.
Collapse
|
30
|
Heal DJ, Buckley NW, Gosden J, Slater N, France CP, Hackett D. A preclinical evaluation of the discriminative and reinforcing properties of lisdexamfetamine in comparison to D-amfetamine, methylphenidate and modafinil. Neuropharmacology 2013; 73:348-58. [PMID: 23748096 DOI: 10.1016/j.neuropharm.2013.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/03/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022]
Abstract
Lisdexamfetamine dimesylate, which consists of L-lysine covalently bound to D-amfetamine, is the first prodrug for treating ADHD. Its metabolic conversion to yield D-amfetamine by rate-limited, enzymatic hydrolysis is unusual because it is performed by peptidases associated with red blood cells. Other stimulants shown to be effective in managing ADHD include D-amfetamine, methylphenidate and modafinil. All have the potential for misuse or recreational abuse. The discriminative and reinforcing effects of these compounds were determined in rats using a 2-choice, D-amfetamine (0.5 mg/kg, i.p.)-cued drug-discrimination test, and by substitution for intravenous cocaine in self-administration. Lisdexamfetamine (0.5-1.5 mg/kg [D-amfetamine base], p.o.) generalised to saline when tested 15 min post-dosing, but dose-dependently generalised to d-amfetamine at 60 min. At 120 min, its D-amfetamine-like effects were substantially diminished. At 15 min, methylphenidate (3.0-10 mg/kg, p.o.) and D-amfetamine (0.1-1.5 mg/kg, p.o.) dose-dependently generalised to the intraperitoneal D-amfetamine cue. Switching to the intraperitoneal route reduced the interval required for lisdexamfetamine to be recognised as D-amfetamine-like, but did not alter its potency. Switching to intraperitoneal injection increased the potency of methylphenidate and D-amfetamine by 3.4× and 2.2×, respectively. Modafinil (50-200 mg/kg, i.p.) generalised partially, but not fully, to d-amfetamine. Methylphenidate (0.1, 0.3, 1.0 mg/kg/injection, i.v.) maintained robust self-administration at the 2 highest doses. Neither lisdexamfetamine (0.05, 0.15 or 0.5 mg/kg/injection [D-amfetamine base], i.v.) nor modafinil (0.166, 0.498 or 1.66 mg/kg/injection, i.v.) served as reinforcers. The results reveal important differences between the profiles of these stimulants. Lisdexamfetamine did not serve as a positive reinforcer in cocaine-trained rats, and although it generalised fully to D-amfetamine, its discriminative effects were markedly influenced by its unusual pharmacokinetics.
Collapse
Affiliation(s)
- David J Heal
- RenaSci Ltd, BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Schmitt KC, Rothman RB, Reith MEA. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther 2013; 346:2-10. [PMID: 23568856 DOI: 10.1124/jpet.111.191056] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The dopamine transporter (DAT) is a sodium-coupled symporter protein responsible for modulating the concentration of extraneuronal dopamine in the brain. The DAT is a principle target of various psychostimulant, nootropic, and antidepressant drugs, as well as certain drugs used recreationally, including the notoriously addictive stimulant cocaine. DAT ligands have traditionally been divided into two categories: cocaine-like inhibitors and amphetamine-like substrates. Whereas inhibitors block monoamine uptake by the DAT but are not translocated across the membrane, substrates are actively translocated and trigger DAT-mediated release of dopamine by reversal of the translocation cycle. Because both inhibitors and substrates increase extraneuronal dopamine levels, it is often assumed that all DAT ligands possess an addictive liability equivalent to that of cocaine. However, certain recently developed ligands, such as atypical benztropine-like DAT inhibitors with reduced or even a complete lack of cocaine-like rewarding effects, suggest that addictiveness is not a constant property of DAT-affecting compounds. These atypical ligands do not conform to the classic preconception that all DAT inhibitors (or substrates) are functionally and mechanistically alike. Instead, they suggest the possibility that the DAT exhibits some of the ligand-specific pleiotropic functional qualities inherent to G-protein-coupled receptors. That is, ligands with different chemical structures induce specific conformational changes in the transporter protein that can be differentially transduced by the cell, ultimately eliciting unique behavioral and psychological effects. The present overview discusses compounds with conformation-specific activity, useful not only as tools for studying the mechanics of dopamine transport, but also as leads for medication development in addictive disorders.
Collapse
Affiliation(s)
- Kyle C Schmitt
- Department of Neurosurgery, New York University School of Medicine, 455 First Ave., Public Health Laboratories (8th Floor), New York, New York 10016, USA.
| | | | | |
Collapse
|
32
|
Goudriaan AE, Veltman DJ, van den Brink W, Dom G, Schmaal L. Neurophysiological effects of modafinil on cue-exposure in cocaine dependence: a randomized placebo-controlled cross-over study using pharmacological fMRI. Addict Behav 2013; 38:1509-1517. [PMID: 22591950 DOI: 10.1016/j.addbeh.2012.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Enhanced reactivity to substance related cues is a central characteristic of addiction and has been associated with increased activity in motivation, attention, and memory related brain circuits and with a higher probability of relapse. Modafinil was promising in the first clinical trials in cocaine dependence, and was able to reduce craving in addictive disorders. However, its mechanism of action remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study therefore, cue reactivity in cocaine dependent patients was compared to cue reactivity in healthy controls (HCs) under modafinil and placebo conditions. METHODS An fMRI cue reactivity study, with a double-blind, placebo-controlled cross-over challenge with a single dose of modafinil (200mg) was employed in 13 treatment seeking cocaine dependent patients and 16 HCs. RESULTS In the placebo condition, watching cocaine-related pictures (versus neutral pictures) resulted in higher brain activation in the medial frontal cortex, anterior cingulate cortex, angular gyrus, left orbitofrontal cortex, and ventral tegmental area (VTA) in the cocaine dependent group compared to HCs. However, in the modafinil condition, no differences in brain activation patterns were found between cocaine dependent patients and HCs. Group interactions revealed decreased activity in the VTA and increased activity in the right ACC and putamen in the modafinil condition relative to the placebo condition in cocaine dependent patients, whereas such changes were not present in healthy controls. Decreases in self-reported craving when watching cocaine-related cues after modafinil administration compared to the placebo condition were associated with modafinil-induced increases in ACC and putamen activation. CONCLUSIONS Enhanced cue reactivity in the cocaine dependent group compared to healthy controls was found in brain circuitries related to reward, motivation, and autobiographical memory processes. In cocaine dependent patients, these enhanced brain responses were attenuated by modafinil, mainly due to decreases in cue- reactivity in reward-related brain areas (VTA) and increases in cue reactivity in cognitive control areas (ACC). These modafinil-induced changes in brain activation in response to cocaine-related visual stimuli were associated with diminished self-reported craving. These findings imply that in cocaine dependent patients, modafinil, although mainly known as a cognitive enhancer, acts on both the motivational and the cognitive brain circuitry.
Collapse
Affiliation(s)
- Anna E Goudriaan
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Arkin Mental Health, Amsterdam, The Netherlands.
| | - Dick J Veltman
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Wim van den Brink
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Dom
- Collaborative Antwerp Psychiatric Research Institute, Antwerp University, Antwerp, Belgium
| | - Lianne Schmaal
- Amsterdam Institute for Addiction Research, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Loland CJ, Mereu M, Okunola OM, Cao J, Prisinzano TE, Mazier S, Kopajtic T, Shi L, Katz JL, Tanda G, Newman AH. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry 2012; 72:405-13. [PMID: 22537794 PMCID: PMC3413742 DOI: 10.1016/j.biopsych.2012.03.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/24/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND (±)-Modafinil has piqued interest as a treatment for attention-deficit/hyperactivity disorder and stimulant dependence. The R-enantiomer of modafinil might have unique pharmacological properties that should be further investigated. METHODS (±)-Modafinil and its R-(-)- and S-(+)-enantiomers were synthesized and tested for inhibition of [(3)H] dopamine (DA) uptake and [(3)H]WIN 35428 binding in human dopamine transporter (DAT) wild-type and mutants with altered conformational equilibria. Data were compared with cocaine and the atypical DA uptake inhibitor, JHW 007. R- and S-modafinil were also evaluated in microdialysis studies in the mouse nucleus accumbens shell and in a cocaine discrimination procedure. RESULTS (±)-, R-, and S-modafinil bind to the DAT and inhibit DA uptake less potently than cocaine, with R-modafinil having approximately threefold higher affinity than its S-enantiomer. Molecular docking studies revealed subtle differences in binding modes for the enantiomers. R-modafinil was significantly less potent in the DAT Y156F mutant compared with wild-type DAT, whereas S-modafinil was affected less. Studies with the Y335A DAT mutant showed that the R- and S-enantiomers tolerated the inward-facing conformation better than cocaine, which was further supported by [2-(trimethylammonium)ethyl]-methanethiosulfonate reactivity on the DAT E2C I159C. Microdialysis studies demonstrated that both R- and S-modafinil produced increases in extracellular DA concentrations in the nucleus accumbens shell less efficaciously than cocaine and with a longer duration of action. Both enantiomers fully substituted in mice trained to discriminate cocaine from saline. CONCLUSIONS R-modafinil displays an in vitro profile different from cocaine. Future trials with R-modafinil as a substitute therapy with the potential benefit of cognitive enhancement for psychostimulant addiction are warranted.
Collapse
|
34
|
Shuman T, Cai DJ, Sage JR, Anagnostaras SG. Interactions between modafinil and cocaine during the induction of conditioned place preference and locomotor sensitization in mice: implications for addiction. Behav Brain Res 2012; 235:105-12. [PMID: 22963989 DOI: 10.1016/j.bbr.2012.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/18/2012] [Accepted: 07/27/2012] [Indexed: 11/28/2022]
Abstract
Modafinil is a wake-promoting drug effective at enhancing alertness and attention with a variety of approved and off-label applications. The mechanism of modafinil is not well understood but initial studies indicated a limited abuse potential. A number of recent publications, however, have shown that modafinil can be rewarding under certain conditions. The present study assessed the reinforcing properties of modafinil using conditioned place preference and locomotor sensitization in mice. Experiment 1 examined a high dose of modafinil (75 mg/kg) as well as its interactions with cocaine (15 mg/kg). Cocaine alone and modafinil co-administered with cocaine induced sensitization of locomotor activity; modafinil alone showed little or no locomotor sensitization. Animals given modafinil alone, cocaine alone, and modafinil plus cocaine exhibited a strong and roughly equivalent place preference. When tested for sensitization using a low challenge dose of modafinil, cross-sensitization was observed in all cocaine-pretreated mice. Experiment 2 examined a low dose of modafinil that is similar to the dose administered to humans and has been shown to produce cognitive enhancements in mice. Low dose modafinil (0.75 mg/kg) did not produce conditioned place preference or locomotor sensitization. Together, these results suggest that modafinil has the potential to produce reward, particularly in cocaine addicts, and should be used with caution. However, the typical low dose administered likely moderates these effects and may account for lack of addiction seen in humans.
Collapse
Affiliation(s)
- Tristan Shuman
- Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0109, United States.
| | | | | | | |
Collapse
|
35
|
Chronic modafinil effects on drug-seeking following methamphetamine self-administration in rats. Int J Neuropsychopharmacol 2012; 15:919-29. [PMID: 21733228 PMCID: PMC3258466 DOI: 10.1017/s1461145711000988] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acute administration of the cognitive enhancing drug, modafinil (Provigil®), reduces methamphetamine (Meth) seeking following withdrawal from daily self-administration. However, the more clinically relevant effects of modafinil on Meth-seeking after chronic treatment have not been explored. Here, we determined the impact of modafinil on Meth-seeking after chronic daily treatment during extinction or abstinence following Meth self-administration. Rats self-administered intravenous Meth during daily 2-h sessions for 14 d, followed by extinction sessions or abstinence. During this period, rats received daily injections of vehicle, 30, or 100 mg/kg modafinil and were then tested for Meth-seeking via cue, Meth-primed, and context-induced reinstatement at early and late withdrawal time-points. We found that chronic modafinil attenuated relapse to a Meth-paired context, decreased conditioned cue-induced and Meth-primed reinstatement, and resulted in enduring reductions in Meth-seeking even after discontinuation of treatment. Additionally, we determined that only a very high dose of modafinil (300 mg/kg) during maintenance of self-administration had an impact on Meth intake. These results validate and extend clinical and preclinical findings that modafinil may be a viable treatment option for Meth addiction.
Collapse
|
36
|
Artsy E, McCarthy DC, Hurwitz S, Pavlova MK, Dworetzky BA, Lee JW. Use of modafinil in patients with epilepsy. Epilepsy Behav 2012; 23:405-8. [PMID: 22420936 DOI: 10.1016/j.yebeh.2012.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/29/2012] [Accepted: 02/01/2012] [Indexed: 11/17/2022]
Abstract
Fatigue and excessive daytime sleepiness are common symptoms in patients with neurological injury. Modafinil has been shown to ameliorate these symptoms, but its use in patients with seizures has been limited because of safety concerns. Using a large centralized clinical registry, we performed a retrospective chart review of patients with a diagnosis of epilepsy who were given modafinil over a 10-year period. A total of 205 patients were analyzed. There were 91 patients who had seizures while taking modafinil; there was no relationship between modafinil dosage and whether the patient had seizures. There were 6 patients in whom modafinil was discontinued because of concern for seizure exacerbation, and 4 patients had de novo seizures after starting modafinil. In 29 patients with epilepsy only, no major seizure exacerbation was seen. Modafinil is potentially safe in patients with epilepsy, but further prospective studies are needed to fully determine its safety and efficacy.
Collapse
Affiliation(s)
- Elinor Artsy
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Dackis CA, Kampman KM, Lynch KG, Plebani JG, Pettinati HM, Sparkman T, O'Brien CP. A double-blind, placebo-controlled trial of modafinil for cocaine dependence. J Subst Abuse Treat 2012; 43:303-12. [PMID: 22377391 DOI: 10.1016/j.jsat.2011.12.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 11/29/2011] [Accepted: 12/12/2011] [Indexed: 11/17/2022]
Abstract
This is a randomized, double-blind, placebo-controlled study of modafinil treatment for cocaine dependence. Patients (N = 210) who were actively using cocaine at baseline were randomized to 8 weeks of modafinil (0 mg/day, 200 mg/day, or 400 mg/day) combined with once-weekly cognitive-behavioral therapy. Our primary efficacy measure was cocaine abstinence, based on urine benzoylecgonine (BE) levels, with secondary measures of craving, cocaine withdrawal, retention, and tolerability. We found no significant differences between modafinil and placebo patients on any of these measures. However, there was a significant gender difference in that male patients treated with 400 mg/day tended to be more abstinent than their placebo-treated counterparts (p = .06). Our negative findings might be explained by gender differences and/or inadequate psychosocial treatment intensity in patients with severe cocaine dependence.
Collapse
Affiliation(s)
- Charles A Dackis
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Rush CR, Stoops WW. Agonist replacement therapy for cocaine dependence: a translational review. Future Med Chem 2012; 4:245-65. [PMID: 22300101 PMCID: PMC3292908 DOI: 10.4155/fmc.11.184] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cocaine use disorders are prevalent throughout the world. Agonist replacement therapy is among the most effective strategies for managing substance use disorders including nicotine and opioid dependence. This paper reviews the translational literature, including preclinical experiments, human laboratory studies and clinical trials, to determine whether agonist-replacement therapy is a viable strategy for managing cocaine dependence. Discussion is limited to transporter blockers (i.e., methylphenidate) and releasers (i.e., amphetamine analogs) that are available for use in humans in the hope of impacting clinical research and practice more quickly. The translational review suggests that agonist-replacement therapy, especially monoamine releasers, may be effective for managing cocaine dependence. Future directions for medications development are also discussed because the viability of agonist-replacement therapy for cocaine dependence may hinge on identifying novel compounds or formulations that have less abuse and diversion potential.
Collapse
Affiliation(s)
- Craig R Rush
- Department of Behavioral Science, University of Kentucky, College of Medicine, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA.
| | | |
Collapse
|
39
|
Pharmacotherapeutics directed at deficiencies associated with cocaine dependence: focus on dopamine, norepinephrine and glutamate. Pharmacol Ther 2012; 134:260-77. [PMID: 22327234 DOI: 10.1016/j.pharmthera.2012.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 11/20/2022]
Abstract
Much effort has been devoted to research focused on pharmacotherapies for cocaine dependence yet there are no FDA-approved medications for this brain disease. Preclinical models have been essential to defining the central and peripheral effects produced by cocaine. Recent evidence suggests that cocaine exerts its reinforcing effects by acting on multiple neurotransmitter systems within mesocorticolimibic circuitry. Imaging studies in cocaine-dependent individuals have identified deficiencies in dopaminergic signaling primarily localized to corticolimbic areas. In addition to dysregulated striatal dopamine, norepinephrine and glutamate are also altered in cocaine dependence. In this review, we present these brain abnormalities as therapeutic targets for the treatment of cocaine dependence. We then survey promising medications that exert their therapeutic effects by presumably ameliorating these brain deficiencies. Correcting neurochemical deficits in cocaine-dependent individuals improves memory and impulse control, and reduces drug craving that may decrease cocaine use. We hypothesize that using medications aimed at reversing known neurochemical imbalances is likely to be more productive than current approaches. This view is also consistent with treatment paradigms used in neuropsychiatry and general medicine.
Collapse
|
40
|
Holtz NA, Lozama A, Prisinzano TE, Carroll ME. Reinstatement of methamphetamine seeking in male and female rats treated with modafinil and allopregnanolone. Drug Alcohol Depend 2012; 120:233-7. [PMID: 21820819 PMCID: PMC3213316 DOI: 10.1016/j.drugalcdep.2011.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sex differences in methamphetamine (METH) use (females>males) have been demonstrated in clinical and preclinical studies. This experiment investigated the effect of sex on the reinstatement of METH-seeking behavior in rats and determined whether pharmacological interventions for METH-seeking vary by sex. Treatment drugs were modafinil (MOD), an analeptic, and allopregnanolone (ALLO), a neuroactive steroid and progesterone metabolite. METHOD Male and female rats were trained to self-administer i.v. infusions of METH (0.05 mg/kg/infusion). Next, rats self-administered METH for a 10-day maintenance period. METH was then replaced with saline, and rats extinguished lever-pressing behavior over 18 days. A multi-component reinstatement procedure followed whereby priming injections of METH (1mg/kg) were administered at the start of each daily session, preceded 30 min by MOD (128 mg/kg, i.p.), ALLO (15 mg/kg, s.c.), or vehicle treatment. MOD was also administered at the onset of the session to determine if it would induce the reinstatement of METH-seeking behavior. RESULTS Female rats had greater METH-induced reinstatement responding compared to male rats following control treatment injections. MOD (compared to the DMSO control) attenuated METH-seeking behavior in male and female rats; however, ALLO only reduced METH-primed responding in females. MOD alone did not induce the reinstatement of METH-seeking behavior. CONCLUSIONS These results support previous findings that females are more susceptible to stimulant abuse compared to males, and ALLO effectively reduced METH-primed reinstatement in females. Further, results illustrate the utility of MOD as a potential agent for prevention of relapse to METH use in both males and females.
Collapse
Affiliation(s)
- Nathan A Holtz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anthony Lozama
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Marilyn E Carroll
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Kalapatapu RK, Bedi G, Haney M, Evans SM, Rubin E, Foltin RW. Substance use after participation in laboratory studies involving smoked cocaine self-administration. Drug Alcohol Depend 2012; 120:162-7. [PMID: 21840650 PMCID: PMC3228895 DOI: 10.1016/j.drugalcdep.2011.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Laboratory studies in which drugs of abuse are self- or experimenter-administered to non-treatment-seeking research volunteers provide valuable data about new pharmacotherapies for substance use disorders, as well as behavioral and performance data for understanding the neurobiology of drug abuse. This paper analyzed follow-up data from six smoked cocaine self-administration laboratory studies, in order to determine whether changes in substance use occurred 1 and 3 months after study participation compared to pre-study baseline. METHODS Ninety-eight healthy, non-treatment-seeking cocaine users were admitted to inpatient and combined inpatient/outpatient studies lasting from 12 to 105 days. The studies allowed participants to self-administer repeated doses of smoked cocaine (0, 6, 12, 25, and/or 50mg per dose) on multiple occasions. Participants returned for follow-up at 1 and 3 months, at which time self-reported consumption of cocaine, alcohol, marijuana, and nicotine was assessed. RESULTS Compared to baseline ($374.04/week, S.D. $350.09), cocaine use significantly decreased at 1 month ($165.13/week, S.D. $165.56) and 3 months ($118.59/week, S.D. $110.48) after study participation (p<0.001; results based on the 39 participants who completed all 3 time points). This decrease was not accompanied by a change in other drug use, e.g., a compensatory increase in alcohol, marijuana or nicotine use. CONCLUSION Study participation was not associated with increased post-study cocaine, alcohol, marijuana, or nicotine use. Thus, human laboratory models of cocaine self-administration, conducted in non-treatment-seeking research volunteers, are relatively safe, and study participation does not exacerbate ongoing drug use.
Collapse
Affiliation(s)
- Raj K. Kalapatapu
- Substance Use Research Center, Columbia University, United States,Corresponding author at: Substance Use Research Center, New York State Psychiatric Institute, Columbia University, Unit 66, 1051 Riverside Drive, New York, NY 10032, Tel.: +1 212 543 5447; fax: +1 212 543 6018. (R.K. Kalapatapu)
| | - Gillinder Bedi
- Substance Use Research Center, Columbia University, United States
| | - Margaret Haney
- Substance Use Research Center, Columbia University, United States
| | - Suzette M. Evans
- Substance Use Research Center, Columbia University, United States
| | - Eric Rubin
- Substance Use Research Center, Columbia University, United States
| | | |
Collapse
|
42
|
Abstract
Cocaine is a stimulant that leads to the rapid accumulation of catecholamines and serotonin in the brain due to prevention of their re-uptake into the neuron that released the neurotransmitter. Cocaine dependence is a public health concern and cause of significant morbidity and mortality worldwide. At present, there are no approved medications for the treatment of this devastating illness, and behavioral interventions have proven to be of limited use. However, there have been a number of recent trials testing promising agents including dopamine agonists, GABAergic medications and the cocaine vaccine. Here we discuss the most recent human clinical trials of potential medications for treatment of cocaine dependence, as well as pre-clinical studies for another promising agent, levo tetrahydropalmatine. Examination of these recent findings shows promise for GABAergic medications and the cocaine vaccine, as well as unique medications such as disulfiram, whose mechanism remains to be determined. Future work may also confirm specific subgroups of patients for treatment response based on clinical characteristics, biomarkers and pharmacogenetics. This review highlights the need for further, bigger studies in order to determine optimal clinical usage.
Collapse
Affiliation(s)
- Daryl Shorter
- Menninger Department of Psychiatry and Behavioral Science, Baylor College of Medicine, 1977 Butler Blvd., Suite E4.400, Houston, TX 77030, USA
- MEDVAMC - 2002 Holcombe Blvd., Bldg 110, Room 229, Houston, TX 77030, USA
| | - Thomas R Kosten
- Menninger Department of Psychiatry and Behavioral Science, Baylor College of Medicine, 1977 Butler Blvd., Suite E4.400, Houston, TX 77030, USA
- MEDVAMC - 2002 Holcombe Blvd., Bldg 110, Room 229, Houston, TX 77030, USA
| |
Collapse
|
43
|
The atypical stimulant and nootropic modafinil interacts with the dopamine transporter in a different manner than classical cocaine-like inhibitors. PLoS One 2011; 6:e25790. [PMID: 22043293 PMCID: PMC3197159 DOI: 10.1371/journal.pone.0025790] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/11/2011] [Indexed: 11/19/2022] Open
Abstract
Modafinil is a mild psychostimulant with pro-cognitive and antidepressant effects. Unlike many conventional stimulants, modafinil has little appreciable potential for abuse, making it a promising therapeutic agent for cocaine addiction. The chief molecular target of modafinil is the dopamine transporter (DAT); however, the mechanistic details underlying modafinil's unique effects remain unknown. Recent studies suggest that the conformational effects of a given DAT ligand influence the magnitude of the ligand's reinforcing properties. For example, the atypical DAT inhibitors benztropine and GBR12909 do not share cocaine's notorious addictive liability, despite having greater binding affinity. Here, we show that the binding mechanism of modafinil is different than cocaine and similar to other atypical inhibitors. We previously established two mutations (W84L and D313N) that increase the likelihood that the DAT will adopt an outward-facing conformational state—these mutations increase the affinity of cocaine-like inhibitors considerably, but have little or opposite effect on atypical inhibitor binding. Thus, a compound's WT/mutant affinity ratio can indicate whether the compound preferentially interacts with a more outward- or inward-facing conformational state. Modafinil displayed affinity ratios similar to those of benztropine, GBR12909 and bupropion (which lack cocaine-like effects in humans), but far different than those of cocaine, β-CFT or methylphenidate. Whereas treatment with zinc (known to stabilize an outward-facing transporter state) increased the affinity of cocaine and methylphenidate two-fold, it had little or no effect on the binding of modafinil, benztropine, bupropion or GBR12909. Additionally, computational modeling of inhibitor binding indicated that while β-CFT and methylphenidate stabilize an “open-to-out” conformation, binding of either modafinil or bupropion gives rise to a more closed conformation. Our findings highlight a mechanistic difference between modafinil and cocaine-like stimulants and further demonstrate that the conformational effects of a given DAT inhibitor influence its phenomenological effects.
Collapse
|
44
|
Abstract
RATIONALE Neuroimaging techniques have led to significant advances in our understanding of the neurobiology of drug taking and the treatment of drug addiction in humans. Neuroimaging approaches provide a powerful translational approach that can link findings from humans and laboratory animals. OBJECTIVE This review describes the utility of neuroimaging toward understanding the neurobiological basis of drug taking and documents the close concordance that can be achieved among neuroimaging, neurochemical, and behavioral endpoints. RESULTS The study of drug interactions with dopamine and serotonin transporters in vivo has identified pharmacological mechanisms of action associated with the abuse liability of stimulants. Neuroimaging has identified the extended limbic system, including the prefrontal cortex and anterior cingulate, as important neuronal circuitry that underlies drug taking. The ability to conduct within-subject longitudinal assessments of brain chemistry and neuronal function has enhanced our efforts to document long-term changes in dopamine D2 receptors, monoamine transporters, and prefrontal metabolism due to chronic drug exposure. Dysregulation of dopamine function and brain metabolic changes in areas involved in reward circuitry have been linked to drug taking behavior, cognitive impairment, and treatment response. CONCLUSIONS Experimental designs employing neuroimaging should consider well-documented determinants of drug taking, including pharmacokinetic considerations, subject history, and environmental variables. Methodological issues to consider include limited molecular probes, lack of neurochemical specificity in brain activation studies, and the potential influence of anesthetics in animal studies. Nevertheless, these integrative approaches should have important implications for understanding drug taking behavior and the treatment of drug addiction.
Collapse
|
45
|
Brady KT, Gray KM, Tolliver BK. Cognitive enhancers in the treatment of substance use disorders: clinical evidence. Pharmacol Biochem Behav 2011; 99:285-94. [PMID: 21557964 DOI: 10.1016/j.pbb.2011.04.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/23/2011] [Accepted: 04/21/2011] [Indexed: 12/31/2022]
Abstract
Attenuation of drug reward has been the major focus of medication development in the addiction area to date. With the growth of research in the area of cognitive neuroscience, the importance of executive function and inhibitory cognitive control in addictive disorders is becoming increasingly apparent. An emerging strategy in the pharmacotherapy of addictions and other psychiatric disorders involves the use of medications that improve cognitive function. In particular, agents that facilitate inhibitory and attentional control, improve abstraction, planning and mental flexibility could be beneficial in the treatment of substance use disorders. Because there are multiple neurotransmitter systems involved in the regulation of cognitive function, agents from a number of drug classes have been tested. In particular, agents acting through the cholinergic, adrenergic and glutamatergic systems have shown potential for improving cognitive function in a number of psychiatric and neurologic disorders, but most of these agents have not been tested in the treatment of individuals with substance use disorders. This manuscript provides a review of clinical data supporting the use of the major classes of cognitive enhancing agents in substance use disorders. Agents that have shown promise in cognitive enhancement in other disorders, and have a theoretical or mechanistic rationale for application to substance use disorders are also highlighted.
Collapse
Affiliation(s)
- Kathleen T Brady
- Medical University of South Carolina, Department of Psychiatry, 67 President Street, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
46
|
Uys JD, Reissner KJ. Glutamatergic Neuroplasticity in Cocaine Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:367-400. [DOI: 10.1016/b978-0-12-385506-0.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Sugarman DE, Poling J, Sofuoglu M. The safety of modafinil in combination with oral ∆9-tetrahydrocannabinol in humans. Pharmacol Biochem Behav 2010; 98:94-100. [PMID: 21176784 DOI: 10.1016/j.pbb.2010.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 02/07/2023]
Abstract
Marijuana (cannabis) is the most widely used illicit substance globally, and cannabis use is associated with a range of adverse consequences. Currently, no medications have been proven to be effective for the treatment of cannabis addiction. The goals of this study were to examine the safety and efficacy of a potential treatment medication, modafinil, in combination with oral ∆9-tetrahydrocannabinol (THC). Twelve male and female occasional cannabis users participated in an outpatient double-blind, placebo-controlled, crossover study. Across four sessions, participants were randomly assigned to a sequence of four oral treatments: (1) 400 mg modafinil+placebo, (2) 15 mg THC+placebo, (3) 400 mg modafinil+15 mg THC, or (4) placebo+placebo. Outcome measures included heart rate, blood pressure, performance on the Rapid Visual Information Processing (RVIP), and the Hopkins Verbal Learning Test (HVLT), and subjective measures. Oral THC increased heart rate, and produced increased subjective ratings of feeling "high" and "sedated," as well as increased ratings of euphoria. Modafinil alone increased the Profiles of Mood States (POMS) subscales of vigor and tension. These findings support the safety of modafinil in combination with THC. The effects of modafinil in combination with a range of doses of THC need to be determined in future studies.
Collapse
Affiliation(s)
- Dawn E Sugarman
- Yale University School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, USA.
| | | | | |
Collapse
|
48
|
Cao J, Prisinzano TE, Okunola OM, Kopajtic T, Shook M, Katz JL, Newman AH. Structure-Activity Relationships at the Monoamine Transporters for a Novel Series of Modafinil (2-[(diphenylmethyl)sulfinyl]acetamide) Analogues. ACS Med Chem Lett 2010; 2:48-52. [PMID: 21344069 DOI: 10.1021/ml1002025] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A series of modafinil (1) analogues was synthesized wherein 1) para-halo-substitutents were added to the aryl rings, 2) the sulfoxide function was removed, and 3) the primary amide group was replaced with secondary and tertiary amides and amines to investigate the effects of these chemical modifications on DAT, SERT and NET binding. In addition, the locomotor-stimulant effects in mice of (±)-modafinil (1), its R- and S-enantiomers and its para-chloro sulfinylacetamide analogue (5c) were compared to those of cocaine.
Collapse
Affiliation(s)
| | - Thomas E. Prisinzano
- Department of Medicinal Chemistry, University of Kansas, 4070 Malott Hall, Lawrence, Kansas 66045-7582, United States
| | | | | | | | | | | |
Collapse
|
49
|
Newman JL, Negus SS, Lozama A, Prisinzano TE, Mello NK. Behavioral evaluation of modafinil and the abuse-related effects of cocaine in rhesus monkeys. Exp Clin Psychopharmacol 2010; 18:395-408. [PMID: 20939643 PMCID: PMC3079571 DOI: 10.1037/a0021042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Modafinil is a central nervous system stimulant used to promote wakefulness, and it is being evaluated clinically as an agonist medication for treating stimulant abuse. This is the first report of the effects of modafinil on the abuse-related effects of cocaine in nonhuman primates. The behavioral effects of modafinil were examined in three studies. First, the discriminative stimulus effects of modafinil (3.2-32 mg/kg) were evaluated in rhesus monkeys (Macaca mulatta) trained to discriminate either low (0.18 mg/kg, IM) or high (0.4 mg/kg, IM) doses of cocaine from saline. Modafinil dose-dependently substituted for cocaine in 6 of 7 monkeys. In the second study, the effects of chronically administered modafinil (32-56 mg/kg/day, IV) on food- and cocaine-maintained (0.001-0.1 mg/kg/inj) operant responding were examined. Modafinil was administered 3 times/hr for 23 hr/day to ensure stable drug levels. Chronic treatment with 32 mg/kg/day modafinil selectively reduced responding maintained by intermediate and peak reinforcing doses of cocaine, but responding maintained by higher doses of cocaine was unaffected. Food-maintained behavior did not change during chronic modafinil treatment. In a third study, modafinil (32 and 56 mg/kg/day, IV) was examined in a reinstatement model. Modafinil transiently increased responding during extinction. These findings indicate that modafinil shares discriminative stimulus effects with cocaine and selectively reduces responding maintained by reinforcing doses of cocaine. In addition, modafinil reinstated cocaine-seeking behavior, which may reflect its cocaine-like discriminative stimulus effects. These data support clinical findings and indicate that these preclinical models may be useful for predicting the effectiveness of agonist medications for drug abuse treatment.
Collapse
Affiliation(s)
- Jennifer L Newman
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
50
|
Reichel CM, See RE. Modafinil effects on reinstatement of methamphetamine seeking in a rat model of relapse. Psychopharmacology (Berl) 2010; 210:337-46. [PMID: 20352413 PMCID: PMC3076899 DOI: 10.1007/s00213-010-1828-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 03/06/2010] [Indexed: 11/27/2022]
Abstract
RATIONALE Modafinil (Provigil) is a wake-promoting drug characterized by cognitive enhancing abilities. Recent clinical data have supported the use of modafinil for treatment of chronic psychostimulant addiction and relapse prevention. MATERIALS AND METHODS We used an intravenous methamphetamine (meth) self-administration procedure to assess the dose-dependent effects of modafinil on reinstatement following abstinence and after extinction on conditioned-cue and meth-primed reinstatement of meth seeking. RESULTS Modafinil attenuated active lever responding in multiple reinstatement conditions-context-induced, conditioned cue, and meth prime. The most pronounced and consistent effect was on meth-primed reinstatement, and modafinil did not reinstate meth seeking when tested alone. DISCUSSION These findings support clinical findings in humans that modafinil may be an effective therapeutic agent for the prevention of relapse in abstinent meth users.
Collapse
Affiliation(s)
- Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|