1
|
Gale A, Kelly M, Belfield JB, Williams N, Fisher M, Guarraci FA, Stokes JA. Prepubescent Electronic Cigarette Exposure Affects Sexual Motivation and Puberty in Female But Not Male Long-Evans Rats. Nicotine Tob Res 2024; 26:1463-1471. [PMID: 38160709 DOI: 10.1093/ntr/ntad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION A method for delivering vaporized nicotine to animals has been developed using e-cigarette devices. The present experiment was designed to measure the effects of e-cigarette nicotine on pubertal onset and development of reproductive behavior in female and male Long-Evans rats. AIM AND METHODS Rats received daily 10-min sessions of electronic-cigarette vaporized nicotine (5% Virginia Tobacco JUUL Pods) or room air in a whole-body exposure chamber (postnatal day 28-31). Pubertal onset was monitored daily (ie, vaginal opening in females, preputial separation in males). Two weeks later, rats were tested for sexual motivation using the partner-preference paradigm, whereby subjects were given the opportunity to approach either a sexual partner or a same-sex social partner. Four weeks later, partner preference was assessed again, 10 min after rats were re-exposed to their same prepubertal treatment. RESULTS We found that prepubescent electronic-cigarette vaporized nicotine disrupted puberty and sexual motivation in female but not male rats. In vaped females, vaginal opening was delayed and less time was spent with the male stimulus compared to room-air controls. In contrast, no effect of e-cigarette vapor was observed on pubertal onset or on any measures of sexual behavior in male rats. No effects were observed in either female or male rats on the second partner-preference test. CONCLUSIONS Prepubescent vaporized nicotine affected the development of reproductive physiology and behavior in female rats but not in male rats, whereas an additional acute exposure to nicotine vapor had no effect in either female or male adult rats. IMPLICATIONS Given the prevalence of increasingly younger users, more animal research is needed to explore the effects of e-cigarette smoking on multiple developmental systems including reproductive physiology and behavior. This model could be useful in exploring multiple behavioral and physiological endpoints in both sexes. Adjustments to the duration of exposure and control conditions will be necessary for future experiments to best model human use.
Collapse
Affiliation(s)
- Amanda Gale
- Department of Psychology, Southwestern University, Georgetown, TX, USA
| | - Megan Kelly
- Department of Psychology, Southwestern University, Georgetown, TX, USA
| | | | - Natalie Williams
- Department of Psychology, Southwestern University, Georgetown, TX, USA
| | - Mila Fisher
- Department of Psychology, Southwestern University, Georgetown, TX, USA
| | - Fay A Guarraci
- Department of Psychology, Southwestern University, Georgetown, TX, USA
| | - Jennifer A Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, USA
| |
Collapse
|
2
|
Durbin DJ, King JM, Stairs DJ. Behavioral Effects of Vaporized Delta-8 Tetrahydrocannabinol, Cannabidiol, and Mixtures in Male Rats. Cannabis Cannabinoid Res 2024; 9:601-611. [PMID: 36802211 DOI: 10.1089/can.2022.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Background: The popularity of delta-8 tetrahydrocannabinol (THC) and cannabidiol (CBD) products has seen a sharp increase in use during recent years. Despite the rise in use of these minor cannabinoids, there are little to no pre-clinical behavioral data on their effects, with most pre-clinical cannabis research focusing on the behavioral effects of delta-9 THC. The current experiments aimed to characterize the behavioral effects of delta-8 THC, CBD, and mixtures of these two drugs using a whole-body vapor exposure route of administration in male rats. Methods: Rats were exposed to vapor that contained different concentrations of delta-8 THC, CBD, or CBD/delta-8 THC mixtures during 10 min of exposure. Following 10 min of vapor exposure, locomotor behavior was monitored, or the warm-water tail withdrawal assay was conducted to measure the acute analgesic effects of the vapor exposure. Results: CBD and CBD/delta-8 THC mixtures resulted in a significant increase in locomotion across the entire session. Although delta-8 THC alone had no significant effect on locomotion across the session, the 10 mg concentration of delta-8 THC had a hyperlocomotion effect in the first 30 min of the session followed by a hypolocomotor effect later in the session. In the tail withdrawal assay, a 3/1 mixture of CBD/delta-8 THC resulted in an immediate analgesic effect compared to vehicle vapor. Finally, immediately following vapor exposure, all drugs had a hypothermic effect on body temperature compared to vehicle. Conclusion: This experiment is the first to characterize the behavioral effects of vaporized delta-8 THC, CBD, and CBD/delta-8 THC in male rats. While data were generally congruent with previous research investigating delta-9 THC, future studies should explore abuse liability and validate plasma blood concentrations of these drugs following administration through whole-body vapor exposure.
Collapse
Affiliation(s)
- Darby J Durbin
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| | - Julia M King
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
3
|
McNealy KR, Weyrich L, Bevins RA. The co-use of nicotine and prescription psychostimulants: A review of their behavioral and neuropharmacological interactions. Drug Alcohol Depend 2023; 248:109906. [PMID: 37216808 PMCID: PMC10361216 DOI: 10.1016/j.drugalcdep.2023.109906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Nicotine is commonly co-used with other psychostimulants. These high co-use rates have prompted much research on interactions between nicotine and psychostimulant drugs. These studies range from examination of illicitly used psychostimulants such as cocaine and methamphetamine to prescription psychostimulants used to treat attention deficit hyperactivity disorder (ADHD) such as methylphenidate (Ritalin™) and d-amphetamine (active ingredient of Adderall™). However, previous reviews largely focus on nicotine interactions with illicitly used psychostimulants with sparse mention of prescription psychostimulants. The currently available epidemiological and laboratory research, however, suggests high co-use between nicotine and prescription psychostimulants, and that these drugs interact to modulate use liability of either drug. The present review synthesizes epidemiological and experimental human and pre-clinical research assessing the behavioral and neuropharmacological interactions between nicotine and prescription psychostimulants that may contribute to high nicotine-prescription psychostimulant co-use. METHODS We searched databases for literature investigating acute and chronic nicotine and prescription psychostimulant interactions. Inclusion criteria were that participants/subjects had to experience nicotine and a prescription psychostimulant compound at least once in the study, in addition to assessment of their interaction. RESULTS AND CONCLUSIONS Nicotine clearly interacts with d-amphetamine and methylphenidate in a variety of behavioral tasks and neurochemical assays assessing co-use liability across preclinical, clinical, and epidemiological research. The currently available research suggests research gaps examining these interactions in women/female rodents, in consideration of ADHD symptoms, and how prescription psychostimulant exposure influences later nicotine-related outcomes. Nicotine has been less widely studied with alternative ADHD pharmacotherapy bupropion, but we also discuss this research.
Collapse
Affiliation(s)
- Kathleen R McNealy
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE68588-0308, USA.
| | - Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Ln, Boys Town, NE68010, USA; Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE687178, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE68588-0308, USA
| |
Collapse
|
4
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
5
|
Dandi E, Spandou E, Tata DA. Investigating the role of environmental enrichment initiated in adolescence against the detrimental effects of chronic unpredictable stress in adulthood: Sex-specific differences in behavioral and neuroendocrinological findings. Behav Processes 2022; 200:104707. [PMID: 35842198 DOI: 10.1016/j.beproc.2022.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Environmental Enrichment (EE) improves cognitive function and enhances brain plasticity, while chronic stress increases emotionality, impairs learning and memory, and has adverse effects on brain anatomy and biochemistry. We explored the beneficial role of environmental enrichment initiated in adolescence against the negative outcomes of Chronic Unpredictable Stress (CUS) during adulthood on emotional behavior, cognitive function, as well as somatic and neuroendocrine markers in both sexes. Adolescent Wistar rats housed either in enriched or standard housing conditions for 10 weeks. On postnatal day 66, a subgroup from each housing condition was daily exposed to a 4-week stress protocol. Following stress, adult rats underwent behavioral testing to evaluate anxiety, exploration/locomotor activity, depressive-like behavior and spatial learning/memory. Upon completion of behavioral testing, animals were exposed to a 10-m stressful event to test the neuroendocrine response to acute stress. CUS decreased body weight gain and increased adrenal weight. Some stress-induced behavioral adverse effects were sex-specific since learning impairments were limited to males while depressive-like behavior to females. EE housing protected against CUS-related behavioral deficits and body weight loss. Exposure to CUS affected the neuroendocrine response of males to acute stress as revealed by the increased corticosterone levels. Our findings highlight the significant role of EE in adolescence as a protective factor against the negative effects of stress and underline the importance of inclusion of both sexes in animal studies.
Collapse
Affiliation(s)
- Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
6
|
Noschang C, Lampert C, Krolow R, de Almeida RMM. Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology (Berl) 2021; 238:927-947. [PMID: 33606060 DOI: 10.1007/s00213-021-05777-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Adolescence is known for its high level of risk-taking, and neurobiological alterations during this period may predispose to psychoactive drug initiation and progression into more severe use patterns. Stress is a risk factor for drug consumption, and post-weaning social isolation increases drug self-administration in rodents. This review aimed to provide an overview of the effects of adolescent social isolation on cocaine, amphetamine and nicotine use-related behaviours, highlighting the specific period when animals were submitted to stress and these drugs. We wondered if there was a specific period during adolescence that isolation stress would increase drug use vulnerability. A total of 323 publications from the Scopus, Web of Science and PubMed (Medline) electronic databases were identified using the words "social isolation" and "adolescence" and "drug" or "cocaine" or "amphetamine" or "nicotine", resulting in 24 articles after analyses criteria following the PRISMA statement. The main points raised were social isolation during adolescence increased cocaine self-administration, amphetamine and nicotine locomotor activity. We did not observe a pattern of a specific moment during the adolescent period that could lead to an increased vulnerability to drug use. The precise conditions under which adolescent social stress alters drug use parameters are complex and likely depend on several factors.
Collapse
Affiliation(s)
- C Noschang
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - C Lampert
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Krolow
- Biochemistry Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R M M de Almeida
- Institute of Psychology, Laboratory of Experimental Psychology, Neuroscience and Behavior, Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Room 216, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
7
|
Sampedro-Piquero P, Ladrón de Guevara-Miranda D, Pavón FJ, Serrano A, Suárez J, Rodríguez de Fonseca F, Santín LJ, Castilla-Ortega E. Neuroplastic and cognitive impairment in substance use disorders: a therapeutic potential of cognitive stimulation. Neurosci Biobehav Rev 2019; 106:23-48. [DOI: 10.1016/j.neubiorev.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
|
8
|
Gong D, Zhao H, Liang Y, Chao R, Chen L, Yang S, Yu P. Differences in cocaine- and morphine-induced cognitive impairments and serum corticosterone between C57BL/6J and BALB/cJ mice. Pharmacol Biochem Behav 2019; 182:1-6. [DOI: 10.1016/j.pbb.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
|
9
|
Hirotsu C, Pedroni MN, Berro LF, Tufik S, Andersen ML. Nicotine and sleep deprivation: impact on pain sensitivity and immune modulation in rats. Sci Rep 2018; 8:13837. [PMID: 30218019 PMCID: PMC6138689 DOI: 10.1038/s41598-018-32276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/01/2018] [Indexed: 11/09/2022] Open
Abstract
Repeated nicotine administration has been associated with increased paradoxical sleep in rats and antinociceptive properties, whereas paradoxical sleep deprivation (PSD) elicits pronociceptive and inflammatory responses. Thus, we aimed to evaluate the effect of repeated nicotine administration and its withdrawal combined with PSD on pain sensitivity and inflammatory markers. Sixty adult male Wistar rats were subjected to repeated injections of saline (SAL) or nicotine (NIC) for 12 days or 7 days of nicotine followed by acute mecamylamine administration on day 8 to precipitate nicotine abstinence (ABST). On day 9, the animals were submitted to PSD for 72 h or remained in control condition (CTRL); on day 12, thermal pain threshold was assessed by the hot plate test. PSD significantly decreased the latency to paw withdrawal in all groups compared to their respective controls. ABST-PSD animals presented higher levels of interleukin (IL)-6 compared to all groups, except ABST-CTRL. After adjustment for weight loss, IL-6, IL-4 and tumor necrosis factor alpha, ABST-PSD was associated with the lowest pain threshold. Nicotine and IL-4 levels were predictors of higher pain threshold. Hyperalgesia induced by PSD prevailed over the antinociceptive action of nicotine, while the association between PSD and ABST synergistically increased IL-6 concentrations and decreased pain threshold.
Collapse
Affiliation(s)
- Camila Hirotsu
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Laís Fernanda Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, USA
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Levy Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Beloate LN, Coolen LM. Effects of Sexual Experience on Psychostimulant- and Opiate-Induced Behavior and Neural Plasticity in the Mesocorticolimbic Pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:249-270. [DOI: 10.1016/bs.irn.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
12
|
Stairs DJ, Ewin SE, Kangiser MM, Pfaff MN. Effects of environmental enrichment on d-amphetamine self-administration following nicotine exposure. Exp Clin Psychopharmacol 2017; 25:393-401. [PMID: 29048188 PMCID: PMC5654547 DOI: 10.1037/pha0000137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adolescent nicotine exposure has been shown to lead to further psychostimulant use in adulthood. Previous preclinical research in rats has shown that environmental enrichment may protect against drug abuse vulnerability. The current study was designed to examine whether environmental enrichment can block the ability of adolescent nicotine exposure to increase d-amphetamine self-administration in adulthood. Male Sprague-Dawley rats were raised in either enriched conditions (ECs) or isolated conditions (ICs) and then injected with saline or nicotine (0.4 mg/kg, sc) for 7 days during adolescence. In adulthood rats were allowed to self-administer d-amphetamine under a fixed ratio (FR; 0, 0.006, 0.01, 0.02, 0.06, and 0.1 mg/kg/infusion) and progressive ratio (PR; 0, 0.006, 0.06, and 0.1 mg/kg/infusion) schedule of reinforcement. Nicotine-treated IC rats self-administered more d-amphetamine at 0.006, 0.01, and 0.02 mg/kg/infusion doses compared with their saline-treated IC counterparts regardless of the schedule maintaining behavior. This effect of nicotine was reversed in EC rats on a fixed ratio schedule. These findings indicate that environmental enrichment can limit the ability of adolescent nicotine exposure to increase vulnerability to other psychostimulant drugs, such as d-amphetamine. (PsycINFO Database Record
Collapse
|
13
|
Nucleus accumbens NMDA receptor activation regulates amphetamine cross-sensitization and deltaFosB expression following sexual experience in male rats. Neuropharmacology 2016; 101:154-64. [DOI: 10.1016/j.neuropharm.2015.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
|
14
|
Li X, Meng L, Huang K, Wang H, Li D. Environmental enrichment blocks reinstatement of ethanol-induced conditioned place preference in mice. Neurosci Lett 2015; 599:92-6. [DOI: 10.1016/j.neulet.2015.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/06/2015] [Accepted: 05/19/2015] [Indexed: 12/30/2022]
|
15
|
Mesa-Gresa P, Ramos-Campos M, Redolat R. Behavioral effects of different enriched environments in mice treated with the cholinergic agonist PNU-282987. Behav Processes 2013; 103:117-24. [PMID: 24321613 DOI: 10.1016/j.beproc.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 12/20/2022]
Abstract
Environmental enrichment is an experimental model in which rodents are housed in complex environments that favor lower levels of anxiety-like behavior. PNU-282987 (PNU) is a α7 nicotinic acetylcholine receptor agonist with beneficial effects on learning though its effects on anxiety are unclear. Our main aim was to carry out a study of its effects in NMRI (n=96) mice reared in different environments: environmental enrichment (EE), Marlau™ cages (MC) and standard environment (SE). After a 4-month period, mice received acute treatment of PNU (2.5, 5 and 10mg/kg) and were evaluated in the elevated plus-maze (EPM) and hole-board (HB). In the EPM, both EE and MC reared mice showed an increase in percentage of entries into open arms while those from EE group differed from SE in time spent on open arms. Mice treated with 2.5 and 10 mg/kg of PNU devoted less time to rearing into open arms. In the HB task, MC mice displayed higher exploratory activity reflected in more head-dips (HD) during the first minute than EE and SE, whereas EE displayed low exploration levels reflected in total HD (5 min). Further research is needed in order to clarify the behavioral effects of this nicotinic agonist in interaction with different environmental conditions. This article is part of a Special Issue entitled: insert SI title.
Collapse
Affiliation(s)
- Patricia Mesa-Gresa
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Blasco Ibáñez, 21, 46010 Valencia, Spain.
| | - Marta Ramos-Campos
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Blasco Ibáñez, 21, 46010 Valencia, Spain.
| | - Rosa Redolat
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|