1
|
Banks ML. Environmental influence on the preclinical evaluation of substance use disorder therapeutics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:219-242. [PMID: 35341567 DOI: 10.1016/bs.apha.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Substance use disorders (SUD) develop as a result of complex interactions between the environment, the subject, and the drug of abuse. Preclinical basic research investigating each of these tripartite components of SUD individually has resulted in advancements in our fundamental knowledge regarding the progression from drug abuse to SUD and severe drug addiction and the underlying behavioral and neurobiological mechanisms. How these complex interactions between the environment, the subject, and the drug of abuse impact the effectiveness of candidate or clinically used medications for SUD has not been as extensively investigated. The focus of this chapter will address the current state of our knowledge how these environmental, subject, and pharmacological variables have been shown to impact candidate or clinical SUD medication evaluation in preclinical research using drug self-administration procedures as the primary dependent measure. The results discussed in this chapter highlight the importance of considering environmental variables such as the schedule of reinforcement, concurrent availability of alternative nondrug reinforcers, and experimental housing conditions in the context of SUD therapeutic evaluation. The thesis of this chapter is that improved understanding of environmental variables in the context of SUD research will facilitate the utility of preclinical drug self-administration studies in the evaluation and development of candidate SUD therapeutics.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Negus SS, Banks ML. Confronting the challenge of failed translation in medications development for substance use disorders. Pharmacol Biochem Behav 2021; 210:173264. [PMID: 34461148 PMCID: PMC8418188 DOI: 10.1016/j.pbb.2021.173264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Affiliation(s)
- S S Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America.
| | - M L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
3
|
Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci 2020; 21:625-643. [PMID: 33024318 DOI: 10.1038/s41583-020-0378-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Critical features of human addiction are increasingly being incorporated into complementary animal models, including escalation of drug intake, punished drug seeking and taking, intermittent drug access, choice between drug and non-drug rewards, and assessment of individual differences based on criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Combined with new technologies, these models advanced our understanding of brain mechanisms of drug self-administration and relapse, but these mechanistic gains have not led to improvements in addiction treatment. This problem is not unique to addiction neuroscience, but it is an increasing source of disappointment and calls to regroup. Here we first summarize behavioural and neurobiological results from the animal models mentioned above. We then propose a reverse translational approach, whose goal is to develop models that mimic successful treatments: opioid agonist maintenance, contingency management and the community-reinforcement approach. These reverse-translated 'treatments' may provide an ecologically relevant platform from which to discover new circuits, test new medications and improve translation.
Collapse
|
4
|
Lile JA, Johnson AR, Banks ML, Hatton KW, Hays LR, Nicholson KL, Poklis JL, Rayapati AO, Rush CR, Stoops WW, Negus SS. Pharmacological validation of a translational model of cocaine use disorder: Effects of d-amphetamine maintenance on choice between intravenous cocaine and a nondrug alternative in humans and rhesus monkeys. Exp Clin Psychopharmacol 2020; 28:169-180. [PMID: 31259593 PMCID: PMC6938584 DOI: 10.1037/pha0000302] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drug self-administration procedures are the gold standard for laboratory research to study mechanisms of drug use disorders and evaluate candidate medications. However, preclinical-to-clinical translation has been hampered by a lack of coordination. To address this limitation, we previously developed homologous intravenous (IV) cocaine choice self-administration procedures in rhesus monkeys and humans, and then demonstrated their functional equivalence. The present studies sought to determine the sensitivity of these procedures to d-amphetamine maintenance. Three (N = 3) rhesus monkeys with histories of cocaine self-administration and 16 (N = 16) humans with cocaine use disorder completed the studies. Monkeys were maintained on IV d-amphetamine (0, 0.019, 0.037 and 0.074 mg/kg/h), and then completed 7 sessions during each condition in which they completed 9 choice trials to receive 0.14 mg/kg/injection IV cocaine (corresponding to 10 mg/70 kg in humans) or 10 food pellets under independent, concurrent progressive-ratio schedules. Humans were maintained on oral extended release d-amphetamine (0, 30 and 60 mg/day, corresponding to the lowest 3 doses in monkeys) and participated in 12 sessions in which they chose money ($6.00) or IV cocaine (0, 3, 10 and 30 mg/70 kg). Blood samples were taken to compare d-amphetamine plasma levels across species. In monkeys and humans, d-amphetamine reduced the number of cocaine choices and produced comparable blood levels at equivalent daily doses. d-Amphetamine had similar efficacy, though lower potency, at reducing choice for an equivalent cocaine dose in monkeys relative to humans. These coordinated studies support the utility of these procedures as a translational model for cocaine use disorder. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Joshua A Lile
- Department of Behavioral Science, University of Kentucky College of Medicine
| | - Amy R Johnson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center
| | - Kevin W Hatton
- Department of Anesthesiology, University of Kentucky College of Medicine
| | - Lon R Hays
- Department of Psychiatry, University of Kentucky College of Medicine
| | - Katherine L Nicholson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center
| | - Abner O Rayapati
- Department of Psychiatry, University of Kentucky College of Medicine
| | - Craig R Rush
- Department of Behavioral Science, University of Kentucky College of Medicine
| | - William W Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center
| |
Collapse
|
5
|
Beckmann JS, Chow JJ, Hutsell BA. Cocaine-associated decision-making: Toward isolating preference. Neuropharmacology 2019; 153:142-152. [PMID: 30905612 PMCID: PMC7716654 DOI: 10.1016/j.neuropharm.2019.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023]
Abstract
Ever-increasing evidence suggests that substance use disorder is mediated by decision-making processes, and as such, providing nondrug alternatives can shift maladaptive preferences away from drug reinforcers, such as cocaine. Of note, a recent hypothesis suggests that preference for cocaine is simply a byproduct of cocaine intake, such that the 'direct' effects of cocaine weaken the impact of non-drug alternatives while measuring choice. Conversely, existing quantitative theories of decision-making suggest preference is determined by various dimensions of concurrent reinforcers that in turn determine the relative value of available alternatives. Toward teasing apart the conflicting theories above, we developed a novel drug-choice procedure to control for reinforcer frequency and magnitude (two reinforcer dimensions well known to influence preference) that consequently controls for overall cocaine intake. As predicted by quantitative choice theory, results suggest that cocaine intake and preference are dissociable while measuring choice, with reinforcer frequency and magnitude having independent influence on the relative value of choice alternatives. Furthermore, we demonstrate that the choice procedure is sensitive to various manipulations known to alter cocaine reinforcement, all while keeping cocaine intake constant. Finally, the results point to the process of economic substitution as an important avenue of future neurobehavioral investigation toward the improvement of behavioral and pharmacological therapies for substance use disorders. Overall, the proposed choice procedure will allow for improved isolation of the neurobehavioral processes that mediate drug-associated decision-making in future studies.
Collapse
Affiliation(s)
- Joshua S Beckmann
- Department of Psychology, University of Kentucky, 741 S. Limestone, Lexington, KY, 40536, USA.
| | - Jonathan J Chow
- Department of Psychology, University of Kentucky, 741 S. Limestone, Lexington, KY, 40536, USA.
| | - Blake A Hutsell
- Department of Psychology, Eastern Carolina University, Rawl 222, Mail Stop 565, Greenville, NC, 27858, USA.
| |
Collapse
|
6
|
Gunter BW, Gould RW, Bubser M, McGowan KM, Lindsley CW, Jones CK. Selective inhibition of M 5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats. Addict Biol 2018; 23:1106-1116. [PMID: 29044937 DOI: 10.1111/adb.12567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
Cocaine use disorder (CUD) remains a debilitating health problem in the United States for which there are no Food and Drug Administration-approved treatment options. Accumulating anatomical and electrophysiological evidence indicates that the muscarinic acetylcholine receptor (mAChR) subtype 5 (M5 ) plays a critical role in the regulation of the mesolimbic dopaminergic reward circuitry, a major site of action for cocaine and other psychostimulants. In addition, M5 knockout mice exhibit reduced cocaine self-administration behaviors with no differences in sugar pellet-maintained responding relative to wild-type mice. These findings suggest that selective inhibition of M5 mAChR may provide a novel pharmacological approach for targeting CUD. Recently, we reported the synthesis and characterization of ML375, a selective negative allosteric modulator (NAM) for the rat and human M5 mAChR with optimized pharmacokinetic properties for systemic dosing in rodents. In the present study, male Sprague-Dawley rats were trained to self-administer intravenous cocaine (0.1-0.75 mg/kg/infusion) under a 10-response fixed ratio or a progressive ratio schedule of reinforcement. Under both schedules of reinforcement, ML375 produced dose-related reductions in cocaine self-administration. ML375 also modestly reduced sugar pellet-maintained responding on the 10-response, fixed ratio schedule but had no effect under a progressive ratio schedule of reinforcement. Further, ML375 did not affect general motor output as assessed by a rotarod test. Collectively, these results provide the first demonstration that selective inhibition of M5 using the M5 NAM ML375 can attenuate both the reinforcing effects and the relative strength of cocaine and suggest that M5 NAMs may represent a promising, novel treatment approach for CUD.
Collapse
Affiliation(s)
- Barak W. Gunter
- Department of Pharmacology; Vanderbilt University; Nashville TN USA
- Vanderbilt Center for Neuroscience Drug Discovery; Vanderbilt University; Nashville TN USA
| | - Robert W. Gould
- Department of Pharmacology; Vanderbilt University; Nashville TN USA
- Vanderbilt Center for Neuroscience Drug Discovery; Vanderbilt University; Nashville TN USA
| | - Michael Bubser
- Department of Pharmacology; Vanderbilt University; Nashville TN USA
- Vanderbilt Center for Neuroscience Drug Discovery; Vanderbilt University; Nashville TN USA
| | - Kevin M. McGowan
- Department of Chemistry; Vanderbilt University; Nashville TN USA
- Vanderbilt Center for Neuroscience Drug Discovery; Vanderbilt University; Nashville TN USA
| | - Craig W. Lindsley
- Department of Pharmacology; Vanderbilt University; Nashville TN USA
- Department of Chemistry; Vanderbilt University; Nashville TN USA
- Vanderbilt Center for Neuroscience Drug Discovery; Vanderbilt University; Nashville TN USA
| | - Carrie K. Jones
- Department of Pharmacology; Vanderbilt University; Nashville TN USA
- Vanderbilt Center for Neuroscience Drug Discovery; Vanderbilt University; Nashville TN USA
| |
Collapse
|
7
|
Legakis LP, Bigbee JW, Negus SS. Lack of paclitaxel effects on intracranial self-stimulation in male and female rats: comparison to mechanical sensitivity. Behav Pharmacol 2018; 29:290-298. [PMID: 29369054 PMCID: PMC5854530 DOI: 10.1097/fbp.0000000000000378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paclitaxel is a cancer chemotherapy with adverse effects that include peripheral neuropathy, neuropathic pain, and depression of behavior and mood. In rodents, hypersensitive paw-withdrawal reflexes from mechanical stimuli serve as one common measure of paclitaxel-induced pain-related behavior. This study tested the hypothesis that paclitaxel would also depress rates of positively reinforced operant responding as a measure of pain-related behavioral depression. Male and female Sprague-Dawley rats were equipped with electrodes targeting the medial forebrain bundle, trained to lever press for electrical brain stimulation in an assay of intracranial self-stimulation (ICSS), and treated with four injections of varying paclitaxel doses (0.67, 2.0, or 6.0 mg/kg/injection×4 injections on alternate days). Mechanical sensitivity, body weight, and ICSS were evaluated before, during, and for 3 weeks after paclitaxel treatment. Paclitaxel doses sufficient to produce mechanical hypersensitivity did not reliably depress ICSS in male or female rats. Moreover, the degree of behavioral suppression in individual rats did not correlate with mechanical sensitivity. Paclitaxel treatment regimens commonly used to model chemotherapy-induced neuropathic pain in rats are not sufficient to depress ICSS.
Collapse
Affiliation(s)
| | - John W Bigbee
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
8
|
Perkins FN, Freeman KB. Pharmacotherapies for decreasing maladaptive choice in drug addiction: Targeting the behavior and the drug. Pharmacol Biochem Behav 2018; 164:40-49. [PMID: 28666892 PMCID: PMC5745300 DOI: 10.1016/j.pbb.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Abstract
Drug addiction can be conceptualized as a disorder of maladaptive decision making in which drugs are chosen at the expense of pro-social, nondrug alternatives. The study of decision making in drug addiction has focused largely on the role of impulsivity as a facilitator of addiction, in particular the tendency for drug abusers to choose small, immediate gains over larger but delayed outcomes (i.e., delay discounting). A parallel line of work, also focused on decision making in drug addiction, has focused on identifying the determinants underlying the choice to take drugs over nondrug alternatives (i.e., drug vs. nondrug choice). Both tracks of research have been valuable tools in the development of pharmacotherapies for treating maladaptive decision making in drug addiction, and a number of common drugs have been studied in both designs. However, we have observed that there is little uniformity in the administration regimens of potential treatments between the designs, which hinders congruence in the development of single treatment strategies to reduce both impulsive behavior and drug choice. The current review provides an overview of the drugs that have been tested in both delay-discounting and drug-choice designs, and focuses on drugs that reduced the maladaptive choice in both designs. Suggestions to enhance congruence between the findings in future studies are provided. Finally, we propose the use of a hybridized, experimental approach that may enable researchers to test the effectiveness of therapeutics at decreasing impulsive and drug choice in a single design.
Collapse
Affiliation(s)
- Frank N Perkins
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
9
|
Banks ML, Czoty PW, Negus SS. Utility of Nonhuman Primates in Substance Use Disorders Research. ILAR J 2017; 58:202-215. [PMID: 28531265 PMCID: PMC5886327 DOI: 10.1093/ilar/ilx014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
Substance use disorders (i.e., drug addiction) constitute a global and insidious public health issue. Preclinical biomedical research has been invaluable in elucidating the environmental, biological, and pharmacological determinants of drug abuse and in the process of developing innovative pharmacological and behavioral treatment strategies. For more than 70 years, nonhuman primates have been utilized as research subjects in biomedical research related to drug addiction. There are already several excellent published reviews highlighting species differences in both pharmacodynamics and pharmacokinetics between rodents and nonhuman primates in preclinical substance abuse research. Therefore, the aim of this review is to highlight three advantages of nonhuman primates as preclinical substance abuse research subjects. First, nonhuman primates offer technical advantages in experimental design compared to other laboratory animals that afford unique opportunities to promote preclinical-to-clinical translational research. Second, these technical advantages, coupled with the relatively long lifespan of nonhuman primates, allows for pairing longitudinal drug self-administration studies and noninvasive imaging technologies to elucidate the biological consequences of chronic drug exposure. Lastly, nonhuman primates offer advantages in the patterns of intravenous drug self-administration that have potential theoretical implications for both the neurobiological mechanisms of substance use disorder etiology and in the drug development process of pharmacotherapies for substance use disorders. We conclude with potential future research directions in which nonhuman primates would provide unique and valuable insights into the abuse of and addiction to novel psychoactive substances.
Collapse
Affiliation(s)
- Matthew L Banks
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| | - Paul W Czoty
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| | - Sidney S Negus
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| |
Collapse
|
10
|
Preclinical Models for Assessment of Antidepressant Abuse Potential. CURRENT SEXUAL HEALTH REPORTS 2017. [DOI: 10.1007/s11930-017-0128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Abstract
An increasing emphasis has been placed on the development and use of animal models of addiction that capture defining features of human drug addiction, including escalation/binge drug use, enhanced motivation for the drug, preference for the drug over other reward options, use despite negative consequences, and enhanced drug-seeking/relapse vulnerability. The need to examine behavior in both males and females has also become apparent given evidence demonstrating that the addiction process occurs differently in males and females. This review discusses the procedures that are used to model features of addiction in animals, as well as factors that influence their development. Individual differences are also discussed, with a particular focus on sex differences. While no one procedure consistently produces all characteristics, different models have been developed to focus on certain characteristics. A history of escalating/binge patterns of use appears to be critical for producing other features characteristic of addiction, including an enhanced motivation for the drug, enhanced drug seeking, and use despite negative consequences. These characteristics tend to emerge over abstinence, and appear to increase rather than decrease in magnitude over time. In females, these characteristics develop sooner during abstinence and/or following less drug exposure as compared to males, and for psychostimulant addiction, may require estradiol. Although preference for the drug over other reward options has been demonstrated in non-human primates, it has been more difficult to establish in rats. Future research is needed to define the parameters that optimally induce each of these features of addiction in the majority of animals. Such models are essential for advancing our understanding of human drug addiction and its treatment in men and women.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
12
|
Thomsen M, Barrett AC, Butler P, Negus SS, Caine SB. Effects of Acute and Chronic Treatments with Dopamine D 2 and D 3 Receptor Ligands on Cocaine versus Food Choice in Rats. J Pharmacol Exp Ther 2017; 362:161-176. [PMID: 28473458 DOI: 10.1124/jpet.117.241141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/20/2017] [Indexed: 02/01/2023] Open
Abstract
Dopamine D3 receptor ligands are potential medications for psychostimulant addiction. Medication assessment may benefit from preclinical studies that evaluate chronic medication effects on choice between an abused drug and an alternative, nondrug reinforcer. This study compared acute and chronic effects of dopamine D2- and D3-preferring ligands on choice between intravenous cocaine and palatable food in rats. Under baseline conditions, cocaine maintained dose-dependent increases in cocaine choice and reciprocal decreases in food choice. Acutely, the D2 agonist R-(-)-norpropylapomorphine (NPA) and antagonist L-741,626 [3-[[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole] produced leftward and rightward shifts in cocaine dose-effect curves, respectively, whereas the partial agonist terguride had no effect. All three drugs dose-dependently decreased food-maintained responding. Chronically, the effects of R-(-)-norpropylapomorphine and L-741,626 on cocaine self-administration showed marked tolerance, whereas suppression of food-reinforced behavior persisted. Acute effects of the D3 ligands were less systematic and most consistent with nonselective decreases in cocaine- and food-maintained responding. Chronically, the D3 agonist PF-592,379 [5-[(2R,5S)-5-methyl-4-propylmorpholin-2-yl]pyridin-2-amine] increased cocaine choice, whereas an intermediate dose of the D3 antagonist PG01037 [N-[(E)-4-[4-(2,3-dichlorophenyl)piperazin-1-yl]but-2-enyl]-4-pyridin-2-ylbenzamide] produced a therapeutically desirable decrease in cocaine choice early in treatment; however, tolerance to this effect developed, and lower and higher doses were ineffective. D3 ligands failed to significantly modify total cocaine intake but caused persistent decreases in food intake. Thus, D2-and D3-preferring ligands showed distinct profiles, consistent with different pharmacological actions. In addition, these results highlight the role of acute versus chronic treatment as a determinant of test drug effects. With the possible exception of the D3 antagonist PG01037, no ligand was promising in terms of cocaine addiction treatment.
Collapse
Affiliation(s)
- Morgane Thomsen
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - Andrew C Barrett
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - Paul Butler
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - S Stevens Negus
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - S Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| |
Collapse
|
13
|
Negus SS, Banks ML. Modulation of drug choice by extended drug access and withdrawal in rhesus monkeys: Implications for negative reinforcement as a driver of addiction and target for medications development. Pharmacol Biochem Behav 2017; 164:32-39. [PMID: 28442370 DOI: 10.1016/j.pbb.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 11/24/2022]
Abstract
Chronic drug exposure is hypothesized to recruit negative reinforcement processes that increase the magnitude and alter the mechanisms of drug reinforcement. Candidate substrates of negative reinforcement include increased signaling via stress-related neurotransmitters such as corticotropin releasing factor (CRF, acting at CRF receptors) or dynorphin (acting at kappa opioid receptors) and/or decreased signaling via reward-related neurotransmitters such as dopamine. Determinants of drug reinforcement can be examined with choice procedures, in which subjects choose between a drug of interest (e.g. heroin or cocaine) and a non-drug alternative reinforcer (e.g. food). This review summarizes evidence collected from studies of drug choice in rhesus monkeys to address the negative reinforcement hypothesis. In monkeys choosing between heroin and food, chronic heroin exposure and subsequent withdrawal produces a robust increase in heroin choice. This withdrawal-associated increase in heroin choice is blocked by morphine and by other mu opioid agonists used to treat opioid use disorder (methadone, buprenorphine); however, withdrawal-associated increases in heroin choice are not reliably blocked by antagonists of CRF or kappa opioid receptors or by an indirect dopamine agonist. In monkeys choosing between cocaine and food, chronic cocaine exposure and withdrawal fail to increase cocaine choice or alter sensitivity of cocaine choice to treatment with candidate therapeutics including an indirect dopamine agonist and a kappa opioid receptor antagonist. These results support a role for negative reinforcement in self-administration of heroin but not cocaine. The constellation of neurobiological changes that constitutes the negative reinforcing stimulus in opioid-dependent rhesus monkeys remains to be determined.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
14
|
Repeated 7-Day Treatment with the 5-HT 2C Agonist Lorcaserin or the 5-HT 2A Antagonist Pimavanserin Alone or in Combination Fails to Reduce Cocaine vs Food Choice in Male Rhesus Monkeys. Neuropsychopharmacology 2017; 42:1082-1092. [PMID: 27857126 PMCID: PMC5506793 DOI: 10.1038/npp.2016.259] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/27/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022]
Abstract
Cocaine use disorder is a global public health problem for which there are no Food and Drug Administration-approved pharmacotherapies. Emerging preclinical evidence has implicated both serotonin (5-HT) 2C and 2A receptors as potential mechanisms for mediating serotonergic attenuation of cocaine abuse-related neurochemical and behavioral effects. Therefore, the present study aim was to determine whether repeated 7-day treatment with the 5-HT2C agonist lorcaserin (0.1-1.0 mg/kg per day, intramuscular; 0.032-0.1 mg/kg/h, intravenous) or the 5-HT2A inverse agonist/antagonist pimavanserin (0.32-10 mg/kg per day, intramuscular) attenuated cocaine reinforcement under a concurrent 'choice' schedule of cocaine and food availability in rhesus monkeys. During saline treatment, cocaine maintained a dose-dependent increase in cocaine vs food choice. Repeated pimavanserin (3.2 mg/kg per day) treatments significantly increased small unit cocaine dose choice. Larger lorcaserin (1.0 mg/kg per day and 0.1 mg/kg/h) and pimavanserin (10 mg/kg per day) doses primarily decreased rates of operant behavior. Coadministration of ineffective lorcaserin (0.1 mg/kg per day) and pimavanserin (0.32 mg/kg per day) doses also failed to significantly alter cocaine choice. These results suggest that neither 5-HT2C receptor activation nor 5-HT2A receptor blockade are sufficient to produce a therapeutic-like decrease in cocaine choice and a complementary increase in food choice. Overall, these results do not support the clinical utility of 5-HT2C agonists and 5-HT2A inverse agonists/antagonists alone or in combination as candidate anti-cocaine use disorder pharmacotherapies.
Collapse
|