1
|
Kurtin DL, Prabhu AM, Hassan Q, Groen A, Amer MJ, Lingford-Hughes A, Paterson LM. Differences in fMRI-based connectivity during abstinence or interventions between heroin-dependent individuals and healthy controls. Neurosci Biobehav Rev 2025; 172:106116. [PMID: 40122357 DOI: 10.1016/j.neubiorev.2025.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The substantial personal, societal, and economic impacts of opioid addiction drive research investigating how opioid addiction affects the brain, and whether therapies attenuate addiction-related metrics of brain function. Evaluating the connectivity between brain regions is a useful approach to characterise the effects of opioid addiction on the brain. This work is a systematic narrative review of studies investigating the effect of abstinence or interventions on connectivity in people who are dependent on heroin (HD) and healthy controls (HC). We found that HD typically showed weaker connectivity than HC between three functional networks: the Executive Control Network, Default Mode Network, and the Salience Network. Abstinence and Transcranial Magnetic Stimulation (TMS) both attenuated differences in connectivity between HD and HC, often by strengthening connectivity in HD. We observed that increased connectivity due to abstinence or TMS consistently related to decreased craving/risk of relapse. Using these findings, we present an "urge and action framework" relating therapeutic factors contributing to craving/relapse, connectivity results, and neurobiological models of HD. To inform future research, we critically assessed the impact of study design and analysis methods on study results. We conclude that the weaker between-network connectivity in HD and HC and its relationship to craving/relapse merits further exploration as a biomarker and target for therapeutic interventions.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Division of Psychiatry, Imperial College London, London, UK; Division of Brain Sciences, Imperial College London, London, UK.
| | | | - Qasim Hassan
- Addictions Recovery Community Hillingdon, Uxbridge, London, UK
| | - Alissa Groen
- Division of Psychiatry, Imperial College London, London, UK
| | - Matthew J Amer
- Division of Psychiatry, Imperial College London, London, UK
| | | | | |
Collapse
|
2
|
Sullivan KA, Kainer D, Lane M, Cashman M, Miller JI, Garvin MR, Townsend A, Quach BC, Willis C, Kruse P, Gaddis NC, Mathur R, Corradin O, Maher BS, Scacheri PC, Sanchez-Roige S, Palmer AA, Troiani V, Chesler EJ, Kember RL, Kranzler HR, Justice AC, Xu K, Aouizerat BE, Hancock DB, Johnson EO, Jacobson DA. Multiomic Network Analysis Identifies Dysregulated Neurobiological Pathways in Opioid Addiction. Biol Psychiatry 2024:S0006-3223(24)01781-5. [PMID: 39615775 DOI: 10.1016/j.biopsych.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Opioid addiction is a worldwide public health crisis. In the United States, for example, opioids cause more drug overdose deaths than any other substance. However, opioid addiction treatments have limited efficacy, meaning that additional treatments are needed. METHODS To help address this problem, we used network-based machine learning techniques to integrate results from genome-wide association studies of opioid use disorder and problematic prescription opioid misuse with transcriptomic, proteomic, and epigenetic data from the dorsolateral prefrontal cortex of people who died of opioid overdose and control individuals. RESULTS We identified 211 highly interrelated genes identified by genome-wide association studies or dysregulation in the dorsolateral prefrontal cortex of people who died of opioid overdose that implicated the Akt, BDNF (brain-derived neurotrophic factor), and ERK (extracellular signal-regulated kinase) pathways, identifying 414 drugs targeting 48 of these opioid addiction-associated genes. Some of the identified drugs are approved to treat other substance use disorders or depression. CONCLUSIONS Our synthesis of multiomics using a systems biology approach revealed key gene targets that could contribute to drug repurposing, genetics-informed addiction treatment, and future discovery.
Collapse
Affiliation(s)
- Kyle A Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Matthew Lane
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - J Izaak Miller
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Michael R Garvin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Bryan C Quach
- RTI International, Research Triangle Park, North Carolina
| | - Caryn Willis
- RTI International, Research Triangle Park, North Carolina
| | - Peter Kruse
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee
| | | | - Ravi Mathur
- RTI International, Research Triangle Park, North Carolina
| | - Olivia Corradin
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Brion S Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California; Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California; Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Vanessa Troiani
- Geisinger College of Health Sciences, Scranton, Pennsylvania
| | | | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut
| | - Ke Xu
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, New York
| | - Dana B Hancock
- RTI International, Research Triangle Park, North Carolina.
| | - Eric O Johnson
- RTI International, Research Triangle Park, North Carolina; Fellow Program, RTI International, Research Triangle Park, North Carolina.
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
3
|
Wei Q, Lin S, Xu S, Zou J, Chen J, Kang M, Hu J, Liao X, Wei H, Ling Q, Shao Y, Yu Y. Graph theoretical analysis and independent component analysis of diabetic optic neuropathy: A resting-state functional magnetic resonance imaging study. CNS Neurosci Ther 2024; 30:e14579. [PMID: 38497532 PMCID: PMC10945884 DOI: 10.1111/cns.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/06/2023] [Accepted: 12/14/2023] [Indexed: 03/19/2024] Open
Abstract
AIMS This study aimed to investigate the resting-state functional connectivity and topologic characteristics of brain networks in patients with diabetic optic neuropathy (DON). METHODS Resting-state functional magnetic resonance imaging scans were performed on 23 patients and 41 healthy control (HC) subjects. We used independent component analysis and graph theoretical analysis to determine the topologic characteristics of the brain and as well as functional network connectivity (FNC) and topologic properties of brain networks. RESULTS Compared with HCs, patients with DON showed altered global characteristics. At the nodal level, the DON group had fewer nodal degrees in the thalamus and insula, and a greater number in the right rolandic operculum, right postcentral gyrus, and right superior temporal gyrus. In the internetwork comparison, DON patients showed significantly increased FNC between the left frontoparietal network (FPN-L) and ventral attention network (VAN). Additionally, in the intranetwork comparison, connectivity between the left medial superior frontal gyrus (MSFG) of the default network (DMN) and left putamen of auditory network was decreased in the DON group. CONCLUSION DON patients altered node properties and connectivity in the DMN, auditory network, FPN-L, and VAN. These results provide evidence of the involvement of specific brain networks in the pathophysiology of DON.
Collapse
Affiliation(s)
- Qian Wei
- Department of Endocrine and MetabolicThe First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for Metabolic DiseaseNanchangJiangxiChina
- Queen Mary SchoolThe Nanchang UniversityNanchangJiangxiChina
| | - Si‐Min Lin
- Department of RadiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenFujianChina
| | - San‐Hua Xu
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jie Zou
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jun Chen
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Min Kang
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jin‐Yu Hu
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xu‐Lin Liao
- Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong KongChina
| | - Hong Wei
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Qian Ling
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yi Shao
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- Department of OphthalmologyEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Yao Yu
- Department of Endocrine and MetabolicThe First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for Metabolic DiseaseNanchangJiangxiChina
| |
Collapse
|
4
|
Camchong J, Roediger D, Fiecas M, Gilmore CS, Kushner M, Kummerfeld E, Mueller BA, Lim KO. Frontal tDCS reduces alcohol relapse rates by increasing connections from left dorsolateral prefrontal cortex to addiction networks. Brain Stimul 2023; 16:1032-1040. [PMID: 37348702 PMCID: PMC10530485 DOI: 10.1016/j.brs.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Brain-based interventions are needed to address persistent relapse in alcohol use disorder (AUD). Neuroimaging evidence suggests higher frontal connectivity as well as higher within-network connectivity of theoretically defined addiction networks are associated with reduced relapse rates and extended abstinence during follow-up periods. OBJECTIVE /Hypothesis: A longitudinal randomized double-blind sham-controlled clinical trial investigated whether a non-invasive neuromodulation intervention delivered during early abstinence can (i) modulate connectivity of addiction networks supporting abstinence and (ii) improve relapse rates. HYPOTHESES Active transcranial direct current stimulation (tDCS) will (i) increase connectivity of addiction networks known to support abstinence and (ii) reduce relapse rates. METHODS Short-term abstinent AUD participants (n = 60) were assigned to 5 days of either active tDCS or sham during cognitive training. Causal discovery analysis (CDA) examined the directional influence from left dorsolateral prefrontal cortex (LDLPFC, stimulation site) to addiction networks that support abstinence. RESULTS Active tDCS had an effect on the average strength of CDA-determined connectivity from LDLPFC to the incentive salience and negative emotionality addiction networks - increasing in the active tDCS group only. Active tDCS had an effect on relapse rates following the intervention, with lower probability of relapse in the active tDCS vs. sham. Active tDCS showed an unexpected sex-dependent effect on relapse rates. CONCLUSION Our results suggest that LDLPFC stimulation delivered during early abstinence has an effect on addiction networks supporting abstinence and on relapse rates. The unexpected sex-dependent neuromodulation effects need to be further examined in larger clinical trials.
Collapse
Affiliation(s)
- Jazmin Camchong
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA.
| | - Donovan Roediger
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Mark Fiecas
- University of Minnesota School of Public Health, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Casey S Gilmore
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA; Minneapolis VA Health Care System, Geriatrics Research Education and Clinical Center (GRECC), 1 Veterans Dr., Minneapolis, MN, 55417, USA
| | - Matt Kushner
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Erich Kummerfeld
- University of Minnesota Institute for Health Informatics, 8-100 Phillips-Wangensteen Building, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Bryon A Mueller
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA
| | - Kelvin O Lim
- University of Minnesota Department of Psychiatry and Behavioral Sciences, 2312 S. 6th St., Floor 2, Suite F-275, Minneapolis, MN, 55454, USA; Minneapolis VA Health Care System, Geriatrics Research Education and Clinical Center (GRECC), 1 Veterans Dr., Minneapolis, MN, 55417, USA
| |
Collapse
|
5
|
Zhang F, Wang C, Lan X, Li W, Fu L, Ye Y, Liu H, Wu K, Zhou Y, Ning Y. The functional connectivity of the middle frontal cortex predicts ketamine’s outcome in major depressive disorder. Front Neurosci 2022; 16:956056. [PMID: 36188452 PMCID: PMC9521309 DOI: 10.3389/fnins.2022.956056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Ketamine, a robust antidepressant, has promising potential in the treatment of major depressive disorder (MDD). However, it does not work for all MDD patients, and the mechanism underlying its anti-depressive effects is unclear. Researchers have explored the mechanisms of ketamine action in MDD patients through MRI, a technique that measures brain activity intuitively. Notably, many MRI results were inconsistent because they selected different brain regions as seeds, particularly with respect to functional connectivity (FC) analysis. To eliminate the influence of prior seeds as much as possible, we used the significantly different results in degree centrality (DC) analysis as seeds to explore the FC changes in MDD patients to identify an imaging biomarker of ketamine’s effect. Methods Forty-four MDD patients and 45 healthy controls (HCs) were included in the study. Patients, aged 18–65, received six intravenous ketamine injections over 12 days. Depressive symptoms were estimated and MRI scans were performed at baseline and the day after the sixth infusion. We estimated FC differences between responders, non-responders and HCs using the region that showed significant differences between responders and non-responders in DC analysis as the seed. The correlation between the MADRS changes and zFC values was performed, and the potential of zFC values to be a neuroimaging biomarker was explored using the receiver operating characteristic curve. Result Compared with non-responders, responders had significantly decreased DC values in the right middle frontal gyrus (MFG). In the analysis of FC using the region that showed significant differences in DC as a seed, there was a significant difference in the region of the right supplementary motor area (SMA) among responders, non-responders, and HCs. This region also overlapped with the bilateral median cingulate gyrus. In post hoc analysis, responders had higher FC than non-responders and HCs, and non-responders had lower FC than HCs. Importantly, the FC between the MFG and SMA (overlapping bilateral median cingulate gyrus) was correlated with the improvement of symptoms, which was estimated by the Mongomery-Asberg Depression Scale (MADRS). FC has the potential to be an imaging biomarker that can predict the ketamine effect in MDD patients according to the receiver operating characteristic curve analysis. Conclusion Our results revealed that FC between the SMG and SMA and mACC was highly correlated with depressive symptoms and has the potential to be a neuroimaging biomarker to predict the effect of ketamine in MDD.
Collapse
Affiliation(s)
- Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ling Fu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzho, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Yuping Ning,
| |
Collapse
|
6
|
Zhang S, Li B, Liu K, Hou X, Zhang P. Abnormal Voxel-Based Degree Centrality in Patients With Postpartum Depression: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:914894. [PMID: 35844214 PMCID: PMC9280356 DOI: 10.3389/fnins.2022.914894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
Postpartum depression (PPD) is a major public health concern with significant consequences for mothers, their children, and their families. However, less is known about its underlying neuropathological mechanisms. The voxel-based degree centrality (DC) analysis approach provides a new perspective for exploring the intrinsic dysconnectivity pattern of whole-brain functional networks of PPD. Twenty-nine patients with PPD and thirty healthy postpartum women were enrolled and received resting-state functional magnetic resonance imaging (fMRI) scans in the fourth week after delivery. DC image, clinical symptom correlation, and seed-based functional connectivity (FC) analyses were performed to reveal the abnormalities of the whole-brain functional network in PPD. Compared with healthy controls (HCs), patients with PPD exhibited significantly increased DC in the right hippocampus (HIP.R) and left inferior frontal orbital gyrus (ORBinf.L). The receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) of the above two brain regions is all over 0.7. In the seed-based FC analyses, the PPD showed significantly decreased FC between the HIP.R and right middle frontal gyrus (MFG.R), between the HIP.R and left median cingulate and paracingulate gyri (DCG.L), and between the ORBinf.L and the left fusiform (FFG.L) compared with HCs. The PPD showed significantly increased FC between the ORBinf.L and the right superior frontal gyrus, medial (SFGmed.R) compared with HCs. Mean FC between the HIP.R and DCG.L positively correlated with EDPS scores in the PPD group. This study provided evidence of aberrant DC and FC within brain regions in patients with PPD, which was associated with the default mode network (DMN) and limbic system (LIN). Identification of these above-altered brain areas may help physicians to better understand neural circuitry dysfunction in PPD.
Collapse
Affiliation(s)
- Shufen Zhang
- Department of Obstetrics, Shandong Second Provincial General Hospital, Jinan, China
| | - Bo Li
- Department of Radiology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Kai Liu
- Department of Radiology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Xiaoming Hou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Xiaoming Hou,
| | - Ping Zhang
- Department of Neurosurgery, Qi Lu Hospital, Shandong University, Jinan, China
- Ping Zhang,
| |
Collapse
|
7
|
Leyrer-Jackson JM, Overby PF, Nagy EK, Olive MF. Early Life Stress Promotes Heroin Seeking But Does Not Alter the Excitability of Insular Pyramidal Cells Targeting the Nucleus Accumbens. Front Behav Neurosci 2021; 15:777826. [PMID: 34949994 PMCID: PMC8688756 DOI: 10.3389/fnbeh.2021.777826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
A number of retrospective studies have demonstrated adverse childhood experiences are associated with increased vulnerability to substance use disorders, including opioid use disorders (OUDs). These adverse childhood experiences, also referred to as early life stress (ELS), can be modeled in laboratory animals by various paradigms including limited bedding and nesting (LBN) procedures. Studies using rodent models of ELS have been shown to recapitulate various aspects of OUDs, including relapse propensity and perseverance of drug-seeking behavior. In the current study, we utilized the LBN paradigm to explore potential effects on heroin self-administration, extinction, and relapse-like behaviors in male and female rats. We also utilized in vitro whole-cell electrophysiology to examine the effects of LBN and repeated heroin administration on the excitability of pyramidal neurons in the anterior insular cortex (AIC) projecting to the nucleus accumbens core (NAc), as recent studies suggest that this circuit may mediate various aspects of OUDs and may be compromised as a result of either ELS or OUDs. We observed that compared to control animals, rats exposed to LBN conditions during postnatal days 2–9 showed increased breakpoints for heroin self-administration under a progressive ratio schedule of reinforcement, impaired extinction of heroin-seeking behavior, and increased reinstatement of heroin-seeking behavior induced by heroin-associated cues. No effect of LBN rearing conditions were observed on the acquisition and maintenance of heroin self-administration, and no sex differences in heroin intake were observed. LBN and control reared animals showed no differences in the excitability of AIC-NAc pyramidal neurons, but animals treated with repeated heroin showed decreased excitability of these neurons through a significant increase in rheobase and reduction in action potentials induced by depolarizing currents. Together, these results suggest that ELS exposure produces exacerbations of heroin seeking behavior without parallel effects on AIC-NAc excitability, although heroin itself reduces the excitability of these neurons.
Collapse
Affiliation(s)
| | - Paula F Overby
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Erin K Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|