1
|
Miao L, Wang H, Yang X, Xu L, Xu R, Teng H, Zhang Y, Zhao Y, Yang G, Zeng X. Methamphetamine and HIV-1 Tat Synergistically Induce Microglial Pyroptosis Via Activation of the AIM2 Inflammasome. Inflammation 2025:10.1007/s10753-025-02266-9. [PMID: 39969742 DOI: 10.1007/s10753-025-02266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE Human immunodeficiency virus (HIV)-infected individuals who abuse methamphetamine (METH) exhibit more severe neurotoxicity and cognitive impairment. Pyroptosis, a programmed cell death pathway mediated by the inflammasome, has been implicated in various neurological diseases. This study aimed to elucidate the role of the AIM2 inflammasome in METH- and HIV-1 Tat-induced pyroptosis in human brain tissue and in vitro models. METHODS Postmortem brain tissue from HIV-infected individuals with a history of METH abuse was analyzed for pyroptosis markers and AIM2 inflammasome components using immunohistochemistry, immunofluorescence, and Western blotting. BV2 microglial cells were lentivirally transduced to knockdown AIM2 expression. DNA damage was assessed using Western blotting and the comet assay. Expression of pyroptosis-related proteins was evaluated by electron microscopy, Western blotting, and immunofluorescence. Cell viability was measured using the CCK8 assay. RESULTS Elevated levels of pyroptosis markers and AIM2 inflammasome components were observed in brain tissue from HIV-infected METH users. METH and Tat synergistically induced pyroptosis in BV2 cells in a time- and concentration-dependent manner, accompanied by DNA damage and activation of the AIM2 inflammasome. Knockdown of AIM2 significantly reduced the expression of pyroptosis-related proteins. CONCLUSION METH and HIV-1 Tat proteins synergistically induce microglial pyroptosis by activating the AIM2 inflammasome through dsDNA damage. These findings suggest that targeting the AIM2 inflammasome may be a promising therapeutic strategy for HIV-associated neurocognitive disorder (HAND).
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Ruike Xu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yingjie Zhao
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Jeffery N, Mock PY, Yang K, Tham CL, Israf DA, Li H, Wang X, Lam KW. Therapeutic targeting of neuroinflammation in methamphetamine use disorder. Future Med Chem 2025; 17:237-257. [PMID: 39727147 PMCID: PMC11749361 DOI: 10.1080/17568919.2024.2447226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Methamphetamine (METH) is a highly addictive illicit psychostimulant with a significant annual fatality rate. Emerging studies highlight its role in neuroinflammation and a range of neurological disorders. This review examines the current landscape of potential drug targets for managing neuroinflammation in METH use disorders (MUDs), with a particular focus on the rationale behind targeting Toll-like receptor 4 (TLR4), the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and other promising targets. Given the multifactorial neurological effects of METH, including cognitive impairment and neurodegeneration, addressing METH-induced neuroinflammation has shown considerable promise in partially mitigating the damaging effects on the central nervous system and improving behavioral outcomes. This article provides an overview of the existing understanding while charting a promising path forward for developing innovative MUD treatments, focusing on neuroinflammation as a therapeutic target. Targeting neuroinflammation in METH-induced neurological disorders shows significant promise in mitigating cognitive impairment and neurodegeneration, offering a potential therapeutic strategy for improving outcomes in MUD. While challenges remain in optimizing treatments, ongoing research into combination therapies, novel drug delivery systems, and neuroprotective agents suggests a positive outlook for more effective interventions.
Collapse
Affiliation(s)
- Natasha Jeffery
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Phooi Yan Mock
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kun Yang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Structural Biology and Protein Engineering Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Miao L, Wang H, Li Y, Huang J, Wang C, Teng H, Xu L, Yang X, Tian Y, Yang G, Li J, Zeng X. Mechanisms and treatments of methamphetamine and HIV-1 co-induced neurotoxicity: a systematic review. Front Immunol 2024; 15:1423263. [PMID: 39224601 PMCID: PMC11366655 DOI: 10.3389/fimmu.2024.1423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Shen Y, Gong X, Qian L, Ruan Y, Lin S, Yu Z, Si Z, Wei W, Liu Y. Inhibition of GSDMD-dependent pyroptosis decreased methamphetamine self-administration in rats. Brain Behav Immun 2024; 120:167-180. [PMID: 38834156 DOI: 10.1016/j.bbi.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
It is widely believed that the activation of the central dopamine (DA) system is crucial to the rewarding effects of methamphetamine (METH) and to the behavioral outcomes of METH use disorder. It was reported that METH exposure induced gasdermin D (GSDMD)-dependent pyroptosis in rats. The membrane pore formation caused by METH-induced pyroptosis may also contribute to the overflow of DA into the extracellular space and subsequently increase the DA levels in the brain. The present study firstly investigated whether the membrane pore information induced by GSDMD-dependent pyroptosis was associated with the increased DA levels in the ventral tegmental area (VAT) and nucleus accumbens (NAc) of rats self-administering METH and SY-SH5Y cells treated by METH. Subsequently, the effect of pore formation blockade or genetic inhibition of GSDMD on the reinforcing and motivational effect of METH was determined in rats, using the animal model of METH self-administration (SA). METH exposure significantly increased the activity of NLRP1/Cas-1/GSDMD pathway and the presence of pyroptosis, accompanied by the significantly increased DA levels in VTA and NAc. Moreover, intraperitoneal injections of disulfiram (DSF) or microinjection of rAAV-shGSDMD into VTA/NAc significantly reduced the reinforcing and motivational effect of METH, accompanied by the decreased level of DA in VTA and NAc. The results provided novel evidence that METH-induced pyroptosis could increase DA release in VTA and NAc via the NLRP1/Cas-1/GSDMD pathway. Additionally, membrane pores or GSDMD blockade could significantly reduce the reinforcing and motivational effect of METH. In conclusion, blocking GSDMD and membrane pore formation could be a promising potential target for the development of agents to treat METH use disorder.
Collapse
Affiliation(s)
- Yao Shen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315021, China
| | - Xinshuang Gong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315021, China
| | - Liyin Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo, 315021, China
| | - Yuer Ruan
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Shujun Lin
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zhaoying Yu
- Department of Psychology, Collage of Teacher Education, Ningbo University, Ningbo, China
| | - Zizhen Si
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wenting Wei
- School of Materials Science and Chenical Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Liu
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
6
|
Qian L, Ruan Y, Gong X, Yu Z, Lin S, Li X, Shen Y, Luo H, Si Z, Liu Y. The neuroprotective effect of LCZ696 on methamphetamine-induced cognitive impairment in mice. Neurosci Lett 2024; 823:137630. [PMID: 38215873 DOI: 10.1016/j.neulet.2024.137630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVE Methamphetamine (METH) exposure commonly causes cognitive impairment. An angiotensin II receptor/neprilysin inhibitor (ARNI), LCZ696 has been demonstrated to inhibit inflammation, oxidative stress and apoptosis. The present study was designed to examine the effect of LCZ696 on METH-induced cognitive impairment and the underlying mechanism. METHODS Following daily treatment of either saline or METH (5 mg/kg) for 5 consecutive days, the cognitive function was tested using the Y-maze and the Novel Object Recognition (NOR) in Experiment 1. In Experiment 2, mice were initially treated with saline or LCZ696 (60 mg/kg) for 9 consecutive days, followed by LCZ696, METH or saline for 5 days. Cognitive testing was carried out as Experiment 1. In Experiment 3, SH-SY5Y cells were treated with either METH (2.5 Mm) or ddH2O for 12 h. The apoptosis and reactive oxygen species (ROS) level of SH-SY5Y were examined. In Experiment 4, SH-SY5Y cells were pretreated with either ddH2O or LCZ696 (70um) for 30 min, followed by ddH2O or METH treatment for 12 h. Nrf2 and HO-1 protein expression was examined in the ventral tegemental area (VTA) of all the animals and SH-SY5Y cells. RESULTS LCZ696 significantly improved METH-induced cognitive impairment, in conjunction with decreased apoptosis and ROS levels in VTA of METH-treated mice and SH-SY5Y cells. METH significantly decreased Nrf2 and HO-1 protein expression in VTA of mice and SH-SY5Y cells, which was reversed by LCZ696 treatment. CONCLUSION LCZ696 yields a neuroprotective effect against METH-induced cognitive dysfunction via the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Liyin Qian
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315021, China
| | - Yuer Ruan
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Xinshuang Gong
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315021, China
| | - Zhaoying Yu
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Shujun Lin
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Xiaofang Li
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Yao Shen
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315021, China
| | - Hu Luo
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Zizhen Si
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315021, China
| | - Yu Liu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315021, China.
| |
Collapse
|
7
|
Guo ML, Roodsari SK, Cheng Y, Dempsey RE, Hu W. Microglia NLRP3 Inflammasome and Neuroimmune Signaling in Substance Use Disorders. Biomolecules 2023; 13:922. [PMID: 37371502 DOI: 10.3390/biom13060922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
During the last decade, substance use disorders (SUDs) have been increasingly recognized as neuroinflammation-related brain diseases. Various types of abused drugs (cocaine, methamphetamine, alcohol, opiate-like drugs, marijuana, etc.) can modulate the activation status of microglia and neuroinflammation levels which are involved in the pathogenesis of SUDs. Several neuroimmune signaling pathways, including TLR/NF-кB, reactive oxygen species, mitochondria dysfunction, as well as autophagy defection, etc., have been implicated in promoting SUDs. Recently, inflammasome-mediated signaling has been identified as playing critical roles in the microglia activation induced by abused drugs. Among the family of inflammasomes, NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) serves the primary research target due to its abundant expression in microglia. NLRP3 has the capability of integrating multiple external and internal inputs and coordinately determining the intensity of microglia activation under various pathological conditions. Here, we summarize the effects of abused drugs on NLRP3 inflammasomes, as well as others, if any. The research on this topic is still at an infant stage; however, the readily available findings suggest that NLRP3 inflammasome could be a common downstream effector stimulated by various types of abused drugs and play critical roles in determining abused-drug-mediated biological effects through enhancing glia-neuron communications. NLRP3 inflammasome might serve as a novel target for ameliorating the development of SUDs.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
8
|
Sil S, Thangaraj A, Oladapo A, Hu G, Kutchy NA, Liao K, Buch S, Periyasamy P. Role of Autophagy in HIV-1 and Drug Abuse-Mediated Neuroinflammaging. Viruses 2022; 15:44. [PMID: 36680084 PMCID: PMC9866731 DOI: 10.3390/v15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Centre for Excellence in Nanobio Translational Research, Anna University, BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India
| | - Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA 90048, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|
10
|
Shen Y, Qian L, Luo H, Li X, Ruan Y, Fan R, Si Z, Chen Y, Li L, Liu Y. The Significance of NLRP Inflammasome in Neuropsychiatric Disorders. Brain Sci 2022; 12:brainsci12081057. [PMID: 36009120 PMCID: PMC9406040 DOI: 10.3390/brainsci12081057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
The NLRP inflammasome is a multi-protein complex which mainly consists of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain. Its activation is linked to microglial-mediated neuroinflammation and partial neuronal degeneration. Many neuropsychiatric illnesses have increased inflammatory responses as both a primary cause and a defining feature. The NLRP inflammasome inhibition delays the progression and alleviates the deteriorating effects of neuroinflammation on several neuropsychiatric disorders. Evidence on the central effects of the NLRP inflammasome potentially provides the scientific base of a promising drug target for the treatment of neuropsychiatric disorders. This review elucidates the classification, composition, and functions of the NLRP inflammasomes. It also explores the underlying mechanisms of NLRP inflammasome activation and its divergent role in neuropsychiatric disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, depression, drug use disorders, and anxiety. Furthermore, we explore the treatment potential of the NLRP inflammasome inhibitors against these disorders.
Collapse
Affiliation(s)
- Yao Shen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Liyin Qian
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Hu Luo
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Xiaofang Li
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Yuer Ruan
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Runyue Fan
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
- Ningbo Yinzhou District Center for Disease Control and Prevention, Ningbo 315199, China
| | - Zizhen Si
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Department of Pharmacology, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yunpeng Chen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Longhui Li
- Ningbo Kangning Hospital, Ningbo 315201, China
| | - Yu Liu
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Correspondence:
| |
Collapse
|